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CONSTANT RESISTANCE, WIDE-SENSE SOLVABILITY, AND

SELF-DUALITY*

t § tC. A. Desoer, R. W. Newcomb, and K. K. Wong

Using his concept of system function, Zadeh has shown that every self-
dual one-port made of linear time-varying elements is a constant resist
ance one-port [1]. Recently we gave instances of constant resistance one-
ports that have nonlinear, time-varying elements. Some of these one-ports
are self-dual networks [2-4]. Here we give a precise condition for the
truth of the statement "every self-dual one-port is constant resistance and
conversely every constant resistance one-port is self-dual." This propo
sition has recently acquired more importance since wide classes of self-
dual one-ports can easily be generated [4-5]. This paper is an extension of
a previous paper [ 6] in that we adopt exclusively a black-box point of view,
and it proves the equivalence completely.

We assume throughout that all one-ports under consideration have been
created at t = -co and that at the time of their creation they are in their
zero-state. Similarly, any interconnection of one-ports is assumed to be
done at -co. As a consequence, all waveforms under consideration are
defined on (-oo, co).

By definition, a one-port *5L is specified as the set of all voltage cur
rent pairs [ v{*), i(-)] it allows. A one-port 0Z> * is said to be the dual of
3& whenever the following condition holds: [f, g] €3&* if and only if
[g, f] € 7L . A one-port OX is said to be self-dual whenever [f, g] € J£
implies [g, f] e Oo . This point of view amounts to thinking of a one-port
as a binary relation on some function space [7, p. 9]; the converse relation
is the dual one-port; a one-port is self-dual if and only if its defining rela
tion is symmetric. Given a one-port OX f we define the augmented one-
port "^a °y *ts ordered pairs: [v + i, i] €JI» when and only when
[v, i] €jT, ;^a has an obvious interpretation given in Fig. la. Any volt
age e(») such that e = v + i for some [ v, i] € Jt> is called an allowed
voltage of ^>a, We now slightly extend the concept of solvability
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[8, p.113; 9, P«9] by considering only a restricted class of e(-)'s, namely
those allowed by 3Xa» Jo is said to be wide-sense solvable (abbreviated as
w. s. solvable) if for all allowed e(«), the equation i(.) + v(») = e(«) has a
unique solution [v(*)> H')] €^° • Physically, w. s. solvability means that
if a voltage source (whose voltage e(») is an allowed voltage of JL> ) is
connected to ^°a, then the port voltage and port current of OX are uniquely
determined. Note that the nullator is not solvable in the sense of Youla

et al. [8] and Newcomb [9] but is w. s. solvable.
When we considerthe one-port OX as a "constant resistance one-port" we

only allow OX to be connected to one-ports OX1 such that the connection
OX - JC' is determinate, i.e., the port voltage v(#) and the port current
i(.) of OX are uniquely determined. Such one-ports OX f are said to be
compatible with Jo . If OX is solvable, then the series connection of a one-
ohm resistor and a voltage source e where e is an allowed voltage of OX
is a one-port compatible with OX . if all connections OX - OX" where OX1 is
compatible withOX/ have the property that the port voltage v(*) (ofOX) is
equal to the port current i(*) (of OX ), we say that OX is constant resistance.
By including a scale factor, this definition can be extended to include the
case where for all such connections, v(*) = ki(»), where k is a fixed non
zero real number independent of i(«), v(#), and t. We want now to prove
the

Theorem. A one-port OX is constant resistance if and only if JL is w. s.
solvable and self-dual.

Proof. 1. Wide-sense solvability and self-duality imply constant resist
ance. Letc/C(v) denote any member of {i: [v, i] c Jl-»} ; TrC is not neces
sarily a function but describes the relation defining OX . From Fig. lb, and
the w. s. solvability assumption, the equation

e = v + VC (v) (i)

has a unique solution for all allowed e. Figure lc shows the dual of Fig.lb;
then, with the notations shown in Fig. lc, i = v and v = i, by duality. By
self-duality, i -oC (v) implies v =0V(i), or what is the same i =tJrC(v).
From Fig. lc, KCL gives j = e = v + i,

hence e = v +eK.(v) . (2)

Since for all allowed e, this equation has a unique solution, Eqs. (1) and (2)
imply that v = v. Hence, v = i and the one-port OX is equivalent to a one-
ohm resistor when it is driven by any allowed voltage source in series with
a one-ohm resistor. That it is equivalent to a one-ohm resistor under all
compatible connections is obvious by contradiction: suppose it were not
true, then there would exist a compatible one-port 0X> ' such that the con
nection OX - JC1 has a solution [v, i] with v 4 i. Now consider JO
driven by the allowed voltage source e = v + i : by the w. s. solvability
assumption and the definition of v, i there is only one possible port voltage
and port current, namely, v and i. But the previous proof requires i = v.

This is a contradiction, hence OX is equivalent to a one-ohm resistor under
all compatible connections, i.e., JL> is constant resistance.
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2. Constant resistance implies self-duality and w. s. solvability. Let
[vq, ig] be an arbitrary pair of JL . Consider the one-port 0X> ^ shown in
Fig. 2: the current source ig and the voltage source vq of Jo « are in
dependent sources; the nullator admits only the pair [ 0, 0]. By KCL,
KVL and the defining relations of the elements of OX q, the one-port 3X>q
admits only one pair [vq, -i()] • The connection OX - OX q has a unique
solution: [vq, i«] , i. e., OX q is compatible with 0X> . By the constant re
sistance assumption, vq = iQ • Thus we have shown that, for all [v, i] eOX>
v = i. This implies that Jo is self-dual. Given any allowed voltage e, the
only solution of e = v + i, with [v, i] eJo, is v = i = (e/2), i.e., JZ> is
w. s. solvable. ^ „ _

Q.E.D.

It follows from the proof of the theorem that J'X is constant resistance if
and only if v = i for all [ v, i] eOX.

Remarks.

a. By interpreting all voltages and all currents as n-vectors one sees that
all definitions and derivations are still valid, consequently the theorem
holds for n-ports.

b. It should be stressed that the point of view adopted in this paper is
strictly black box: only the port voltage and the port current are observable
and the set of all pairs [v, i] constitute the complete description of the
one-port. An immediate consequence is that the theorem applies to any
one-port: its elements may be lumped or distributed, active or passive,
linear or nonlinear, time-varying or time-invariant. On the other hand
one should keep in mind that the black box self-duality defined here does not
imply, for example, that the graph of the network inside the box is a self-
dual graph. For example, the linear time-invariant network of Fig. 3 of a
previous paper [3] is self dual in the present (black box) sense but its
graph is not a self-dual graph.

c. Given an arbitrary one-port OX and its dual Jo * (as defined in this
paper), it is possible to use OX and TL * as elements to obtain constant re
sistance one-ports. (See Examples 1 and 2 of Sec. Ill in Ref. [4].)

d. Let a be a fixed real number. If in the one-port shown in Fig. 2 we set
VQ(t) = -io(t) = a for all t, we then obtain a constant resistance one-port:
indeed, its only pair is [a, a]. With a = 0, we see that the nullator is a
constant resistance one-port.

e. The following one-port OXj shows that self-duality implies neither con
stant resistance nor w. s. solvability. Let OX ^ admit only constant voltages
and currents and let its admissible pairs be [V, I] where either V = 21 or
V = 2"*I. jC i is clearly self-dual but neither constant resistance nor w. s.
solvable.
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Fig. la. Physical relation between e, i, and v.

J OX,
Fig. lb. Circuit required for testing solvability.
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Fig. lc. The dual of (b). Ot*, the dual of 7"t,
is identical to Ji* since JX» is self dual,

Fig. 2. 3tln is compatible with yt,, and OX'

has only one admissible voltage current
pair, namely [vQ, -i ].
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