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ABSTRACT

This paper solves completely the characterization of parallel

tandem and feedback connection of linear time-invariant differential

systems. It is also shown that even for nonlinear systems the con

trollability and observability of the feedback connection is equivalent

to that of specific tandem connections.

1. INTRODUCTION

In this paper a complete characterization of the controllability and

observability of some natural representations of composite systems is

presented. These systems are obtained by connecting in parallel, in

tandem, and in a feedback loop, linear time-invariant finite dimensional

systems. Emphasis is placed on the distinction between a system and

one of its representations. Some problems treated by Gilbert [l] for

the case of distinct eigenvalues are completely solved here. In addi

tion we establish the equivalence, in a very broad setting, of the con

trollability and the observability of a feedback connection to that of a

tandem connection: it is interesting to note that for controllability this

equivalence applies to nonlinear systems.



In Sees. 2 and 3 the notation and some basic facts are given, also

a main theorem stated by Kalman [6] is proved. In Sec. 4 we consider

the parallel connections. In Sees. 5 and 6 we cover the tandem and the

feedback connections.

2. SYSTEMS AND THEIR REPRESENTATIONS

The basic notion associated with a system is the set of all its

input-output pairs: this is the set of all inputs, u, and outputs y where

u and y are functions of time defined on [t , co) where the initial time

t may vary from pair to pair and ranges over the whole real line.

Given the set of all pairs (u, y), we assume that it is possible to assign

a set of parameters, called the state. It is assumed that this param

eterization satisfies all the consistency requirements [ 2] and is such

that the output y is a function of the input u and the initial state.

Given a system, there are many ways of assigning a state to it and,

consequently, it is important to keep in mind the difference between a

system and its representation. Indeed, the system--i. e., the set of

all input-output pairs--consists of basic physical data whereas the state

is an intellectual construct used for calculation. Given a system, there

are many ways of assigning to it a state; some of these are more useful

or more illuminating than others. Therefore, throughout this paper we

make a sharp distinction between a system and one of its representations.
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A representation of a system is a set of rules that allows the calcula

tion of the output y on the basis of the initial state and of the input u.

In this paper we consider almost exclusively differential systems

that are linear and time-invariant. Typically, we consider a system §

that has the following representation S :

S: x = Ax + Bu , (2.1a)

y = Cx + Du , (2.1b)

where x, the state, is an n-dimensional vector; the input u, a p XI

vector; the output y, a qXl vector. A, B, C, and D are, respec

tively, (n X n), (n X p), q X n), and qXp) matrices. One of the

simplest methods for obtaining another representation for the same

system © is to perform a nonsingular constant transformation T on

the state space: x = Tx where x is the new state. Both representa

tions describe the same system O since they lead to the same set of

input-output pairs; only the parametrization of the pairs is different.

The zero-state response of <5 is completely characterized by the

q X n matrix (called the transfer function matrix)

G(s) = C(s I - A)'1 B +D. (2.2)

Indeed

y(s) = G(s) u(s) , (2.3)
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where u(s) and y(s) are the Laplace transforms of the input u and of

the corresponding zero-state response y ; the (i, j) component of G(s)

is the Laplace transform of the zero-state response at the ith output

when all inputs are identically zero except for the jth input which is a

unit impulse, 6(t). From its definition, G(s) is independent of the

chosen parametrization of the input-output pairs. It should be stressed

that G(s) does not characterize o, indeed it characterizes only the

state responses of O [ 2]. In terms of the Kalman decompositionzero-

[3] G(s) characterizes only the part that is both controllable and

observable.

In order to test the representation of composite systems, we

start by considering differential systems with representations S and

S?, respectively:

S. : ,x = .A.x + .B.u (2.4a)
l 1- 1 - i- i- i-

.y = .C.x + .D.u (2.4b)
i~ i ~ i~ l ~ i~

where .A, .B, . C, Dare .nX.n, .nX.p, .q X .n and .qX.p

matrices, respectively; . u is a .p XI input vector, .y is a .q X1

output vector, and .x is an .n X 1 state vector. A few words about
r l- i

notations: in general, the subscript on the left-hand side denotes the

system (e.g., .x, .A, .p). Subscripts on the right-hand side of these
i-i-i
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letters will be required in the next section. It is well known that

Eq. (2.4a) has a unique solution for .x and that .x qualifies as the
l- i- ^

state of <b .. Let 2. be the state space of the representation S., thus

.x € 2..
i- l

Consider now the three basic interconnections of S and S : the

parallel, the tandem, and the feedback connections. It is assumed that

S and S are initially in the zero state and connected at t = 0. Let

u and y be the input and output of the composite system.

a. To represent the parallel connection <y and <&>_, we write

Eq. (2.4) with ^(t) = 2u(t) =u(t) and y(t) = y(t) + y(t) for all t > 0.

It is clear that y is a function of _x, x, and u; hence the composite

state

S , denoted by 2 © 2 , qualifies as the state of the parallel connec

tion of <2) , and <*y_. The transfer function of the parallel connection is

GI(s)+G2(s).

b. For the representation of the tandem connection of Q) fol

lowed by © , we choose Eq. (2.4) with ,u(t) = u(t), ~u(t) = y(t),

2s , ranging over the direct sum of the state space of S and

2^
y(t) = 7y(t) for all t ^ 0; and the composite state ranging over

2 © 2 , qualifies as the state. The transfer function of the tandem

connection is G (s) G.(s).

c. The feedback connection with © in the forward path and

in the feedback path is shown in Fig. 2.1.
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in order to make the connection possible, we need p = q, p = q. Its

representation is Eq. (2.4) with .u = u - ?y, y = y = u. However, in

order to qualify x as the state of the feeback connection of O, and

2?, we need an additional condition. Taking the Laplace transform of

Eq. (2.4), using jUfs) =u(s) - 2y(s), y(s) =xy(s) =2£(s), and by making

some simple manipulations, we obtain the following two sets of equations

b + Gx(s) G2(s) y(s) = G^s) u(s)

-1+ ^(81-^) 2X(0)

-1- Gx(s) 2C(sI - 2A) 2x(0) , (2.5)

I + G2(s) Gx(s)
-1^(s) = u(s) - G2(s) ^(sl - XA) xx(0)

2C(sI - 2A)_1 2x(0) , (2.6a)

-1y(s) = G^s) ^(s) +^(sl - 2A) xx(0) , (2.6b)

where x(0) and x(0) are the initial states of S and S , respectively.

From either Eq. (2.5) or Eq. (2.6) we wish to solve for y(s). Before

proceeding, we assert that:
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(l +G2(s) G^sjj =detfl +G^s) G2(s)j .det

Observe that the order of the matrices are different: the one in the

left-hand side is a q X ^(^q = ,p by assumption) matrix; the one in the

right-hand side is a q X p ( q = p ) matrix. The elements of these
J. £ J. £

matrices are rational functions of s, and since the rational functions

form a field [4], standard results in the theory of matrices can be

applied here and the proof by Kalman [5] applies here. See also [9, p.46].

We also observe that:

if det(]I +G (s) G (s)J ^ 0 for some s, then

G^s)Tl +G2(s) G^s)!"1 =[~I +G^s) G^sH"1 G^s) .

Proof: The assumption and the previous observation imply that

I +G2(s) G.(s) | and I +G(s) 6 (s) " are well-defined rational

functions. Consider the identity

G^s) fl +G2(s) G^s^j [J +G2(s) G^s)!"1 =G^s) ,

which can be rewritten as

r~I +G^s) G2(s)1 G^sjfl +G2(s) G^s)!"1 =G^s) ,

and from which the asserted equality follows.
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With these observations at our disposal, we are ready to

establish

Theorem 2.1. In the feedback connection shown in Fig. 2.1, for any

input u there exists a unique output y if and only if

detfl + G (s) G^(s\) ?£ 0 for some s .
N- -1 - 2 /

Proof: (<£=) That detfl +G.(s) G9(s)) jt o for some s implies that

\\ + G (s) G (s)J is a well-defined rational function. Hence from

Eq. (2.5) and the one-to-one correspondence between a time function

and its Laplace transform, we conclude that for any u there exists a

unique y. Using our second observation, we can easily show that

Eq, (2.6) gives the same y.

( =£> ) Assume that det(l +G^s) 92(s)} =0 for all s. In

Eq. (2.6a) let x (0) = x (0) = 0 and pick u(s) outside the range of

(I +G (s) G (s)). Then there is no u (s) satisfying Eq. (2.6a). Con-

sequently, there is no y(s) satisfying Eq. (2.6).

We given an example to illustrate this theorem. Let

Sl: 1? =

-1 0

0 -2

x +

1 0

0 1

1 1 -1 0

1 1
1? +

0 -1
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S2: 2l = 2^ '

then

-s

s + 1 s + 2

9l(s)
-s - 1

, G (8) = I

s + 1 s + 2

L

It is clear that det I +G^s) 92(s) = 0 for all s. Assuming that S

is in the zero state; i. e., x(0) - 0, and choosing

u(s) =

1

s + 2

1

(s +1)'

then Eq. (2.5) gives

s + 1

1

s + 2

1

L
s + 1 s + 2

y(s) =

1 - s(s +1)

(s +l)2 (s + 2)

It is obvious that there is no such y(s) to satisfy Eq. (2.7).

-9-
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A direct consequence of theorem 2.1 is that if

detll +G(s) G (s)J ^ 0 for some s, then the composite state

ranging over 2. 0 2 , qualifies as the state of the representation of

the feedback system. The transfer function matrix of the system is

§i(6)(l+ §2(s) 2i{s)) =[l+ 9i(s) 92(s))_1 ?1(S) *
The degree in s of the denominator of C(sl - A) B is at

least one degree higher than that of its numerator; hence, by choosing

s arbitrary large, we can make C(s I - A) B as small as we like.

Consequently, if det(I + D) £ 0, then det(l +G(s)} jt 0 for some s.

Similarly, we find that if det(I + D_D) ^ 0 then det(l +G.(s) G_(s)) £ 0
— 1— 2— ^— —1 «~ 2 '

for some s. Hence we have established

Corollary 2.1. In the feedback connection shown in Fig. 2.1, if

det(I + D D) ^ 0 then for any input u there exists a unique output y

and

2?
qualifies as the state of the feedback connection.

rx'
1~

2*

3. CONTROLLABILITY AND OBSERVABILITY

Consider the linear, time-invariant, finite dimensional differ

ential system that has the representation S given in Eq. (2.1). The

representation S is said to be controllable on the interval [tQ, tjj if

for any given state x(t ) in the state space 2 there exists an input
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uf , that transfers x(t ) to the zero state at time t,. The repre-
~1 0* 1-1 ~ .1

sentation S is said to be observable on the interval [tQ, tj if given any

unknown state x(t ), the knowledge of the representation (2.1) and of the

zero-input response over [t , t ] suffices to determine the state

It is well known that the following characterizations of control

lability are equivalent:

(i) S is controllable in any nonzero subinterval of [ 0, co),

At
(ii) All the rows of e - B are linearly independent over any

open subinterval of [ 0, co) ,

_ _1

(iii) The matrix [ B : A B : • • • :A B] has rank n, and

.a f At At '•*
(iv) W (t) = \ (e - B) (e- B) dT is a positive definite matrix-c J^

for all t > t and any t £ 0. Here •'* " denotes the complex conjugate

transpose.

The following statements for the observability are equivalent:

(i)1 S is observable in any nonzero subinterval of [ 0, co),

At
(ii)1 All the columns of C e - are linearly independent over any

open subinterval of [0, co) ,

(iii)' The matrix [C* :A C" : • • • : (A") " C ] has rank n,

and
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(iv)' W^^J^Ce^fCe^:) dT is a positive definite matrix

for all t > t and any t 2: 0 .

These equivalences are proved in the literature [2, 3, 6, 7].

One approach to the discussion of the controllability of, say, the

tandem connection would be to observe that the state response starting

from the zero state is related to the input u of the tandem connection

by

i*(s) (8lI -1A)"11B

2x(s) <s2i -zArS^iS^ii-i^^iS+iPi
2(s)

(3.1)

From condition (ii) above, it follows that the composite state [,x, x]1

is controllable on any subinterval of [ 0, co) if and only if the rows of

the matrix in Eq. (3.1) are linearly independent (more precisely, if and

only if there is no nonzero ( n + n) -tuple of real numbers

(£n £->i • • • t £ ) = £ such that the product of £ by the matrix of

Eq. (3.1) is not an identically zero row vector). This characterization

of the controllability of the state [ x, x]1 does not give any insight

into the following phenomenon: it is possible that the representations

S1 and S are controllable and observable, that the state x of S and

the state x of S are controllable (separately) by the input ,u of the
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tandem connection, but that the state .[ x, 2x]* of the tandem connection

is not controllable. Indeed consider

Sl! 1? =

a =

V 2* =

y =

-10 0

0 -3 0

0 0-4

1 -1 . 0

1 0 -2

x +

x +

1 . 0

0 1

0 1

-2 0

0 -2
2? +

1 -1

0 I
2*

1 o

o 1
2?

1U

i?

It is easy.to verify that the representations S. and S^ are controllable

and observable. Observe that

9i<s>

1 s

s

+ 2

s + 1 + .3

1 s + 2

s + 1 s + 4
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has rank 2; hence (by remark (2) following theorem 5.1 below) after the

tandem connection, x in 2 is controllable by u. The block diagram

of the tandem connection of S. and S is given in Fig. 3.1. This block

diagram can be transformed by using partial fraction expansion or the

transformation suggested in [1] to Fig. 3.2. Examining Fig. 3.2, we

can readily see that the composite state
lx
~x is not controllable in

2 © 2 . This is due to the fact that the states reachable from the

origin must lie in the hyperplane defined by x - x + x = 0. Also,

the diagram shows that there is no connection between the inputs and x .

In order to gain some insight into these phenomena, we shall use

the Jordan canonical form for the representation of each system-

Criterion Based on the Jordan Canonical Form

The properties of controllability and observability are invariant

under nonsingular transformations of the state; hence it is an additional

justification for assuming that A is in the Jordan canonical form. Let

A be of the form shov/n in Table 1 : A is an n X n matrix in Jordan

canonical form with m (m ^ n) distinct eigenvalues \ , \ , . . . , \ .

Let A. denote all the Jordan blocks associated with the eigenvalue X..
~i l

and r(i) be the number of Jordan blocks in A.. Let A., be the jth
~i -ij —

Jordan block in A., then A. = diag. (A.., A. _, . . ., A. ...) and
~i ~i to v-il ~i2 ~ir(i)

A = dias. (A,, A^, . . ., A ). Let n. and n.. be the order of A. and
° x-l -2 ~m l ij -l

A... respectively; then
-ij

-14-



m m r(i)

n=yn. = ) > n

i=l i=l j=l

B and C are arbitrary n X p, qXn matrices. Corresponding to

A. and A... B and C are partitioned as shown in Table 1. Call b...,
-i -1/ ^ ~lij

b .. the first and the last row of B.. ; c,.., c „.. the first and the last
~iij -ij "lij ~4iJ

column of C.. .

Now we will give the necessary and sufficient condition for the

representation S in the form of Table 1 to be controllable and obser-

able. It turns out that the conditions depend only on b and c...,

i = 1, 2, . . . , m; j = 1, 2, . . ., r(i). This result has been stated

without proof by Kalman [ 5].

In the case of linear time-invariant systems, if the representation

S is controllable in some interval of [ 0, co), then it is controllable

in any nonzero subinterval of [0, co). Since in this paper we consider

only the time-invariant representation, the qualification of the time

interval will be dropped.

Theorem 3.1 [ 5]. The representation S is controllable if and only

if for each i = 1, 2, . . ., m, the set of r(i) p-dimensional row

vectors

~j?il' -H2' * * *' -iir(i(i)

is a linearly independent set.

The theorem is proved in the appendix.

-15-



Table 1

Notations for the Jordan Form Representation

A

(n Xn)

A,

*2

A
m

B

(nXp)

?2

-m

c = [c. c • •'• c ]
-1-2 -m

A.
-l

(n. Xn.)
l i

A.,
-il

•i2

~?u "
5i2

B. =
-l

(n. X p) •

-ir(i) ?ir(i)

c. = [c._ c._ • • • C. ..J
-l L-il -i2 -ir(i)J

(q X n.)

A.,
-ij

(n.. Xn..)

X. 1
l

l

G. • = [c_.. c„..~ij l~1ij-2ij

b...
-lij

•

B.. =

b

~2ij

X.
1

1

1 __,

-iij

_ _

• ~w
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Remarks:

(1) The condition for controllability in the theorem requires that

each of the m sets of vectors be individually tested for linear

independence.

(2) The basic idea of the proof is essentially the following: write

every state variable in the form of the convolution of its state impulse

response (kernel) and the input function; if this kernel is linearly inde

pendent from all the other kernels corresponding to other state variables,

then this state variable is controllable. And if this is the case for each

state variable then the state is controllable.

(3) The necessary and sufficient conditions for controllability are

immediately obvious if (a) one recalls that the linear independence of

function of the form p.(t) e and p.(t) e J (where p. and p. are poly
pi* j x J

nomials and X. £ X.) implies that the controllability of the state variables

associated with X can be considered independently from that of those
i

associated with X.; and (b) one considers the block diagram represen

tation of the Jordan form (Fig. 3.3). Clearly, if the vectors

b , b , . . ., b . ,. are linearly dependent, then whatever is the
-iii -4i2 -iir(i)

input waveform u(- ), the r(i) inputs to the first column integrators are
X.t X.t

linearly dependent. Furthermore, since the functions e , te , . . •

are linearly independent over any open interval, any state variable

associated with an integrator in any given row of Fig. 3.3 can be con

trolled by using only the input to the first integrator. Therefore, one
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needs only consider the controllability of each set x , j = 1, 2, . . .,

r(i) one at a time and for each different i.

(4) Observe that in order for the p-dimensional row vectors

b,.,, b„.^, . . ., b„. ... to be linearly independent, we must have
-ill -ii2 -iir(i)

r(i) ^ p. Hence, in the case of p = 1; i. e,, B is a column vector, we

have r(i) = 1 and b ^ 0 for all i. Equivalently, the single-input

representation S of a single input system e) is controllable if and only

if all the eigenvalues corresponding to each Jordan block are pairwise

distinct and all the components of the column vector B which corre

spond to the last row of each Jordan block are different from zero

[2, p. 511].

Applying the duality theory of Kalman, we have

Theorem 3.2. The representation S is observable if and only if, for

each i = 1, 2, . . ., m, the set of r(i) q-dimensional column vectors

-HI' ~li2' ' - •' -lir(i)

is a linearly independent set.

4. PARALLEL CONNECTION

In the remainder of this paper the controllability and observability of

composite systems are considered. Given any two systems with

representations S1 and S as given in Eq. (2.4), we have shown that

the direct sum of the individual state space qualifies as the state space

-18-



of the composite representation. Hence it is clear that if either S or

S is not controllable (observable), then the composite representation

is not controllable (observable); in other words, the controllability

(observability) of S and S is a necessary condition for the composite

representation to be controllable (observable).

In this section we consider only the parallel connection of S. and

S„. Recall that .A, B, and .C are in the form of Table 1. Let
2 1 - i~ l-

X , j=l, 2, . . ., m. be the distinct eigenvalues of . A . Define
i j J • i i ~

1={ |̂J=L 2, .. ..n^}. A24 j^A, « { A. Ij = 1, 2, • • •, m, \ , A0 * { oX; | j = 1, 2, . . ., m..

Theorem 4.1. Assume that the representations S and S are con

trollable and observable and that p = 2p, q = q. Then the parallel

connection of S, and S_ (u = u = u, y = y + y) is controllable

(observable) if and only if either A f) A = <|> or, in case A and A2

are not disjoint, each pair of common eigenvalues, say X = 2X-, is

such that the set of (r (a) + r (|3)) p-dimensional row vectors ^^ -^

b b .b.b 3 „ ,ni is a linearlyl2iflp2» ' ' '» filar (a)' 2-i(31' 2-i(32' ' 2~lf3r2(P) y
independent set. (The set of (r (a) + r2(P)) q-dimensional column

vectors.

filal' lSla2' ' * " filar (a)' 2-lar^a)' 2-lpl' 2-102' ' ' " 2-l|3r2(P)

is a linearly independent set.)
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Proof. The representation of the parallel connection may be written

as

1* p
•l5

+

i5

p 24 2? 2§

1?

u

lS 2? + (D^D^u

2?

(4.1)

(4.2)

If A fl A = 4>, Eq. (4.1) is already in the form of Table 1: for A and

A are in the Jordan canonical form by assumption. If A fl A, ^ <j>,

Eq. (4.1) can be transformed into the form of Table 1 by rearranging the

order of Jordan blocks. Hence by Theorem 3.1, the conclusions

follows.

Q.E.E.

If S. and S_ are single-input single-output representations, then

we have

Corollary 4.1. Assume that S and S_ are controllable and observ

able and that p = q = p = q = 1. Then the parallel connection of S

and S? is controllable and observable if and only if A fl A = <j>.

This follows directly from the remark (4) following Theorem 3.1.

An interesting interpretation of this corollary is that the sum of two
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irreducible transfer functions, with no common poles,

G(s) = G (s) + G?(s) is irreducible and the degree of the denominator of

G(s) is equal to the sum of those of G.(s) and G (s).
JL Cd

5. TANDEM CONNECTION

In this section we consider the tandem connection for S and S .

We consider first the case A fl A = <J>-, next some special cases where

A. fl A ^ <j> and finally the general case. In the first two cases we

are able to obtain the necessary and sufficient conditions for the tandem

connection to be controllable and observable. In the general case, only

the sufficient conditions are obtained. All the results use the fact that

.A, . B, and .C are in the form of Table 1 except Theorem 5.2 where
l - i-' i-

the conditions are stated solely in terms of transfer function matrices;

hence they are applicable for any state equation representations.

Compared to the parallel connection, the situation in the tandem

connection is much more complicated. An important feature of our

analysis is the use of the frequency domain concepts within the state

equation representation.

5.1 LET A fl A = cj) • We consider the case where the set of eigen

values of . A is disjoint from that of A. Two theorems are given.

Recall that r (i) is the number of Jordan blocks in A associated with

the eigenvalue X.; ?b is the row in B corresponding the last row
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of ^ A ; , c,.. is the column in , C corresponding the the first column
2 ~ij l-li) 1-

of , A... The condition ,q = 0p means that the number of outputs of
1 -ij 12

S. is equal to the number of inputs of S?.

Theorem 5.1. Assume that the representations S and S are con

trollable and observable, and that q = _p. If A fl A = <f>, then S ,

the state representation of the tandem connection of S followed by S ,

is controllable (observable) if and only if, for each i = 1, 2, . . ., m ,

the set of r (i) p -dimensional row vectors

2-iil -T2 i' 2-ii2 -1*2 l 2~iir (i) -lv2 i'

is a linearly independent set. (For each i = 1, 2, . . . , m , the set

of r (i) q-dimensional column vectors

SzWlSlil' S2(lVlSli2 §2(lXi> lSlirl(i)

is a linearly independent set. )

The proof of Theorem 5.1 is given at the end of this subsection.

Remarks:

(1) Since we use 2 © 2 as the state space of representation

S of the tandem connection, a necessary condition for the repre-
lu

sentation S to be controllable is that S. and S be controllable.
Lei L Ci
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In addition, it is necessary that, after the connection, S be controllable

by u; i.e., for any x in 2 , there exists an u which, passing

through S , transfers x to the zero state in a finite time. These two

conditions are only necessary, because even though we can control . x

in 2 and x in 2 by .u separately, as shown by our previous example
X c* *** c* *.

we may not be able to control x in 2 and x in 2 simultaneously.

(2) It is obvious that the tandem connection of S1 followed by S_

does not change the controllability of x ; in most cases, the tandem

connection does not change the controllability of _x in 2 by .u

(passing through S,), either. For example, if pG.(s) = rank of G.(s) = q

(in the field of rational functions), then for any output y (hence the input

u of S ), as long as its Laplace transform is a rational function of s,
2— ^

there exists an input u such that G (s) u(s) = -u(s). Now this class of

inputs u suffices to control S?[8] hence, if pG (s) = ,q, then S is

controllable by u = u. If pG (s) <,q, there always exists a y such

that ,y(s) = G (s) ,u(s) does not have a solution ,u . In other words, if

pG (s) <,q, we do not have complete freedom in controlling the input of

S?. In this case S may or may not be controllable by u.

Theorem 5.2. Assume that S and S are controllable and observable,
• X c*

and that ,q = p. If A fl A = <|> and if
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G,(„X.) has rank ,q for all A. € A. and
-12 i 1 2 i 2

(G^(A.) has rank „p for all A. e A.) ,
-2 1 i 2 1 i 1

then S._ is controllable (observable).

Proof. Let

2§:

2^il

2-.H2

2-£ir2(i)

(5.1)

then Theorem 5.1 states that S is controllable if and only if for each

i,

have

pL,B. Gn(A.) = r0(i). From Sylvester's inequality [9, p.66], we
2-1-121 2

ill +pS^zV -fi s p[2Bi Si(2SJ]

- minlP2Bi' PSl(2V (5.2)

Now p-B. = r (i) by the assumption that S? is controllable, hence if

pG.(?X.) = -.q, then (5.2) implies that
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r2(i) * p B4 9i<2v]2B

and S,^ is controllable.
12

The observability part can be similarly proved.
Q.E.D.

Using the first inequality of (5.2), we have obtained a sufficient

condition for S to be controllable. Now we use the second inequality
X Cd

of (5.2) to obtain a necessary condition:

Assume that S , S are controllable and observable, ?p = .q and

A n a2 =<|> . If

PSl<2V <r2« (^2(lV <rl(i)J

for some i, then S is not controllable (observable).

The significance of Theorem 5.2 is that it is independent of the

specific representation of Q.. However in applying Theorem 5.1, we

must first transform the representation into the Jordan canonical form.

Proof of Theorem 5.1.

(a) Recall that in considering the controllability of a representa

tion, it is legitimate to consider the set of state variables associated

with the same eigenvalue independently from all the other state variables

associated with different eigenvalues. Furthermore, among the state

variables associated with the same eigenvalue, say A., we need to
L* X
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consider only those state variables corresponding to the last row of each

Jordan block in ..A associated with A. ; namely, .x,...,, ^x..^t . . ..
2 - 2 i ' 2 ill 2 ii2

-*x„- /.v • Because we know from Theorem 3.1 that if the state variables2 iir2(i)

^x^.., -x,.., . . ., -X-# ..% are controllable, then all the state
2 ill 2 ii2 2 iir (1) '

variables of _ x associated with A. will be controllable.
2- 2 i

The preliminary step in the proof is to write the state variable as

a convolution of state impulse response (kernel) and the input. If all

the rows of the kernel matrix are linearly independent over any open

interval, then the representation is controllable. Assume that S and

S are in the zero state, then for the state vector in S , we have
£* X

xx(s) =(si -1A)"11Bu(s) , (5.3)

or

xx(t) = Hx(t) *u(t) . (5.4)

where * denotes the convolution, the n X,p matrix H (t) is the inverse

Laplace transform of (s I - A) B . The assumed controllability of

S implies that all the n rows of H (t) are linearly independent over

(0, T) for any T > 0. The output of S , which is also the input of S ,

is ,y(s) = G.(s) u(s). Hence, for any state variable ^x,..,
Ii ~P ' -* J 2 iij

j =1, 2, . . ., r2(i), i =1, 2, . . ., m , we have
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2Xiij(S) s - A. 2-iij -1
u X

b,:, 0,(5)11(5)

= „bzriij rrx i?^) +2^iiiS rrr: <si -i^-^B^s) .
2 i 2 i

(5.5)

Substituting the identity,

-1-1 -1 -1(sI-,A)-= :-^T- (2X.I -XA) - (2X.I -XA) (si -XA)
s - -A. - 1 - s - A.

2 i 2 i

--to prove it, multiply it on both sides by (si - A)( X. I - A)--into

Eq. (5.5), we obtain

„x (s) = b2 n}K ' 2-iij l?+l?<2\i-l^"\? s -A.
2 l

u(s)

"ztiij x5(2Ki i Ji^"1 «-i "i^"115 2(B> • (5-6)

The existence of (A. I - ,A) follows from the assumption that
2 i - 1 -

A fl A =(|>. Substituting G^X.) =1?(2^i I - 1A)~1 ^ +g and
Eq. (5.3) into Eq. (5.6) and taking their inverse Laplace transform, we

obtain

A.t
2 l-1

Z*liim +2^ij lCJ2\ i " 1*) £<*> = 25aj 5i<2S) e *?<*> <5"7>
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for i = 1, 2, . . ., m ; j = 1, 2, . . ., r (i). With these preliminaries,

we now proceed to prove the necessity and sufficiency of the control

lability part of Theorem 5.1.

(=>) Use contradiction. Suppose b G (A.), b G (A.), . . .,
CT" jLW. — J. Li 1 2—Jtl2 —12 1

2~iir (i) Sl^2^ are linearly dependent for some i, then there exists

a nonzero r (t)-tuple of complex numbers, say q, such that

-q2?i SlW = -°' (5.8)

where 2B. is defined in Eq. (5.1). Equation (5.8) with Eq. (5.7) imply

that

-1

2Xiil^ +2?!illS<2Kii-l*> l?(t)

-1

2Xii2^ +2&ii2 1^il"l^ !*<*>

2Xiir.(i)(t) + h -1
•?hB- /-x iC(oX- l - iA) ,x(t)2~iir (i) \~Z i _ 1-' l~x '

= 0 . (5.9)

J

It implies that for any u, the states (in 2 ® 2 ) reachable from the

origin lie in the hyperplane (5.9). Hence the composite state

-28-
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not controllable in 2. (B 2 . This contradicts the hypothesis that S
12 -L^

is controllable.

(<-=) Suppose that for each i =1, 2, . . ., m , the set of r2(i)

p -dimensional row vectors JiJi'l ^M^*!^ 2-ii2 ^2^2^' ' ' "'

b CL(A.) is a linearly independent set. Then, since A fl A = (j),
2 iir (i) -2*2 l ^ t i £.

all the rows of H.(t) and _bfl.. G.(,X.) e 1, i =1, 2, . . ., m :
-1> ' 2-iij -lx2 l ^

j =1, 2, . . ., r (i) are linearly independent. Hence x and 2x ,

i = 1, 2, . . ., m ; j = 1, 2, . . ., r (i) are controllable. However,

we know that if 2x .., j =1, 2, . . ., r2(i) are controllable, then all

the state variables associated with X. are controllable. Hence we
& X

conclude that
2?

is controllable in 2 (£ 2

(b) In discussing the observability part, we assume that u(t) = 0.

However the input of S is in general not equal to zero. Recall that a

representation is said to be observable if and only if the knowledge of

the representation and that of the input and output over a common interval

suffice to determine the initial state. Thus, if S is not observable

from the output of S (hence the input of S is unknown), although S2

is observable by itself, S as a part of S is not observable because

of the lack of information of the input of S . If S is observable from

the output of S , then the input of S is known, hence S^ is observable.

Consequently S ? is observable. Similar to the controllability part, we

know that in order for S] to be observable from the output of S2> it is
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sufficient to know that x , i = 1, 2, . . ., m ; j = 1, 2, . . . , r (i)

are observable. Now assume that at t = 0, all the components of x

except ,*,.., i = 1, 2, . . ., m ; j = 1, 2, . . . , r (i) are zero, then

the output due to the initial states ,x(0) and ?x(0) is given by

mx r^i)

7(b) *2f(s) =Y1 ^2{S) filii T^T lXlij(°>
i=0 j=l

+2C(sl - 2A)_1 2x(0) . (5.10)

By the same manipulations used in Eq. (5.5), Eq. (5.10) can be written

as

mi ri(i)

?<s> =I I 52<iV 1% 7^7 ixnj<0) - 2CJsl- -2*

ml rl(i)

I I <l\ i -2^ 25 Aij AijC) -2?<°> • (5.11)
i=l j=l

Taking its inverse Laplace transform, we obtain
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m r (i)
X t

*<*> =I I S2«iV i-ciij gl *ixiij<°>
i=i j=i

/"^ ^(i)
/"xl V \

-H2(t) £ £ (A. I . ^f1 2B ^ ^..(0) - 2x(0) , (5.12)
\i=l j=l /

where H (t) is the inverse Laplace transform of 7C(sI - A) , and

all its 7n columns are linearly independent by the assumption that S

is observable. Now we will prove the observability part of Theorem 5.1.

(=^-) Use contradiction. Assume that G ( X.) c ., j = 1, 2, . . .,

r (i) are linearly dependent for i = k. Let all the components of x

except -x ., j = 1, 2, . . . , r (k) be zero, and choose

rx(k)

25(0) = X {l\^-2^lZ^fil^lW0)'

Then Eq. (5.12) reduces to

r« =I 92Wi-cikjelk ixikj<°)- <5-13>
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Since G0(A_ ) .c.. ., j = 1, 2, . . . , m (k) are linearly dependent, we
-2 1 k l~lkj 1

are not able to determine _x... (0) from Eq. (5.13) with the knowledge of
1 ljk

y(t). Hence, S is not observable. This contradicts the hypothesis.

Hence for each i =1, 2, . . ., m , the set 92^1^ 1-lii' ^ =*' 2* ' ' ' '

r (i) must be a linearly independent set.

(-<^=) Similar to the controllability part except that we have linearly

independent columns instead of rows.
Q.E.D.

5. 2 SPECIAL CASES WHERE A fl A = <j>. In this section, we consider

the case A fl A = <{>. But for each pair of common eigenvalues, some
J. c*

conditions are imposed. We give four theorems here, two of them are

independent of the specific representation chosen for the systems.

Theorem 5.3. Assume that S and S are controllable and observable,

and that q = p. If A and A are not disjoint, then for each pair of

common eigenvalues, say A = A_, we assume that (i) r (a) = 1,
1 a 2 p 1

r (p) =1; i.e., corresponding to X = -X , there is only one Jordan

block in ,A and ^A; and (ii) ,b1(,. ,c. . ^ 0. Under these assumptions,
1- 2- 2-ipl 1-larl

S _ is controllable (observable) if and only if, for each i = 1, 2, . . .,

(3 -1, (3+1, . . ., m , the set of r (i) p-dimensional row vectors
2 £ l

2feiu5i<2V' zfemSiW 2*!ir <i)?lW
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is a linearly independent set. (For each i = 1, 2, . . ., a-l, a +1,

.. . ., m , the set of r (i) ~q-dimensional column vectors

?2<lVl%l' 52<i\> l-cli2. • • •• S^V l£lirl(i)

is a linearly independent set. )

Proof. Consider first the controllability of the state variables in x

associated with the eigenvalue ?Xft. As in theorem 5.1 it is sufficient
2 p

to consider that state variable corresponding to the last row of the

Jordan block associated with X_ in A; namely x . Corresponding

to any input ,u = u, 7x»ftl contains a term of the form

u v J- a 2 30b c. , ,b t e r *u .
2-i(31 l~lal 1-id. ~

(Where ,n is the order of the Jordan block associated with A
la la

in A. ) Since b ^ 0 (by the controllability of S ) and since

lna 2^6^
2-^Sl 1-1 ] ^ ° ^Y assurnPti°n)» tne coefficient of t e *u

is different from zero. Now associated with \, there is
2 p

only one Jordan block, hence the state variable 9x is the only

fia 2XSt
term having t e r in its kernel. Thus, ^x „, is controllable

2 i(3l

independently from all other state variables. Consequently, all the
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state variables associated with \ are controllable. Consider next the
2 p

observability of the state variables in x associated with the eigenvalue

A . As in theorem 5.1, we need to consider only x . If ixi^i(0) £ °>

since J*.M ,c,' ^ 0 and ^c, , ^ 0, the output y contains a term
2-ipl 1-lal 2-lodL -

2n6 lX tt "e a ,x, ,(0) (,nft is the order of the Jordan block associated with
1 led. 2 P

X in A) which is independent of all other kernels in S ; hence
2 p 2 — 12

x is observable. We conclude up to here that the assumptions (i)
1 lad

and (ii) in the theorem imply that all the components of the composite

~1-1
state associated with A = _X„ are controllable and observable.

2X 1 a 2 (3

Furthermore, the controllability and observability of these state

variables are independent from those of all other state variables in

S1?. Hence, in the remainder of proof we may disregard those state

variables associated with common eigenvalues, and the method of

proving theorem 5.1 applies.
Q.E.D.

Theorem 5.4. Under the same assumptions as in theorem 5.3, if

and

G^UM is of rank q for all X. € A - (A fl A ),

(G0(A.) is of rank ,p for all A. € A, - (A, fl A A ),
-2 1 l 2 1 i 1 1 2

then S is controllable (observable).

The proof is the same as that in theorem 5.2.
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5.3 GENERAL CASES.

In this section we consider the general case, i.e., without assum

ing that the number of Jordan blocks associated with common eigen

values is one. For the single-input single-output representation, the

results are seen to be a special case of theorem 5.3. For the multi-

variable case, we give only some sufficient conditions.

5.3.1. Single-input single-output case.

As shown in the previous sections, in the multivariable case, in

order to obtain the necessary and sufficient conditions for controllability

and observability, we must have the knowledge of the internal connec

tions of the system. However, in the single-input single-output case,

we need only the external relations: the transfer function.

Corollary 5.1. Assume that S and S are controllable and observable

and that ,p = q = p = q = 1. Then S , the representation of the

tandem connection of § followed by £>~, is controllable (observable)

if and only if

^l{z\] *° f°r a11 2Ki eA2 " (A1 nAZ]

(G2(lV * ° f°r a11 l\ € Al " (A1 n A2} )#

Proof For a single-input single-output representation, the control

lability and observability conditions imply that r (i) =1, b ^ 0 and
K K. X. 1JL

-35-



c ^ 0 for all i and k = 1, 2, ; hence the assumptions (i) and (ii) in
k 111

theorem 5.3 are satisfied. By applying theorem 5.3, we find that S

is controllable if and only if ,b .. G.(A.) ± 0 for all _X. e A. - (A. fl A_).
J 2 ill VZ i 2 i 2 1 2

However. Jd.., t 0 by assumption; hence, S,_ is controllable if and
2 ill 12

only if G.(.X.) * 0 for all _X. € A - (A fl A ) .
1 L l * i * l * Q.E.D.

Corollary 5.1 says that the tandem connection of two controllable

and observable single-input single-output representations is controllable

if and only if there is no cancellation of one or more poles of the second

transfer function by some zeros of the first transfer function. The

tandem connection is observable if and only if there is no cancellation

of one or more poles of the first transfer function by some zeros of the

second transfer function. An immediate consequence of these observa

tions is that under the assumptions of the corollary, S A § followed by

S?) is observable if and only if S (£ followed by S,) is controllable,

and S10 is controllable and observable if and only if S91 is controllable
12 ^J-

and observable. This is obvious from the transfer function point of view

because these conditions are satisfied if and only if there is no cancella

tions in the product of G.(s) GAs).

5.3.2 Multivariable case.

Next we consider the tandem connection of multivariable systems.

Recall that all the representations are still in the Jordan canonical form

but now the number of Jordan blocks associated with common eigenvalues

-36-



is arbitrary. Here we give only the sufficient conditions. Before

stating the theorems, we define

9i«<s> = 5^)

Vs) =52(s)

(5.14)

,B =0MC =0
l~a ~ \~a -

(5.15)

2?6=-°' 2^6=5

where .B , ,C are defined as in Table 1, the left subscript 1 says that
1-a 1-or

they below to S,. G, (s) denotes part of the transfer function G.(s) by
1 -lor -1

disconnecting inputs and outputs to all subsystems associated with the

eigenvalue A .
la?

Theorem 5.5a. Assume that S and S are observable and control

lable and that q = p. If, for each X. e A - (A fl A ), the set of

r?(i) p-dimensional row vectors
•I

' 25iilSl(2V' 2^12Sl<2V' • ' •' 2Siir2(i)51(2V

is a linearly independent set; and if, for each X. e A fl A , say
2 J 1 2

\ = x the set of r,(a) + r„(6) .p-dimensional row vectors
2 p 1 a 1 2* 1
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£ial' l~la2' - - '• l-tar^a)' 2~i^l<^la{2Kf,) '

^ipz^la^f) 2^pr2(P)5lff<2Xp»

is a linearly independent set, then S is controllable.

Proof. We need to consider only those state variables associated with

common eigenvalues. For any u, and for each j = 1, 2, . . ., ^(P)*

we have

2X*Pj<t> =2*1WWp* *Z P*»<*> +F~i{t) **(t) ' (5-16)

k 2Vwhere in F.(t), we have terms associated t e , k 2: 1 and all other

modes due to A. € A, - (A, fl A_) . It is important to observe that the
1 i 11 2

2^(3*
only coefficient associated with e in Eq. (5.16) is -b^-.G, (A0),

7 2-ipj ~la 2 p

hence it cannot be cancelled by the terms in F. . For .x. ., j = 1, 2,
7 -J 1 Hay

. . ., r (a), we have

A t

.x, . = .b. . e a *u(t) . (5.17)
1 iaj 1-iffj ~

Now A = _\„ by assumption, hence if the set of ,p-dimensional row
1 a 2 p J-

vectors.
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1-1 al' l~ta2' - * •* 1-iar {a)' 2-1 p Sla^V*

2^02 ^l^V 2^pr2(P)5la(2Xp)

is a linearly independent set, from Eqs. (5.16-17) we can conclude that

lXiaj' J =1> 2» ' ' " ri^) and 2Xi6j* J =1» 2» • • •» r2(P) are
controllable.

Q.E.D.

Theorem 5.5b. Assume that S and S are controllable and observable

and that ,q = 7P. If, for each A. € A. - (A, fl A.), the set of r.(i)
J. £ J.1I12 1

~q-dimensional column vectors

S2W 1%' S2<lty ^uz. • • •. 92<lV lS lirl(i)

is a linearly independent set, and if, for each X. € (A fl A ), say
1 J A £

A = AQ, the set of r_(6) + r.(a) Oq-dimensional column vectors
1 a 2 p 2 V 2

2-ipr 2-1(32* ' ' " 2-l(3r2(P)> ?2|3(lV l^lal'

S2(3(lV filar " * " S2p<iVlSlar(a)

is a linearly independent set, then S is observable.
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6. FEEDBACK CONNECTIONS

We propose to show that for a very general class of systems the

problem of controllability and observability of a feedback connection

reduces to that of the tandem connection. As an example of the class of

system to which these results apply we consider nonlinear time-varying

systems with finite-dimensional differential equation representations:

V i- =i^i-' i-' t) (6*la>

il = £(& g* *) (6.1b)

where x, u and .y are, respectively, .n X 1, .p X1 and q XI
i—i— i_ 11 x^

vectors; .f is an .n vector-valued function, .g is a q vector-valued
1-1 i-i^

function. The state space of S. is denoted by 2. and the input space is

assumed to be a linear vector space. (We write "s". instead of S to
i i

indicate that we are considering nonlinear systems. ) S* is said to be
l

determinate [2, p. 96] if for any .u , any t and any initial state .x(t ),

there exist unique ,x(t) and y.(t) for all t > t . It is well known [10]

that S is determinate if .f is Lipschitz in .x and continuous in u and
l i~ r x~ ~i

t and .g is continuous in .x, u , and t.

For a determinate representation S., since .x(t) and .y(t) are

functions of the input and the initial state, all the concepts of

-40-



controllability and observability can be applied with appropriate modifi

cations. As in the linear case, the nonlinear representation S. is said

to be controllable on [t , t ] if for any given state .x(t_) € 2. , there

exists an input u. which transfers .x(t.) to the zero state at time t_.
r ~i x~ 0 1

S. is said to be observable on [t , t ] if for any given input u over

[t , t ], the response y (due to this input u and an arbitrary initial

state x(t )) and the knowledge of the representation (6.1) suffice to

determine that initial state x(t^). Similarly, S. is said to be zero-
- 0 l

input observable on [t , t ] if, with u( t) = 0, the response y over

[tn> *]] (due to an arbitrary intial state x(t )) and the knowledge of the

representation (6.1) suffice to determine the initial state x(t ). No

explicit criterion for the controllability and observability of such

determinate representation S. is known. However it turns out that if a
i

feedback connection is determinate, the representation of the feedback

connection is controllable (observable) if and only if some appropriate

open-loop connection is controllable (observable).

Theorem 6.1. We are given two determinate systems with representa

tions S and S of the form (6.1) with p = q, q = p. Let S , the
1 Ct JL dt 1 Ci j-

representation of the feedback connection shown in Fig. 6.1a, be

determinate and 2 © S be the state space of S . Under these assump

tions, S is controllable on [ t , t ] if and only if S is controllable
I U JL i-Ct

on [t , t ]. Furthermore, Sf is zero-input observable on [t , t ] if

S' is observable on [t , t ], where S' is the tandem connection of
CdL U JL Ctx.

S_, a sign inverter, and S .
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Let us prove the first statement. Refer to Fig. 6.1a and b.

Suppose that S is controllable on [t , t ], then for any

1-^0^ 2-^oH € S1^S2 there is an inPut to s12» say iif» wnich
transfers this initial state to [0, 0] ' at time t . Since S* is deter

minate, this input u (to S ) produces in S a unique output y. Clearly
XX X &****

then, in order to have u as input to S we must apply to S* the input

u = u + y: u will transfer 1?(V' 2~(t0) of sf to f5» ^' There-
fore, Sf is controllable on [t , t ]. Conversely, if S" is controllable,

there is an input u (to S ) which causes the required state transfer and

a corresponding output y . Clearly, the input u = u - _y, applied to

S12, will cause the required transfer.

Let us now prove the second statement. Let S"' be observable,
ul

then the knowledge of the output y of the feedback connection ~S (with

u e 0) gives an input output pair of S' and thus determines

[i?<V' 22(to)]'
observability of S .

Thus the observability of S' implies the zero-input
21

Corollary 6.2. Let S' be the tandem connection of S , a sign inverte:

and S . In the linear case (i.e., S and S? are described by (2.4)

where the matrices are possibly time-varying), S is observable on

[t , t ] if and only if S' is observable on [t , t ].
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Proof. Suppose that S' is observable, let us show that Sf is

observable. Call K and K the linear operators mapping the inputs
X *** Cd

of S and S , into their zero-state responses, and call z and z their
JL Ct x. &

zero-input responses; then, on [t , t ], with the notations of Fig. 6.1a

xl = ?iU-*5i52iy-?i~z2+-V <6-2>

Therefore, the knowledge of the description of the systems S and S and
X c*

of u and y gives -K z + z which is the zero-input response of S' .

Since S' is observable, this zero-input response determines

[l5<V> 25<V]'-
case, implies that of S .

Conversely, suppose that S is observable and let us show that

S' is observable. Given any input-output pair of S' we can extract

from it (as above) the zero-input response of S' : -K z + z . This
ul ***X***fc* ***X

data together with any u, y which satisfy (6.2) reduces the problem to:

given an input output pair of S. find the initial state. Since S is

observable such determination is possible. Hence the observability of

Sf implies that of S' .

We can specialize to the linear time-invariant case quite easily

and the results of Sec. 5 give necessary and sufficient conditions for the

feedback connection Sf to be controllable and observable.

Therefore, the observability of S' , in the linear
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7. CONCLUSION

The problem of characterizing the controllability and observability

of the representations of linear time-invariant finite-dimensional com

posite systems has been completely solved. In this sense it is the

generalization of the classic paper by Gilbert, who considered exclu

sively the case of distinct eigenvalues and where A (1 A = <{>. The

very general conditions under which the controllability and observability

of a feedback connection is equivalent to that of a tandem connection

has also been exhibited.
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APPENDIX

PROOF OF THEOREM 3.1

We use the following equivalent definition to prove the theorem:

S is controllable if and only if every state in 2 is reachable from the

origin in a finite time. Assume that S is in the zero state, then

x(t) fe^BulTjdT^e^B^lt). (1)

Since A is in the Jordan canonical form, Eq. (1) can be decomposed as

x(t) =

6 ?11

-12* «
6 ?12

A
~mr(m) „

e v ' B
~mr(m)

*u (2)

Writing our explicity for the state variables ( = components of the

state) corresponding to the i jth Jordan block, we obtain
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2iy

n..-l X.t , n..-2 X.t
j 1 iJ i , 1 ^ VJ i i.

lij1 ' ](n..-l)! -j?ij (n -2)! ~(4-l)iJ
J J

X.t

+ . • • + e 1 b... /> *u ,
-lij' --

n..-2 X.t X.t

x,..(t) = < ,_ " ,, , t 1J e * b„,. + • • • + e l b,_.. > *u ,u
(n..-2)! -lij -2ij

ij
v.

X.t

x...(t) = b .. e *u . (3)

Observe that all of the first terms in the right-hand side of

Eq. (3) are associated with the vector b and are linearly independ

ent. With these preliminaries, we are ready to prove the necessity

and the sufficiency of theorem 3.1.

(=^»-) Use contradiction. Suppose, for some i, the set b ,

b/.•->> • • • » b/.- /•* ^s not a linearly independent set. Then there exists
-*2i2 ~i!ir(i) J r

a nonzero r(i)-tuple of complex numbers q such that
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It implies that

x

in

'H2

= q

X
lir(i)

ha

-iir(i)

~iil

~ii2

Jir(i)

= 0

X.t

e *u = 0

(4)

(5)

for any u. Hence the states reachable from the origin are in the hyper

plane defined by Eq. (5). This contradicts the hypothesis that S is

controllable.

(<#=) From Eq. (3) it is clear that if b .. £ 0, then all the n rows
A..t ~ixJ *J

in e B.. are linearly independent. By hypothesis that b . ,
J x XX

-j?i2' ' ' '» ~!irm is a linearly independent set; hence all the n. rows

in e
the

A.t „
~i B are linearly independent. Recall that if X. 4 X., then

j —l i i
X.t X.t X J

two functions p.(t) e 1 and p.(t) e J (where p.(-) and p.(-) are poly-
J j

nomials) are linearly independent over any nonempty interval. Con-
A.t

sequently, any row (or any linear combination of rows) of e l B is
-i
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linearly independent of any row (or any linear combination of rows) of

£,* Ate J B with i ± j. Thus if the rows of e- B are linearly dependent
-J

it is because there is a linear dependence relation that applies to rows

lying exclusively in Jordan blocks associated with one eigenvalue.

Hence we conclude that the hypotheses imply that all the n rows in

At
e- B are linearly independent over any interval (0, T) with T > 0.

Now for any T, let

u(t) =(e^(T"t) BJ*£, 0£t <T, (6)

where * denotes the complex conjugate transpose and a is an

n-dimensional constant vector to be determined from the desired state

at time T. Then from Eq. (1), we have

x(T) = < \ (e -T B) (e-T B)* dr !> a = W(T) a . (7){'.
At

Since all the n rows of e- B are linearly independent over any non

zero interval, using the extension of lemma 11. 2.4 in [2], we conclude

that W(T) is nonsingular for any T € (0, co). Hence for any x(T), the

input u(t) = B* e^ W (T) x(T) transfers the zero state to x(T)

in finite time T.

Q.E.D.
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LIST OF FIGURES

Fig. 2.1. Feedback connection of system S and 5?.

Fig. 3.1. Example of a tandem connection in which _x and _x
«=> »• JL- 2-

are controllable separately but not jointly.

Fig. 3.2. Equivalent res presentation of the system of Fig. 3.1.

Fig. 3.3. Analog computer representation for the state variables

associated with the eigenvalue X. .

Fig. 6.1. The feedback connection of the nonlinear systems is

shown on (a), and S is defined in (b) .
Xu
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