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SUMMARY AND REVIEW OF LITERATURE

This paper provides the necessary justification of the con

volution z-transform method applied to nonlinear sampled-data
1 2systems proposed by Jury and Pai. ' The method is analogous to

the method of applying the convolution Laplace transform to honlinear
3

differential equations, developed by Weber. Rigorous mathemati-
4

cal justification of Weber's method was provided by Wasow and
5

further generalized in a paper by Golomb.

The formal procedure for finding a series solution of cer

tain nonlinear difference equations, and the necessary assumptions
4

involved, were developed by Pai. However, Pai did not prove

the convergence of the solution and merely pointed out the final

conclusion, i. e., that the initial state of the system should be

sufficiently close to the equilibrium state.

The convergence of the solution is studied by the method of

dominating series in a manner completely analogous to that used

by Wasow in the case of nonlinear differential equations.
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I. INTRODUCTION

We will consider a system of autonomous difference equations

of the form

x (n+1) = F(x (n)) n = 0,1, ... (1.1)

where x (n) is an r-dimensional vector.

Any rth-order scalar difference equation

r.

I
p=o

(n+p) + F x(n), x(n+l),.... x(n+r) = 0 (1.2)C X

p

can be put into the vector form (1.1) by introduction of the variables:

x(n) =

x^n)
x2(n)

•

x*(n)
r '

where x (n) = x(n)

x-(n) = x(n+ 1)

xr(n) = x(n+ r)

Under the assumptions to be stated in Section II, we can

construct a solution of Eq. (1.1) of the form

x

oo

(n) = £ + 2- u a
- P=i -p p

(1.3)

where § is a solution of the equation

t =l\£\

a (p=l, 2, •. • . r) can be determined from the original equation

and a (p= r+ 1, r+2,....) are certain combinations of the form
p '

- 1 2 r •>ar an .... a where
I 2 r W* are all nonnegative integers

and a.+ an+...+a >.2, u (p=r+l, r+2, ....) are vectors
12 r ** —p Nr '

which can be determined in terms of u (p = 1, 2, . • •. , r) which,
~"~P
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in turn, are functions of r scalar parameters cr., o* ? , . . . cr .

These parameters are then finally determined when the initial state

of the system x (0) is specified. It will be shown that a convergent

solution of the form (1. 3) can be found when the initial vector is

sufficiently close to £ .
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II. THE FORMAL PROCEDURE

We start by stating certain assumptions:

ASSUMPTION 1. The equation (1.1) possesses a solution | given

by £ = F [£_]; i. e. § is the equilibrium state of the system. If
there is more than one such value of £, then there will be as many

solutions of the form (1. 3), providing other assumptions hold.

Definition. If v is a vector with components <v. r , the symbol

v will denote the norm

= max. v.
l

For a matrix A with components a., the symbol

denote the norm
n

= max

'£ a..

Then clearly Av ^

A will

ASSUMPTION 2. The components f. [x (n)] of F [x (n) ] are analy

tic functions in the components x.(n), x2(n)... . x (n) of vector x(n)
in the region

x (n) - i <P

where p is a positive constant.

Expand F[x(n)] around the equilibrium point § and let A

denote the Jacobian of the components f. of Fw. r. t. the components

«|x. L of x(n) evaluated at x(n) =g.

I. e., A = [a.. 1 r x r
— L ijJ

where a.. =

8f.[x(n)]

inr—

Then denoting

x (n) - i = y (n)

x(n) = i

(2.1)
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we have y (n+ 1) +£= F(§J + Ay(n) +| [y (n) ]

where the components g. . of j| [y (n)]

possess series expansions in powers of 4y.f< without constant or

linear terms.

These series converge in the domain

Iy(n) <s p (2.2)

So the equation reduces.to

y (n+l) = A y(n)+ g[y(n)]

where A is a constant r x r matrix.

ASSUMPTION 3. The eigenvalues of A, a., a,,.. .. , a are all

distinct and have modulus less than unity:

1 > a ^ • • • •

We also assume that

This ensures proper ordering of the a !s (p = l, 2,.... ) according

to their magnitude. In fact, at, a_,..., a are the poles of the
jl tt r

generating function for the scalar nonlinear difference equation

(1. 2). This fact will be used in the application of this method.

The difference equation (2. 3) can be formally satisfied by

a series of the form

oo

y (n) = Z. u a
- P=i -p p

n
(2.4)

where the a .'s are ordered in decreasing order of magnitude. By

virtue of Assumption 3, the first r of these will be the eigenvalues

of the matrix A. The succeeding a 's(p=r+l, r+2, ....) are of
——• \j

the form
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a. a 2 ci f lra. a, .... a r where icf.f. are all nonnegative integers with

a«.+ a - +• • + a ^2.
12 r

Since all the eigenvalues of Ahave modulus less than unity,

all the a 's lie inside the unit circle.
P

Now substitute (2. 4) into Eq. (2. 3)
oo oo oo

2 u an+1 = £ A u an +
p=l -P P p=l P P

griu an]
~Lp=i"p pJ

and compare the coefficients of like powers of a «

For p = 1, 2, ..., r we get

( A "i ap) -p =° P=1» 2, ..., r (2-5)

Hence u is an eigenvector of A corresponding to the eigenvalue a .
t \ PLet u = <r e_ f p = 1, 2, ..., r) where the <r 's are scalar para-

meters to be determined and the e 's are unit vectors, linearly

independent, in the direction of the u 'si

For p= r+ 1, r+ 2,.... we get

( A -I ap^up =hp(u1, u2 up:x)P>r (2.6)

where the components of the vector function h are polynomials in

the components of u4, u , ,.,, u . without constant or linear
~r —2 —P-l

terms. Because of the manner in which the a 's have been ordered,
P

the right side of (2.6) can always be expressed in terms of the pre-

ceeding (p-l) vectors.

From Assumption 3, a , a ,. .. are not eigenvalues of

A and hence the matrices ( A_ - I. a ) p >fr are nonsingular. Clearly
then we can compute u ,,, u , _, „... successively in terms of u,,

— r+1 —r+2 ' —1
u« .....# u —» i. e., finally in terms of the r scalar parameters

1 2 r,
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We now have a solution for x(n) in (1. 3) expressed in terms

of (T-, <r_,.. • cr • This must produce a convergent series for all
x. c* r

values of n (n^-0).

For any given problem, the parameters are specified once

the initial vector x(0) is specified. From Eq. (2. 4) we have

oo

x(0)- i =y(0)= I u (2.7)
- - p=l "P

This gives r nonlinear relations involving <r., <r -, ..., or which
l c> r

can then be determined.
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III. THE CONVERGENCE OF THE SERIES

The convergence of the series (2. 4) will be studied by the

method of dominating series.

so let

From above, the matrices (A - I_ a ), p > r are nonsingular,
1 — ^i

c = sup

q>r
( A - I a )

Then from Eq. (2. 6)

-1
< oo

u

-P
^ c ip.(-i' ^'•••'Vi) p > r (3.1)

As described in Wasow1 s paper, a function h will be cnn-

structed which dominates the r components of the vector function

h for p = r + 1, r+2,
—P

Referring to Eq. (2. 3), let M be some upper bound for

Jl fX(n0 I"1 *^e domain defined by Eq. (2. 2).
Then we know, from the theory of analytic functions, that

the coefficients of the terms of degree k in the power series for
-ka component g. of g are numerically not greater than Mp «

J

Hence the series

M p^W-^+^y^y"2.
Sl+ s2+"»+8r^2

represents a function that dominates all the g..
oo **

The series M y iJ^L^lll2ll)s
s=2 O

(3.2)

when expanded by the multinomial theorem has still larger positive

coefficients. Hence the scalar function

i r
A, "~fa =M[(l -p"1 I y. )-1 -1 -p"1 .J ^] (3.3)

whoise power series expansion is (3. ,2), dominates all the g.. So if
J
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the vector y in (3. 3) is replaced formally by the vectional series

oo

v(n) =I bn an (3. 4)
p=l

and the resulting products are expanded and rearranged as before,

we obtain the scalar series

oo

y\

£(v)= I h (b b b )an
p=r+l p l L -PIP (3. 5)

A

where the coefficients h are polynomials in the components of

b., b-.,,.. b , without constant or linear terms. These poly-
—1 —2 —p-l r 3

nomials dominate the r components of the vector function ?

h (b. , b. .... b ,) in the sense that the coefficients of h are
—p —1 —2 —p-l' p
positive and not less than the moduli of the corresponding coef

ficients of the components of h .

Furthermore, if all components of b are equal, i. e.,

b = 6 e where e denotes the vector
—p r p —o —o

eQ = (1, 1, .... , 1)

and J3, ^11^, II for k = 1, 2,..., (p-l), then we have from the domi-

nating property of h

\ (Jv h2 •••V> * II-p (-i' -z-••*-P-i* II p>r (3,6)

We will how show that the vector v(n) = v(n) e where v(n) is

defined by the equation
r

v(n) - c$ (v e^ = I||u || a" (3-7)
P=l r r

dominates y(n) in the sense that the norms of the coefficients of

v(n) are not less than the norms of the corresponding coefficients

of y(n); i. e.
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bp|| £• IIUpll P=l,2,... (3.8)

To see this, let (3. 4) with Jb =3 _e be substituted into Eq. (3. 7).

00 oo r

1 6 a " - ^ ^ h (b1,b.....,b ,) a n = Z ||u II a n
P=i p p pSn pLi-z -P-1 p P=i """p" p

As before, one obtains recursive relations for the 6 :
P

Pp= IIUpll P=l. 2,...,r (3.9)
and

Pp= c hp^, b2,.:.,bpl) p>r (3.10)

Thus we have II u II = II b II p=l, 2, *..,r and from Eqs. (3.1),

(3. fc), and (3.10),

£p|| s c\\hptei.^••••Vi)
A

« chp<il'^2'---'Vl)
= Pp =lupll p>r

providing that | b, £. U, I for k= 1» 2» • • •» P"l«

Thus Eq. (3. 8) follows by induction. To prove the conver

gence of the dominating series (3. 4), consider (3. 7) as an equation

for v in terms of

r

c = III ». II
p-i-.-pi

As in Wasow's paper, it is immediately seen that there is

a positive number *y such that (3. 7) defines v as an analytic

function of £ in a certain circle | £ | ^ \^. I. e., for

In- a n ^ y now la <1 for p = 1, 2, ..., and
I tr I
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therefore this inequality will be satisfied if

since

IINI^o
p=i

SI-
p=l

-p

n

p=l «-P
^ vq , for n^.0.

(3.11)

Thus v is re presentable as an absolutely convergent series for

n^o:

^. a. a 2 a r • n
(n) =2-Ca,a,...a (al a2 ''" ar ">

L c. r

where ^. a . £»1

(3.12)

The terms of (3.12) may be assumed to be arranged according to the

could be calculated recursively

magnitudes of the a 's as before.

The coefficients c

by insertion of (3.12) into (3. 7) and identifying the corresponding

terms right and left. However, these recursion formulas become

identical with Eqs. (3. 9)» (3.10) if c
lu2*

is replaced by (3

Hence the expansion (3,4) is obtained.

This proves the absolute convergence of series (3i 4) for n^.0

and therefore of the dominated series (2. 4) whenever condition

(3.11) is satisfied.

It follows from Eq. (3. 7) that there exists a positive number

v. such that ||v|| ^ p for n^.0 if

III-̂Pll <V1
(3.13)

P=l

Since II y(n) | ^ ||^nHI ** follows that the constructed series
(2.4) satisfies Eq. (2. 2) whenever conditions (3.11) and (3.13) are

satisfied. v
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Thus the following theorem has been proved:

THEOREM: A difference equation

x(n+l)=F [x(n)] n=0, 1,...

satisfying Assumptions 1, 2, and 3 possesses a solution admitting

a series expansion of the form

oo

x(n) = £ + 2. u a11

which converges absolutely for n£,0 provided that
r

I||up| <^ (3.X4)

where v is a positive constant that depends only on F.

Since u = c e (p= 1, 2, ..., r) and the cr 's are deter-
—p p—p p

mined by Eq. (2* 7), we see that Eq. (3.14) immediately places a

bound on y(0).

Hence x(0) must be sufficiently close to £.
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CONCLUSION

Although we have considered an autonomous difference

equation (1. 2), this method is immediately applicable to equations

with constant forcing functions, since the constant can be absorbed

into the nonlinear function F •

For more general forcing functions, we will obtain in Eq.

(1.3), in place of the equilibrium state £ , a particular solution

§(n) of the equation which will be of the same form as the forcing

function. This particular splution will not affect the convergence

of the transient solution, except that we will now require the initial

vector x(0) to be sufficiently close to £(0).

Clearly, we may consider the difference equation as a

recurrence relation for x(n), and given x(0), we can calculate

x(n) recursively for n>0. However, the advantage of the method

described by this paper lies in the fact that it gives the solution

of the equation in closed form, and by inspection of the eigenvalues

a of the matrix A, we obtain information on the various modes

of the solution.

In the case of poor convergence of the series solution

(1.3), we can always calculate x(l), x(2), etc., and using one

of these as the initial vector, we may improve the convergence

of the solution. This method has been used and illustrated by Pai.

APPLICATION

Since nonlinear sampled-data feedback control systems are

described by nonlinear difference equations, the above procedure

leads to a method of analysis of such systems.

For a first-order system with constant input and which

satisfies all the assumptions of Section II, we will obtain for the

output a convergent series of the form
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00

c(nT) =A + X A a11
o , p Pp=l ^ r

Taking the z-transform of this equation we obtain

" A
C (z) = 2- ^—=- where a =1

t\ i •• -l o
a=0 1-a z

a

This is exactly the form of C (z) assumed by Jury and .
12 *Pai. ' The poles a of C (z) are all known, and the coefficients

a

A can be calculated recursively using the original difference
a

equation and the convolution z-transform.
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