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ABSTRACT

This report is concerned with the following problem: Given two

rational functions Z (s) and Z_(s), otherwise arbitrary but for which

R + Z (s) has no zeros in the right half plane, Z (s) is to be realized as

the driving point impedance of a lossless coupling two-port terminated

in the impedance Z0(s). This problem had been previously considered

and solved by Schoeffler and by Wohlers when Z (s) and Z_(s) are posi

tive real functions and the coupling network is reciprocal.

Necessary and sufficient conditions are given here for realizability

in the contemplated form when neither of the two impedances are

necessarily positive real and when the coupling network may be recipro

cal or nonreciprocal, but still lossless. A realization procedure is

described and examples are given to illustrate the approach.
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I. INTRODUCTION

The problem of transforming one impedance by a lossless coupling

network into another impedance is an interesting one since it has appli

cations in impedance matching, filter design, and cascade synthesis.

It is desirable that the coupling network be lossless so that signal

power is transmitted to the load rather than dissipated in the coupling

network.

Two impedances Z and Z are said to be compatible if one of

them can be realized as the input impedance of a two-port, lossless

network terminated in the other impedance, as shown in Fig. 1.

Z^s) Z0(s)

Fig. 1

The compatible impedance problem was first considered by
1 2

Schoeffler and recently by Wohlers. In both cases, the compatible

impedances were considered to be positive real functions and the

coupling networks were assumed to be reciprocal.

It would be desirable to consider the problem of compatible im

pedances when one or both are not necessarily positive real, and when

the coupling network is not necessarily reciprocal. The former



condition will permit consideration of networks containing active

devices, e.g., tunnel diodes. For the latter, the use of nonreciprocal

coupling networks can enlarge the domain of compatible impedances

and possibly simplify the coupling network.

Necessary and sufficient conditions for two, arbitrary, rational

functions Z (s) and Z (s) to be compatible with respect to a recipro

cal or a nonreciprocal, lossless, coupling network N are obtained in

this paper. If two impedances are compatible, the canonical coupling

network N can always be constructed by synthesizing a single

positive, real function. Hence, the calculations involved are relatively

simpler than those required by the previous methods.
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II. THE MAIN THEOREMS

A. THE MOTIVATION OF THE APPROACH

The problem to be considered is the following: if we start

with two rational functions Z (s) and Z (s), necessary and sufficient

conditions for them to be compatible are to be derived. From two com

patible impedances, it is then necessary to develop a direct and simple

synthesis procedure to construct a reciprocal or nonreciprocal,

lossless, coupling network N such that when the output port is

terminated in Z (s), the input impedance is Z(s).

One approach, which was used by earlier authors, is to use

a scattering formalism. From the given Z (s) and Zn(s), the

scattering parameters S and S of the two-port N are deter

mined. The unitary property of the scattering matrix is then applied

in order to determine S = S . Realizability conditions on the

scattering parameters are then determined by examining the admittance

matrix of the augmented network. Wohlers does not concern himself

with the actual synthesis of the coupling network but is satisfied with

determing a set of realizable scattering parameters.

The approach we shall follow here will be somewhat different.

It would be a formidable task to try to realize directly a non-pr function

Z (s) by a two-port N terminated in a prescribed Z (s). However,

consider the situation shown in Fig. 2 where a one-ohm resistor is

placed across the input terminal. Let the impedance looking into the

right-hand terminals of the two-port, when the left-hand terminals are

terminated in 1 ohm, be Z (s).
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in Z0(s)

Fig. 2

The function Z (s) is clearly pr and there are standard methods for

realizing a pr function by a lossless, two-port terminated in a 1-Q

resistor.

Our approach will be the following:

(1) Given Z (s), the input reflection coefficient is de

termined. Its jco-axis magnitude is identical to that of the output

reflection coefficient.

(2) The output reflection coefficient is then found from

its joj -axis magnitude. The flexibility inherent in the nonuniqueness

of this determination is used to guarantee that Z (s), determined from

this reflection coefficient, will be pr and the network will be stable.

(3) Z~(s) is then synthesized as a lossless, reciprocal
Ld

or nonreciprocal network terminated in R .

*
(4) When R is removed, the realized impedance Z (s)

may not necessarily equal the original impedance Z (s) but the flexi

bility of (2) and the possibility of augmenting Z (s) in (3) are used to

guarantee this equality.
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B. GENERAL PROPERTIES RELATED TO TRANSMISSION

ZEROS AND CANCELLATIONS

We shall now study certain properties of compatible imped

ances. Given a rational function,

m + n

Z/s) = U U , (1)
1 ml2 + n12

where the m's and n's stand for the even and odd parts of the relatively

prime polynomials, respectively. Define a polynomial

T7 = m__ m__ - n__ n,_ (2)\ = mU m12 - "u "12

Its zeros are called the transmission zeros of Z (s) (corresponding

polynomials for impedances Z (s), Z_(s), etc., will be T^jT^* ,

etc.) Note that the zeros of TzQinclude the zeros of the even part of

Z (s) but also include some that may cancel in the even part.

Our first result concerns the relations between the trans

mission zeros of two impedances if they are compatible.

Lemma 1 If Z (s) and Z (s) as shown in Fig. 1 are compatible,

then all the zeros of Tzn will be included among the zeros of Tz_ .,

Proof: The proof is straightforward and gives no insight into the

problem, so it is placed in the appendix.

This lemma is a necessary condition for two impedances to be

compatible. So, when verifying the compatibility of two given imped

ances Z (s) and Z (s) , we first form T^-, and T£_ and check

Lemma 1. If it is satisfied, we can proceed; if not, they are not com

patible.

Since N is to be constructed by synthesizing Z (s) , and it

is required that the resulting input impedance be the original Z (s) ,
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the transmission zeros (abbr.t-zeros) naturally play an important role

Let us consider the configuration shown in Fig. 3

1ft Z0(s)

Z2(s)

Fig. 3

where N is obtained by realizing Z (s), a pr function. The realiza-
3 *

tion may be obtained by using Youla's table. Z (s) is the resulting

input impedance. Z (s) must be so chosen and the realization of N

so carried out that Z"(s) = Z (s).

We write Zn(s) as

m + n

Z (s) = — -
0 m„ + n„

A routine analysis of Fig. 3 will show that

where

*
AZQ+B

Z1(s)=
C Z• + D

Z2(s) = D + B

A + C

t =
A

C

B

D

A(m +n ) + B(m2+n2)

C(m1+n1)+D(m2+n2)
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is the polynomial chain matrix, consisting of the numerators of the

usual chain parameters. Now form 1 + Z*(s) and Z?(s) + Z (s)

using Eqs. (3), (4), and (5). It will be found that the expressions for

the numerators will be exactly the same. This means that the two

equations

1 + Z*(s) = 0 (7)

Z2(s) + ZQ(s) = 0 (8)

will have the same roots, provided there is no cancellation with the

denominator in either equation. The roots of these equations are the

natural frequencies.

Suppose some cancellations have taken place in Eq. (4). Then

1 + Z (s) = 0 will be missing some of the roots of Z (s) + Z (s) = 0 .

We say that these natural frequencies are not observable from the input

port. The conditions under which such cancellations take place would

be of great interest. They are given in the following lemma.

Lemma 2. If the two-port N in Fig. 3 is constructed by realizing

Z (s), (assuming Z (s) and Z (s) are non-Foster) then a factor

(s+sn) will be cancelled from

AZ + B

zi<s>= czTTd- <9>

if and only if (a) (s+s ) is a factor of the function Z (s) + Z (s);

(b) (s+s ) is a factor of T7 at least to the nth order.
0 2 ~

Proof. Necessity. Let us look at the t-zeros of Z (s). Before can

cellation, t-zeros of Z'"*(s) are zeros of

(Arc^+Bn^ (Cn^Dm^ - (An^Bm^ (Cm^Dn^ (10)
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or (AD-BC) (mm -n^n) = T *T (11)
2 0

The last step follows from Eqs. (3) and (5). We see that the t-zeros of

Z^(s) include the t-zeros of both Z (s) and Z (s). However, can

cellations in Z*(s) will reduce the number of its t-zeros. The nature

of this reduction remains to be determined.

Suppose a factor (s+s ) with Re s > 0 has been cancelled from

a function Z (s) leaving the resulting function
a

Zb(S> = m + n <12>b m2b + n2b

Then, before cancellation,

, . mlb +"lb , •<»+»o> mla+nla , v
Z (s) = ' — (13)

m2b +n2b <s+so> " m2a +n2a

Clearly, m^ m^ - ^ n^ =(m^ m^-n^ n^) (s2-S()2) (14)

It follows that at the same point where a natural frequency is cancelled,

a t-zero of the same multiplicity has also been cancelled. Hence, we

can conclude;

(1) No cancellations in Z*(s) imply 1 + Z*(s) = 0 and Z (s) +Z (s) = 0

have exactly the same roots and the t-zeros of Z*(s) include the t-zeros

of both Z (s) and Z (s) .

(2) Cancellation of a factor in Z!?"(s) implies the presence of this

factor in T as well as in the equation Z (s) + Z (s) = 0.

Sufficiency.

Here, we want to show that if
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Z2(s) + ZQ(s) (15)

T (16)

Z2
A n

both have a common factor (s+s ) , this factor will be cancelled from

Z*(s) defined by (4). That is, we want to prove that the polynomials:

A(m +n ) + B(m2+n2) (17)

C(m +i^) +D(m2+n2) (18)

have a common factor (s+s ) . Now if we can show that one of these

two polynomials has the factor (s+s ) , then the other will also because

the sum of these two polynomials equals

(A+C) (m +1^) + (B+D) (m2+n2) , (19)

,n
which is the numerator of (15) and thus has the factor (s+s ) by

hypothesis.

By the definition of t-zeros, (A+C) and (B+D) are not both zero

at s = -s . Let us assume B + D 4 0 at s = -s . It follows that

B and D can not both be zero. We assume B 4 0 at s = -s . (The

opposite case, D 4 0, can be handled in the same way). Multiply (19)

by B.

B(A+C) (m +nx) + B(B+D) {rn^n^ . (20)

A Wy N2
If Z,(s) = —i z (s^ = —- , then by a factor of the function

1 D T ] D

Z (s) + Z (s), we mean a factor of the following polynomial NJZ>2 + NJD..

-9-



It was assumed that

T„ = AD - BC (21)
Z2

has the factor (s+s ) . By adding and subtracting AB , this becomes

T_ = A(B+D) - B(A+C) . (22)
Z2

If we make a Taylor series expansion of B(A+C) and A(B+D) around

s = -s , the first n corresponding terms of these two series must be

equal. Hence

B(A+C) =A(B+D) +(s+s0)n R(s), (23)

where R(s) includes the higher power terms of the series. This can

now be inserted into (20) to yield

B(A+C) (m +n ) + B(B+D) (m2+n2)

= A(B+D) (m^n^ B(B+D) (m2+n2) +(s+s0)n R^s) (24)

or (B+D) [Afm^) +B(m2+n2)J +(s+sQ)n R^s) (25)

which by hypothesis has the factor (s+s ) . But it was assumed that

(B+D) ^ 0 at s = -s , We can therefore conclude that

A(m][+n1) + B(m2+n2) (26)

has the factor (s+s ) , as we were to prove. From (19), it follows

that

Cfm^) +D(m2+n2) (27)
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also has the factor (s+s ) , Thus, the factor (s+s ) will be can

celled in Z*(s) of Eq. (4).

The same kind of proof would show the same results if B(-s ) = 0

but D(-s ) 4 0 . A similar argument can be used for the remaining

case:

B+D=0 but A + C4 at s = -s . Q.E.D.

In the process of realizing Z (s) to yield the lossless two-port,

it sometimes becomes necessary to augment Z (s) , (augmenting

means multiplying numerator and denominator by the same factor).

These factors correspond to additional "sections" in the cascade syn-

thesis, and they may or may not appear in Z (s) . Thus the augmen

tation of Z (s) is a way of controlling the appearance of certain factors
J.J-

in the realized Z(s) and in T *-. Clearly, the conditions under which
1 Zl

these factors appear in T * , or are cancelled, are of importance.
Zl

They are given by the following lemma.

Lemma 3. For the same conditions as Lemma 2, if Z (s) is augmented

with the factor (s+s ) before realization, then a cancellation will re-

suit in Z (s) of Eq. (4) only if:

Z2(-s) - ZQ(s) (28)

m *<*
has a factor (s+s ) . If, (1) 0 < m < n , the factor cancelled in Z (s)

will be (s+s ) ; (2) m>n, then the augmenting factor (s+s ) will

be cancelled completely.

Proof: Let the augmenting factor (s+s ) be represented by the sum

of its even and odd parts:

(s+S())n= E1 +01 (29)
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Then, after this augmentation

t (s+s )n (BO+DE ) + (BE + DO )(D+B) 0 ^^^; t y^ x t x^w^
2(S) ~ (A+C) (s+s )" " (AE + CO ) + (AO + CE ) ( °'

Using this in Eq. (4) , we obtain

(AE + CO) Z (s) +(BE +DO.)
„& . _ 1 1 0 1 1_

rS) " (A01 +CE )Z (s) +(DE +BOj) (31)

We must now analyze both numerator and denominator of z'(s) to
k 1

determine the presence of factors (s+s ) .

Let N(s) be the numerator of Z''(s) ,

N(s) = (AEj+COj) ZQ + (BEj+DOj) (32)

Substitute for E in Eq. (29)

N(s) =(-AO^COp ZQ +(-BOj+DOj) +(A+B) (s+s0)n (33)

or N(s)=01 [(D-B) - (A-C) ZQ] +(A+B) (s+S())n. (34)

Since O is not equal to zero at s = -s , except if s = 0 (which

is a case of no interest), we must examine

(D-B) - (A-C) ZQ . (35)

Suppose that (D-B) - (A-C) Z I 4 0 . (36)

s="so

Then N(-s ) 4 0 , and no factor (s+s ) will cancel in Z (s) . On

the other hand, suppose that

12-



(D-B) - (A-C) ZQ (37)

,mhas a factor (s+s ) . The equation (D-B) - (A-C) ZQ = 0 can be

rewritten as

D(s) - B(s) . z (s) = 0 (38)
A(s) - C(s) 0^

or

Z2(-s) - ZQ(8) =0 . (39)

By assumption, the left side has the factor (s+s ) . Hence, from

(35), we see that N(s) also has this factor (s+s ) for the case

m < n. On the other hand, if m > n , the augmented factor (s+s )

can be completely factored from N(s) .

By a parallel approach, we can show that the denominator of Z (s)

D = (AO+CE ) Z + (DE^BC^) (40)

also has the factor (s+s ) with the same multiplicity as the numerator

N(s)and thus the cancellation in Z''*(s) amounts to m or n, which

ever is smaller. Q.E.D.

With Lemmas 2 and 3 it is possible to determine whether t-zeros

of Z (s) will be cancelled from Z^(s) and whether Z (s) can be

augmented to supply any needed t-zeros.

C. THE REFLECTION COEFFICIENT

As mentioned previously, the coupling network is to be con

structed by realizing Z (s), which will itself be determined through

the reflection coefficients. In Fig. 3, define the realized input
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reflection coefficient to be:

* zi(s) -x
Pll(s)= Z*(s)+1 {41)

and the output reflection coefficient to be

Z2(s) - ZQ(-s)
?22(s) =Z2(s)+Z0(s) ' (42)

The zeros of the input reflection coefficient are at

Z^(s)-1=0 (43)

using Eq. (4) for Z^(s) , we obtain

AZQ + B - (CZQ+D) = 0 , (44)

which, with (5) for Z (s) , becomes

ZQ(s) -Z2(-s)= 0. (45)

Comparing (45) and (42), we can see that, except for those factors

which are possibly cancelled in Z (s) , (and hence missing in Pn(s) )

the zeros of the realized input reflection coefficient are the negatives

of the zeros of the numerator of the output reflection coefficient .

Let us now observe how the zeros of p^s) can be modified by

such cancellations. A number of cases must be considered. We first

assume that Z (s) + Z (s) 4 0 at s = -sn„ In Lemma 3, we found the

condition under which a cancellation in Z'1 (s) would take place when

Z (s) was augmented. This condition was the vanishing of Z (-s)-Z (s)
&

at s = -s (condition (28)) .
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(a) If (28) does not vanish at s = -s , the factor (s+s ) will not

be cancelled in Zj(s) and Z'^s) will have an extra t-zero according to

Lemma 2.

But if Z (s) is augmented by the factor (s+s ) Eq. (45) will

become

(s-s )

zo(s) " z2(-s) (T^j =°• (46)

Thus, since the roots of this expression are the same as those of

Z (s) -1=0, this augmenting will produce an extra factor of (s-s )

in p*(s).

At the same time, the natural frequencies observed from the input

port, which are zeros of the equation 1 + Z'l"(s) = 0 , will be increased

by the factor (s+s ) , for those are now determined by the equation

(s+s0)
Zn(s) + Z_(s) •;—• = 0 . Hence, if the original reflection coefficient

0 2 (s+sq)

is called p,!,(s) , and if the new reflection coefficient, after Z?(s) has

been augmented by the factor (s+s ) , is called p * (s) .

Using Eq. (41), we will have

pria<s>=pri(s>(-S^) <4?>
This relation can easily be extended to the case of an nth order aug

menting factor.

(b) On the other hand, if (28) is equal to zero, the augmenting

factor (s+s ) will be cancelled in Z (s) , as shown by Lemma 3. If

we had realized Z (s) without augmentation, the resulting p,T(s)
^ 11

would have had a factor (s+s ) in the numerator, for (28) is equivalent
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to Eq. (45) and no cancellation would have been involved. But if Z (s)

is augmented by the factor (s+s ) , an extra factor (s-s ) in the

numerator of P,^(s) will be produced. But the predicted cancellation

of (s+sq) i*1 Z?*(s) will eliminate the factor (s+s ) from the numera

tor of p,^(s) . Hence, as a result of this augmentation, a zero of
11

the mirror image position. We will still have,

p,T(s) will be shifted from the left-half plane to the right-half plane at

PUa<s> = Pn<s> iTfr) (48)

but for this case a cancellation of (s+s ) is guaranteed to take place.

Let us now remove the earlier restriction that Z (s) + Z (s) 4 0 at

s = -s . Then, if the augmenting factor is of order n , the cancella-
ktion in p* (s) depends on the factor (s+s ) in the numerator of

iia u
««.

PiT(s) • k can be determined by Lemma 2 and 3 as follows:

(1) If Z (s) - Z2(-s) ^ 0 for s = -sQ then k = 0.

(2) If Z (s) - Z (-s) has a factor (s+s )m ,

Z (s) + Z (s) has a factor (s+s )P .

Then (a) if p > m, it follows that k = 0;

(b) if p < m, k = m-p.

The preceding discussion has thus established the following:

Lemma 4. If Z (s) is augmented by a factor (s+s ) before realiza-

tion, the resulting input reflection coefficient p * (s) will be determined

from the v7ls). which would have been obtained by realizing Z (s)

directly by the relation
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£ j, / -s+s^ \

i •<WS> = pn(s) -^r> • <49>

k *where a possible factor (s+s ) in the numerator of P-j^s) is de

termined by the above conditions (1) and (2).

D. ANALYSIS OF FIGURE 2

We are now ready to discuss the procedure for determining the

output reflection coefficient p??(s) and then determining Z.(s) from

p _(s). In Fig. 2 it is assumed that Z (s) and Z (s) are compatible

and non-Foster. The reflection coefficients are defined as follows:

Z^s) - 1
P11(S) = Z (s) +1 (50)

z2(s) - y-s)
P22(S)_ Z2(s) +ZQ(s) (51)

The two-port is lossless, so for all possibilities of Z (s) and Z (s) ,

IPu(jco)| = IP22(jco) I V co, (52)

The task now is to identify P22^s) from Pn(s)- If no cancellations are

involved, then the roots of

Z^s) + 1=0 (53)
and

Z2(s) + Z (s) = 0 (54)

will be the natural frequencies of the network, and they will be the same.
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Also, 1 - Z (-8) = 0 (55)

and

Z2(s) - ZQ(-s)= 0 (56)

will have the same roots. Hence, by using these relations in Eq. (51),

it might be expected that P2?^s) wil1 have the form

1- Z (-*)
1 - : (57)

1 + Zx(s)

But the rational function, (57) has poles at the poles of Z (-s) and

zeros at the poles of Z (s), whereas P22(s) does not necessarily have

them, as can be seen from Eq. (51).

Also, P77(s) nas poles at the poles of Z (-s) and zeros at the poles
of Z (s) which are not present in (57). Hence, if no cancellation

exists and if we let

and

m + n

Z1(s)= U , A1 (58)1 m21+ n21

m + n

ZA(s)= x , (59)
0 m^ + n^

then we will have

1 - Z.(-s) m - n_ m + n_
D /s\ i . 61 £i . —£ (60)
PZ2K} 1 + Z^s) m_, + n_. m, - n. '

The right side is (57) with the inclusion and deletion of poles and zeros

according to the preceding discussion. In the most general case, the
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right side should have additional factors to account for possible can

cellations.

1 - Z.(-s) m - n m + n,
/ , 1 . 21 21 2 2 h(-s) ,,,.

so, p?7(s)= i , 7 ,gx -—rr~~ * ™—7T ' WIT (61)

l-Z^-8) Pd(8)
1+ Z^s) Pd(-s) » (62)

where h(s) is a Hurwitz polynomial to be determined according to the

discussion surrounding Lemmas 2, 3, and 4 and F-,(s) is defined in the

equation.

h(s) is not yet known. Suppose that it is determined by some means

so that p (s) becomes known. Then, solving Eq. (51) for Z (s) in

terms of p (s), we will have

Z (s) + Z (-s)

Z2<S>= l-pjs) -Vs)- <63>

It is obvious that one necessary condition for h(s) is that it must

be so chosen as to make Z (s) of Eq, (63) positive real.

E. CONDITIONS FOR COMPATIBILITY

In the following discussion, it will be assumed that the network

of Fig. 2 is stable. The given impedances Z (s) and Z (s) will then

be said to be compatible and stable. To establish our major theorem,
4

we will require a previous result of Chan and Kuh.

Theorem 1. (Chan and Kuh) Let Z (s) be a given rational function

which may or may not be pr, but it is non-Foster. Then
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Z (s) + Z (-8)

<*> Z2<S>= 1- P(s) " Z0(S) (64)

is a positive real function, and

(b) Z (s) + Z (s) 4 0 for Re s > 0 (except for degenerate cases)

under certain conditions on p(s) which are listed in the Appendix because

they ape so extensive.

It is our purpose now to establish necessary and sufficient con

ditions on two functions Z (s) and Z(s) to be compatible. Strong use

will be made of Theorem 1. Sufficient conditions will be determined by

construction. That is, the impedance Z2(s) in Eq. (64) will be synthe
sized as a lossless, two-port terminated in a resistor, as in Fig. 3.

The realized impedance will be called ZJs), and conditions will be de-

termined under which Z (s) = Z (s).

To start, we shall first concentrate on the transmission zeros.

Theorem 2. Given two non-Foster rational functions Z^s) and ZQ(s)
which may or may not be positive real

m + n m + n

Zl(s)= " U , ZQ(s) = -i—\ (65)
1 m21 + n21 ° m2 + n2

and 1 + Z (s) 4 0 in Re s > 0 .

Form the reflection coefficient p(s)

1 - Z^-s) m21 - nn m2 + n2 h(_g)
P(S) =1+Z^s) *m21 +n21 ' m2-n2 ' h(s) tbb)

and then form Z(s) according to Eq. (64). Realize ZJs) as a loss-
Cd

less, two-port terminated in a resistor as in Fig. 3. Let the input
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impedance of the realized network terminated in Z (s) be called Z*(s).

Then the transmission zeros of Z^(s) can be made equal to

those of the given function Z (s), if

(a) the t-zeros of Z (s) are included among those of Z (s) ,

(b) a Hurwitz polynomial h(s) exists such that p(s) in Eq, (66)

satisfies the conditions of Theorem 1, thus making Z (s) positive real.

This theorem will be proved for the right-half plane and jco-axis

transmission zeros separately. First we consider the right-half plane

transmission zeros.

We start with the conditions (a) and (b) of the theorem as

given. So Z_(s) is pr and can be realized in the desired form. By

Lemma 1, all the t-zeros of Z (s) will be included among those of

ZJ(s) ; hence, only the t-zeros of Z (s) remain to be considered.

From Eq. (64), the even part of Z_(s) can be found; it is

Ev Z2<S> =i[Z2<S>+Z2<-S>] Vl[Z0(s)+Z0(-S>] [f^H^)-1]

Equation (66) implies

2(Z1(s) + Z1(-s))
l-P<s)P(-s) = (l+Z^Hl+Z^-s)) •

Now combine these with Eq. (65) to get

Ev Z2(s)=i[z2(s) +Z2(-s)]

_ I rZ0(s) +Z0(-sn mH m21 " nll n21
=2L i - p(s) J (^n+^zx^n+^iX^n+^zr11!!-^^

1

(68)

• 1 7—1 • (69)1 - P^s) -21-



According to condition (a) of the theorem, T = mm - n n_ is a
Z0 12 1*

factor of T = mm - n__ n . Let

P(s) = m'm' - n' n * =
mlim21 " nlln21 Zl

11 21 11 21 m m_ - n n?

Thus,

Z (s) + Z (-s)
Ev z (8) =

i/zo(s) + zo(-s) P(s)

(70)

2 \ 1- p(s) y(mn+m21+n11+n21)(m11+m21-m21-n21) l-p(-s)

(71)

By the definition of Z (s) in Eq. (64), the last fraction of Eq. (71) can

be put in the form

TT^y = <Z2(-.) +Z0(-.»»(»2-n2» (72)

Similarly, from Eq. (64), the first fraction becomes

Z (s) + Z (-s)

l-p(s) - ZZ<S> +Z0<S>'

Hence, Eq. (71) becomes

Ev Z2(s) =i (z2(s)+Z2(-s))

(Z0(s)+Z2(s)) (m2+n2)

-22-

(73)

(m2-n2)(Z2(-s)+Z0(-s)) P(s)
(mn+m21+n11+n21)(m11+m21-nn-n21)

(74)



Let us analyze Eq. (74) factor by factor for the right-half plane zeros.

The first factor (Z2(s)+Z (s)) (m2+n2) 4 0 for Re s > O.by Theorem 1,
because Z (s) + Z (s) 4 0 for Re s > 0. Furthermore, since (m?+n?)

is the denominator of Z (s), the right-half plane zeros of the term

(m?+n_) will cancel with the poles of Z (s). Next consider (m -n )

It is the denominator of Z (-s) and its right-half plane factors will

therefore cancel with the poles of Z (-s) + Z (-s).
& u

Next consider (m +n +m +n ). It is the numerator of 1 + Z (s),

which cannot vanish in the right-half plane because the network is

assumed to be stable. What is left from Ev Z (s) is

/ Z (-s) + Z (-s)\

R(S>=L In „ n ' P(S) (?5)VVm2fnlfn21 /

There are certainly cancellations in the first fraction since both

numerator and denominator represent the negatives of the natural

frequencies, one observed from the output, the other from the input.

But any unobservable natural frequencies may not cancel. As a result,

there may be some right-half plane zeros of Z (-s) + Z (-s) which are

also t-zeros of Z (s) (for they are zeros of Ev Z (s) ). By Lemma 2,

these zeros will be cancelled completely in Z'L(s) (as they should be)

and thus will not be t-zeros of Z7(s). On the other hand, polynomial

P(s) and (m,.+mn,-n,,-n_.) . £ , .,
x ' 11 21 11 21 may have common factors and thus can

cellations. It is precisely these cancellations which will cause the

resulting Z!\s) to be missing some of the t-zeros of Z (s).

To overcome the problem, we must augment Z (s) before realiza

tion. The order of augmentation can be determined by inspecting the

order of cancellation between P(s) and (m +m -n -n ) and the

order of the corresponding factor in Z_(-s) - Z (s) as shown in
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Lemma 3. The rest of the zeros of P(s) will be included among the

t-zeros of ZJ(s).

Finally, we conclude that the t-zeros of Z (s) can always be made

equal to the t-zeros of Z (s) in the right-half plane, if necessary, by

augmenting Z_(s).

Next, we turn to the t-zeros on the jco-axis. In Lemma 2, only

cancellation of non jco-axis factors were considered. Let us analyze

briefly the cancellations in Z (s) of factors on the jco-axis. Suppose a
2 2 nfactor (s +to ) is cancelled in Z*(s) of Eq. (4). Then it must be a

factor of

Z2(s) + ZQ(s) (76)

For stability reasons, (76) cannot have zeros on the jco-axis except for

two degenerate cases, which are the only ones that need to be consid

ered. These are the cases where Z (s) and Z (s) have (1) a common
2 2

zero of the first order (s +co ) or (2) a common pole of the first order.

For both cases, it can easily be shown that Z*(s) has exactly a first-

order cancellation. This is the only cancellation that Z^(s) can

possibly have for factors on the jco-axis.

Now turn to a consideration of the t-zeros of Z (s). There are a

number of cases to consider.

As for the right-half plane, any t-zeros of Z (s) on the jco-axis

will be included automatically among the t-zeros of Z''(s) ; so we only

need to consider t-zeros of Z?(s),

From Eqs. (64), (67), and (68), the even part of Z (s) can be put

into the following convenient form:

-24-



2(Z2(s)+Z2("s))-\(l+Z1(s))(l+Zl(-s)) J\ Z0(s) +Z0(-s)
Z^s) +Z^-s) \ /(Z0(s)+Z2(s))(Z0(-s)+Z2(-s))\(77)

For the network to be stable, we must have the condition that

1 + Z(s)^0 for Res>0. (78)

Thus, there is no cancellation of factors on the jco-axis in the first

fraction; and its zeros are the t-zeros of Z (s), with the same multi

plicity. After we simplify the second fraction, the denominator will

consist of all the t-zeros of Z (s) plus p61es of Z (s) and Z (-s).

If we temporarily exclude the degenerate cases in which Z (s) and

Z (s) have a common jco-axis zero or pole, the numerator will not equal

zero for s = jco. Thus, all t-zeros of Z (s) on the jco-axis in the

second fraction are cancelled with the corresponding t-zeros of ZJs)

in the first fraction, and the remaining t-zeros of Z (s) will be pre-

cisely those of Z (s). These will also be among those of Z (s), since

no cancellation is involved and the result is proved.

Now consider a special case in which a simple pole of Z_(s) on the

jco-axis may coincide with a t-zero of Z (s). In this case, there must

be a second-order cancellation in Eq. (77), since Z (-s) will also have

this pole. This cancellation will cause the zero of Ev Z (s) at

s = jco to be two orders less than the zero of P(s) = — . However,

zo

in this case, it is easy to show that the t-zero of Z (s) at s = jco is

two orders higher than the zero of Ev Z (s). Hence, the result follows

for this special case as well. From this we can conclude that all the

t-zeros of Z_(s) will be included among the t-zeros of Z',%(s). Hence
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t-zeros of Z(s) = t-zeros of Z*(s) for s = jco (79)

There still remains to consider the degenerate cases in which

Z (s) and Z (s) have a common jco-axis zero or pole. Suppose Z (s)

has a simple pole at s = jco where Z (s) has a pole of order v .

Under this assumption, if we simplify the second fraction of Eq. (77),

the numerator will not be equal to zero for s = jco and the denominator

will have zeros to exactly the same order as the t-zeros of Z (s).

Equation (77) shows that Ev Z.(s) has zeros at s = jco„ of the same
2 J 0

order as the zero of P(s). Since Z (s) has a simple pole, that im

plies the t-zero of Z (s) at s = jco is two degrees higher than the

zero of P(s). But because Z (s) and Z (s) have a common simple
2 2

pole, there will be a cancellation of the factor (s +co ) in the realized

Z^s), as was pointed out. So Eq. (79) is still true for this case.

Finally, suppose Z (s) has a simple zero at s = jco_ where Zn(s)
" 0 0

has a zero of order v. It is easy to see this time that the t-zero of

Z (s) is two degrees higher than the zero of P(s). Once again a can

cellation in the realized Z*(s) will cause Eq. (79) to be true.

This completes the proof that we can realize a Z*(s) which has

exactly the same t-zeros as those of Z (s) over the whole complex

Plane. Q.E.D.

Our next task is to turn to the input reflection coefficient and to

discover how the realized reflection coefficient p*(s), given in terms

of Z^s) by (41) is related to the original one p .(s), given in terms of

Z^s) by (50).

First, let us consider the magnitudes. Suppose the two-port N is

synthesized using the p(s) of (66) as P22(s) yielding an input reflection
coefficient p*(s). Then, from (52),
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IP*i(jw)| =IP(j<-)| V" (80)

But, from its definition in Eq. (66),

1- Z^-jco) Pd(-jco) l-Zx(jco)
ip(»i =i 1+zmco) i i wmr'=' i+w '='pn(jt0)l

1 d * (81)

Hence, the result

Ipftj")! = |pu(j")| V" (82)

Next, let us show that if the magnitudes of p (jco) and p (jco) are

equal and if the t-zeros of Z^(s) and Z (s) are equal (both of which

hypotheses have been shown to be the case), then the poles of P^fs) and

p (s) will be the same and the zeros of p,T(s) will be equal either to

those of p-,,^) or their mirror images with respect to the jco-axis.

In fact, for two arbitrary rational functions having the same

jco-axis magnitudes, poles and zeros are either equal or are mirror

images of each other; in addition, the two may differ by an all-pass

function. In the present case, stability requires the poles of both P,,(s)

and p,T(s) to be in the left-half plane, and so they cannot be mirror

images. The only remaining thing to prove is that p,,(s) does not

have an extra all-pass function.

Now Eq. (82) implies

"n^-t^rAz^s) (83)
where Re s, > 0 in the regular all-pass function because of stability.

Since the poles of p,,(s) and the zeros of the all-pass are in

opposite half planes, no cancellation between them can take place. But
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consider the zeros of p,-,(s) and the poles of the all-pass. Suppose a

pole of the all-pass does not cancel with a zero of p*(s). That is,

suppose

sQ - s
Pn(s) = +p*(8) j-^ (84)

with no cancellation. Then we can show that T will have one more

2 2
factor, (s - s ), than T . This contradicts the assumption of0 z1

identical transmission zeros. Hence, all factors in the denominator of

the all-pass in Eq. (83) must cancel with numerator factors of p (s).

To sum up: the poles of pn(s) = the poles of p,,(s) ; the zeros of

p (s) are equal either to the zeros of p,T(s) or to their mirror images

with respect to the jco-axis.

-'<

Here we have a problem. The poles of pn(s) and p-^Cs) are the same

but the zeros may be mirror images. But if Z'^(s) is to equal Z (s),

p^(s) should equal p (s). We will now show that any zeros of p^c (s)

which are mirror images of corresponding ones in p (s) can be

shifted to their mirror images positions without influencing the tranS-

mission zeros of Z (s), by properly augmenting Z (s).

(mll+nil}
In Eq. (66), let Z (s) be replaced by . • : and let the first

1 (m21+n21)

two fractions be multiplied together. The result will be,

m - n - m + n m +n_( \ _ 21 21 11 11 ^ 2 2 ^ h(-s)
PS " m21 +n21 +mll +nll " m2"n2 ' h(s)

Since the p(s) in Eq. (85) is to be the p??(s) in Eq. (42) and the network

is to be constructed by realizing Z (s), the zeros of the resulting re-

flection coefficient Pi,(s) will be determined by the factors augmenting
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Z7(s) as well as by the zeros of p(s). How the augmenting factors of

Z (s) will influence the resulting reflection coefficient was thoroughly

discussed in Lemma 4. So we will now concentrate only on the manner

in which the zeros of p(s) in Eq. (85) determine corresponding zeros

Of p*(8).

Consider the network in Fig. 3 which is the same as that of Fig. 2

except that Z (s) is replaced by Z (s). As a result, Sec. II-B for Z (s)

can be applied to Z (s). We can tell immediately from Eqs. (55) and

(56) and also from Eqs. (53) and (54) that, except for possible cancella-

tions in Z (s) :

[l] If the factor m + n. is excluded, zeros of p,T(s) are the

negatives of the zeros of p(s).

L2J If the factor m_ - n is excluded, poles of P,C(s) are the same

as the poles of p(s).

A special case which was not considered in Sec. II-D is the possi

bility that there may be common factors between the functions Z_(s)+Z (s)

and Z (s) + Z (-s), the even part of Z (s). It follows that the same

common factor will be present in Z (s) - Z (-s) and Z (s) + Z (s). A

straightforward approach will show that the following additional relation

is true.

[3] Common factors between Z (s) - Z (-s) and Z_(s) + Z (s) will

cancel in p (s). But even though cancelled in p (s), such a factor, say

(s+s ) , will automatically appear in the denominator of the realized

^11 and ^e corresPonding mirror image factor (s-s ) will appear in

the numerator of p'^(s).

Having determined these conditions, we can easily determine the

zeros of P,T(s). p(s) of Eq. (85) will be used as p ?(s); and Eq. (85)

will be analyzed.
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In the first place, note that there may be possible common factors

between the second fraction of Eq. (85) and other fractions. Because

of conditions [1] and [2] just stated, factors (m2+n2) and (m2~n2) will
be excluded automatically from the numerator and denominator of

p*(s), respectively. Hence, they will not be considered further.

In the remaining two fractions in Eq. (85), the all-pass function

, , .' is next considered. A factor in h(s), (s+s_), will be in the de-
h(s) 0

nominator of p,,(s) by [2], but the corresponding factor (-s+s ) in

h(-s) will also become (s+s ) in the numerator of p,,^) by[l]. So

a cancellation in p,,(s) will result. It thus follows that except for

possible cancellations between h(s) and the polynomial (m -n2 -m +il )a

no factor of h(s) or h(-s) will appear in p "(s).

Let us initially assume no cancellation of factors in numerator and

denominator of Eq. (85). From [ l] we see that the factors in the num

erator of the first fraction which are actually in 1 - Z (-s) will change

to the mirror image positions in the numerator of p^s), (i.e., Z (s)-l).

From [2], factors in the denominator of the first fraction, (i.e.,

factors of 1+Z'(s)) , will remain unchanged in the denominator of p...(s).

It follows that zeros and poles of p" will equal those of p in this case

of no cancellations in p(s). So,

P11(S) = ± P11(S)" {86)

Now suppose some cancellations do take place in p(s). These will

be of two types:

(1) No factors of h(-s) can cancel with a factor of (m +m_ +n +n21)

since the former is anti Hurwitz while the latter is Hurwitz. (The last

is true because this polynomial is the numerator of 1 + Z (s) whose

zeros are natural frequencies.) But there may be a common factor
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(s+s )n between h(s) and (m2i"n2l"mll+nll^ which is Hurwitz.
Without this cancellation, the factor (s+s )n in (m2i"n2l~mil+nH^
would be the negative of a corresponding factor (-s+s )n needed in

p*(s) because it is a factor that p,,(s) has. In other words, because
*** n

of this cancellation, p7-.(s) would be missing a factor (-s+s ) . At

the same time, h(-s) in the numerator will introduce a corresponding

factor (-s+s ) in p(s). By [l], there would be introduced into P?,(s)

an extra factor (s+s ) which Pn(s) does not have. To overcome this

difficulty, suppose Z_(s) is augmented by the factor (s+s ) . As

shown in Lemma 4, p,?(s) will be multiplied by the all-pass function

R)"- This will shift the extra factor causing the difficulty in

in P„(s) to its image position without influencing the t-zeros of Z'T(s).

/ m21 " n21 " mil +nil \
(2) In ( 1 , there may be common factors

Vm21 +n21 +mll +nll/

which are Hurwitz between numerator and denominator. The common

factors can be shown to be the same as those between 1 + Z (s) and

Z (s) + Z (-s). The latter function has the same zeros as T • P(s).
1 l zo

The above mentioned condition [3] tells us that factors between T
Z0

and 1 + Z (s) cancelled in p(s) will not cause any problem because

they will be present in Pn(s) anyway. On the other hand, possible

factors between P(s) and 1 + Z (s) need to be taken care of. But, it

was shown in the proof of Theorem 2 that proper augmentation of Z (s)

with a factor common to P(s) and 1 + Z (s) will make the t-zeros of

Z^(:s) the same as those of Z (s). This same augmentation will intro

duce into p,^(s) the zero factor (s-s) which P-.-.fs) has. (It will

also introduce a pole factor (s +s)n, as discussed in Theorem 2.)
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We can conclude that Eq. (86) can be made true whether or not there

are any cancellations in p(s).

There remains only the question of sign. It is well known that if

Pn(s) = -Pn(s)> then

Zx(s) = —y (87)
Z^s)

If it turns out that Pn(s) will equal -p (s), it will be necessary to use

a gyrator at the input port, as shown in Fig. 4, in order to invert the

realized impedance.

1= 1

1 SI r X r Z0(s)

zi{s)-z^) zi(s) Z2(s)

Fig. 4

The sign of Pn(s) is determined by h(s) which is selected to

satisfy Eq. (66). If a minus sign must be introduced there, then Pn(s)

will equal to -p (s) and a gyrator will be required.
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With Theorem 2 and the results following it, we have established

the following theorem:

Theorem 3. Given two non-Foster functions Z (s) and Z (s) which

may or may not be pr, with 1 + Z (s) 4 0 for Re s > 0, necessary

and sufficient conditions for them to be compatible and stable are

(i) The t-zeros of Z (s) are included among those of Z (s).

(ii) A Hurwitz polynomial h(s) exists such that

P(s) =
1- Zl(-S) m21 " n21 m2 +n2 . h£-si
1+Z(s) " m21 +n21 * rn2-n2 h(s)

satisfies the conditions of Theorem 1,

mll + nll
where Z.(s) = • ,

1 m21 + n21

m + n

U m, + n_

III. METHOD OF SYNTHESIS

A. GENERAL COUPLING NETWORKS

Although the proof of Theorems 2 and 3 are quite lengthy, the

actual synthesis of the coupling network is fairly simple and straight

forward. It will be discussed in this section. We will first consider

the general case where the coupling network N may contain both re

ciprocal and nonreciprocal elements.

Since the sufficient conditions for compatibility were actually

established by realization, we have already discussed each of the steps

in the synthesis. However, it would be useful to organize the synthesis

procedure in a step-by-step form for clarity.
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Given two non-Foster rational functions

m + n m + n

Z,(s)= , , ZJs)= , l
1 m21 + n21 ° m2 + n2

(1) Determine a positive number R such that R + Z (s) 4 0 for

Re s > 0. Permissible Z (s) functions are limited to those for which

such a number R exists.

(2) Form the polynomials

TZ = mUm21 * "U^l

TZQ = mim2_nln2

P(s) =

T must be contained in T ; if it is not, Z and Z_ are not
Z0 Zl ° l

compatible.

(3) Determine a Hurwitz polynomial h(s) such that

1 - Z (-s)/R m - n m + n
0/q\ i . 21 21 2 2 h(-s) .
P(S) " 1+Z1(s)/R ™21 +n21 ' m2-n2 * T(7T (88)

satisfies the conditions of Theorem 1. h(s) is not unique, even when it

exists. A straightforward approach is to use the interpolation technique
2

of Wohlers. For a "canonical" coupling network, one having the fewest

elements, it is necessary to choose an h(s) of lowest possible order.

The h(s) selected will influence the factors by which Z (s) is to be

-34-



augmented in the next step and, hence, this selection should be guided

by that consideration.

(4) Form Z (s) from

Zn(s) + Z (-s)

Z2<S> = 1- p(s) -VS> <89>

and reduce it to simplest form by cancelling common factors. Then

augment Z- with the following factors:

(a) Common factors between P(s) and 1+Z(s)/R but not

(b) Common factors between h(s) and 1- Z (-s)/R but not

1+ Z^-sJ/R .

(5) Realize Z_ as a lossless, two-port N terminated in a R ohm

resistance. The two-port N can be reciprocal if all the transmission

zeros of Z?(s) are of even order. If not, Z?(s) cannot be augmented

further but must be realized as a nonreciprocal two-port.

B. RECIPROCAL COUPLING NETWORK

If it is required that N be reciprocal, then the t-zeros of the

augmented Z must be of even order.

Except for certain cancellations, t-zeros of Z (s) consist of

right-half plane zeros of P(s) and zeros of h(-s). Thus, for a re

ciprocal coupling network N, the regular all-pass h(-s)/h(+s) in (92)

will contain: (1) as first-order factors those zeros of P(s) which are
2 , 2

of odd multiplicity; and (2) another all-pass function, say b (-s)/b (s),

which is a perfect square. Class (1) factors are to make all t-zeros

of Z (s) of even order. Class (2) factors may be necessary to make

p(s) satisfy Theorem 1. The factors used in augmenting Z?(s) are

still the same as before. Since those account for factors that have
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cancelled, they are restored by augmenting Z (s) in order to make

t-zeros of Z (s) even. Again, a canonical network will result if
2 ,2

b (-s)/b (s) has the least possible order.

There is a limitation on the realizability of reciprocal coupling

networks. If there is a factor in P(s) which is also among the t-zeros

of Z (s), then this factor in P(s) must be of even order. For if it is

of odd order, we would expect that it must be cancelled in the realized

Z (s) . Cancellations can take place under the following two circum

stances:

(1) There has been no augmentation in Z (s). In this case,

if there is to be a cancellation, Lemma 2 tells us that

Z2(s) + Z2(-s) (90)

and ZQ(s) + Z2(s) (91)

must have at least a common factor (s+s ). Since this is also a t-zero

of Z (s), then

Z0(s) +ZQ(-s) (92)

has this factor. Add (90) and (92) and then compare with (91); we see

that

ZQ(-s) + Z2(-s) (93)

has this factor (s+s ) also. This means that

ZQ(s) + Z2(s) (94)

has the factor (s-s ), which contradicts the stability assumption.

-36-



(2) Z?(s) has been augmented by a factor (s+s ). For can

cellation in Z*(s) in this case, Lemma 3 tells us that

Z0(s) - Z2(-s) (95)

and Z0(s) + ZQ(-s) (96)

have a common factor (s+s ). This implies that

ZQ(-s) +Z2(-s) (97)

also has the factor. This contradicts the stability assumption also.

In other words, we cannot successfully find any h(-s)/h(+s) to make

p(s) satisfy the conditions of Theorem 1 in this case.

IV. EXAMPLES

We shall now illustrate the procedure with a number of examples.

They will be chosen to show a number of the possible variations. The

numbered steps correspond to those given in Sec. III.

2
Example 1. The following example was given by Wohlers . It will

be considered here by our method for comparison purposes. Let

. 1 . 1
s +^ s + ~~

zi<s>=7717 zo^-TTT <98>

Solution. (L) Since Z (s) is pr, 1 + Z (s) 4 0 for Re s > 0 .

(2) T = (s2-l) = T
1 0

Hence, Z and Z can be compatible and

P(s) = 1 . (99)

-37-



(3)

1 -
r7-s
17 - s 17 - s

. < >•—

17 + s

3 + s

3 - s

. h(-s)
pis) -

1 4-

i +s17 + S
h(s)

17 + s

144

17 s + 145

3 + s

3 - s

h(-s)
h(s)

Condition 1 of Theorem 1 requires p(l) = 1

and so h(-l)/h(l) = 9/16.

Condition 2 and 3 are satisfied automatically.

We conclude that the given functions are compatible.

Here if we choose h(s) to be of first order, the

coupling network will be nonreciprocal; if h(s) is

a perfect square,. N will be reciprocal.

Let us do both.

A first order h(s) is (a+s). Hence,

a - s

s + a

P(s) =

s = 1

144

9 .
16 '

3 + s

17s + 145 3 - s

a =
25

25
- s

25
+ s

(100)

(101)

(102)

(103)

On the other hand, for a reciprocal network, h(s) = (a' + s)

a'-s

a' + s

p'(s) =

s = 1

144

17 s + 145

_9_
16

3 + s

3 - s

-38-
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(4) Z (s) is calculated from (64) as

Z0(-s)

zTiT + p(s)
Z2(S)=Z0(S) 1- p(s) ' (1°6)

For nonreciprocal N

T7 J. 7225
17s + TT

Z2(',B1T—tT- ' (107)
17 s + —

For reciprocal N

Z'(s) = 51s2 +700s +14161 ^ (10g)
2 51s2 + 1428s + 441

No augmentation is necessary for both cases, since there exists no

such common factor as stated in the 4th step in Sec. Ill - A.

(5) We synthesize Z (s) first as a lossless two port termina

ted in a 1-S2 resistor; then we remove the resistor. The

result is shown in Fig. 5

The reciprocal coupling network found by synthesizing Z2(s) is shown

in Fig. 6.
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o-

zi(s) =7+l7

o-

27* l

45

308

85

924

Fig. 6

132

595

1445

14904

The same result as in Fig. 6 would be obtained by Wohlers1 approach.

In that case, the coupling network would be realized from its two-port

parameters.

Z0(s>=i?3

it , •> r~ * i \ s3 +8s +56s +64Example 2. Given Z (s) = — r
s + 16s + 32s + 32

(109)

Z0(s) = -s - 3s + 2

s + 4

where Z (s) is pr , Z (s) is obviously not.

-41-
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(1) 1+Z(s)9!0 for Re s > 0.

(2) T =(s2-8)(s2-l6)2 (HI)
Zl

T7 = (s -8) (112)
zo

Thus, T is a factor of T_ .

zo Zl

P(s) =(s2-16)2 =(s+4)2(s-4)2 (H3)

3 2
-s +8s -56s + 64

3 2
,,\ / x -s +I6s ^ 32s+ 32(3) p(s) = - -

1 s +8s +56s +64
3 2

s +I6s + 32s+ 32

3 2
- -s +I6s -32s+ 32 s + 4 h(-s)

• —^——^ •

3 , ./ 2 -s + 4 h(s)
s +16s + 32s+ 32 x '

(114)

A straightforward derivation shows a possible h(s) to be

h(s)= 1 .

(4) Z (s) is found from (64) as

2
„ , . s + 9s + 2
Z2(S)= s +8 <115>

If we compute 1 + Z (s), there results

(s+4)(s+2)(s+6) (116)

Comparing this with P(s) in (113) shows that there is a

common factor (s+4),
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we thus have to augment Z_(s) by this factor

Z2(8) = s + 9s + 2

s + 8

s + 4

s + 4
(117)

In synthesizing Z_(s), either the Darlington-c section

can be removed first, or the pole at s = oo can be re

moved first. If we do the latter, the result is shown in

Fig. 7.

1

48 §j

24 1— \J\J\J\

K 12

l r

15 -

-

3 2
_ . . s +8s +56s+64

1(S) = "1 2
s +I6s +32s+32

Fig. 7

Z0(s) = -s -3s+2

s+4

s + 4s + 6
Example 3. Let us have Z (s) = —-r

s + 6s + 4

Zn(s) = -^44 (H8)
0X ' s + 4 x '

Both Z (s) and Z (s) are pr.

(1) 1 + Z_(s) ^ 0 for Re s > 0
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(2) T_ = (s2-12)(s2-2) (119)
Zl

T_ = (s2-12) (120)
Z0

T„ is contained in T„
Z Z

0 1

P(s) = (s2-2) (121)

(3) p(s) =

1 -

2
s - 4s + 6

2 ,
s - 6s + 4

1 +

2 „
s + 4s + 6

s + 5s + 5

2 ,s - 6s + 4 . 4 + s # h(-s)
2.£./i 4-s h(s)

s + os + 4 x '

- (s+1) . 4 + s h(-s)

p(s) will satisfy the conditions of Theorem 1

if h(s) = 1 + s.

(122)

(123)

/ x - (s+1) 4+ s 1 - s .....
p(b)= 2 ' TTT ' ITT (124)

s + 5s + 5

Note there is a common factor (s+1) between h(s) and

1 - Z (-s). Hence, p will have a zero at s = 1 in the

wrong half plane.

(4) Z (s) is found to be

Z2(s)= i±l (125)
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We have to augment Z (s) by the factor (s+1) in order to shift

the zero of Pn(s) into the correct position. A cancellation in Z (s)

is guaranteed by Lemma 4.

r, , X S+1 S+1
z2(s) = 7+1 • 7TT

The realization is shown in Fig. 8,

12+50VT 6+5/7

o-

O

1:
63

2

n(s)" 2
s +6s+4

21

> C

1(10-6/2)

Fig. 8

~ V >. ^. rr / t 0.9S + 2,lS -1
Example 4. Given Z (s) = -

1.65s +3.85s +15.9s + 7.6

(126)

r, , * s +3
zo(s)=7S

(127)

* / x « « « ,r . 1 0.15s +0.65s + 0.2
Z_(s) = 0.8 + 0.15s + r= —

0 s -1 s - 1

(128)
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Z (s) is the impedance of a tunnel diode, taking all its parameters

into account. Neither Z (s) nor Z (s) is pr.

Solution, (i) i +ZJs) =^Lr(1.65s3+4.75s2+18s+6.6) ^ 0 for Re s >0
1 D(s) -

(129)

(2) T_ = 0.8(s2+-j) (130)
*0 4

Tz = 30.40(s2+i) (131)

T is contained in T with P(s) = 1. (132)
Z0 zi

(3) Form the reflection coefficient p(s)

-1.65s3 +2.95s2-13.8s +8.6 s-1 h(-s)
p(s) = 777^~7T7T———- ' -TTi • T(iy

1.65s +4.75s +18s + 6.6
(133)

From Theorem 1, at s = + y, the t-zeros of Z (s)

P(± 2} =U

h(s) = -(s+2.1) satisfies this condition as well as other

conditions.

, . 1.65s3-2.95s2 +13.8s-8.6 s-1 2.1- sHence p(s) = — g —— . — • -^y^
1.65s +4.75s +18s + 6.6

(134)

(4) ; Z (s) is found to be

z2(s) = - (135>
l.ls + 0.6s + 7.6
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Note, a -1 is introduced to p(s), hence when Z2(s) is realized
a gyrator will have to be used at the input port. The realization is

shown in Fig. 9.

O-T
6.16 0.263

1.1

1.9

CM

Z^s) = 0.9s +2.1s-l

1.65s3+3. 85s2+15.9s+7.6
Fig. 9

0.150.8

o—VW7ftftK5^

Zft(s) = 0.8+0.15s+—r-
\J S — A

If we were to realize Z'(s) =YT~\ * the gyrator at the inPut Port

would have been saved.

-47-
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APPENDIX A

I. Proof of Lemma 1

Lemma 1. If Z (s) and Z (s), as shown in Fig. 1, are compatible,

then all the zeros of T will be included among the zeros of T .
0 *1

Proof. If Z (s) and the lossless two port are defined by

m + n

Zn<s> = m (A1)0 iru + n„ '

and t(s) = (A2)

respectively where t(s) is the same as in (8), then Z (s) will be

A(m +nj + B(m2+n )
Z1(S) = C(m +n^) +D(m2+n2) (A3)

If there is no cancellation in Ev Z , then

T = (mm - n_n_) (AD - BC) = T^ (AD - BC)(A4)Zl 12 12 ZQ

In this case the zeros of T are included among those of T .It
Zo Zl

must be shown that if there are cancellations, the cancelled factors

must be only those of AD - BC.

The proof is carried out in two steps.

(1) T has a zero of nth order at s = -s_ . but
Z0 °

AD - BC 4 0 at s = -s . (A5)
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To prove that Z (s) also has a t-zero at s = -srt of order n is
1 °

equivalent to proving that there is no cancellation of the factor (s+s )

between the numerator and the denominator of Z (s) or equivalently,

to prove that at s = -s , the numerator and the denominator of Z (s)

are not simultaneously equal to zero. At s = -s , m , m , n and n
U 1 C> 1 £

are not all zero. Let n 4 0 . (By a similar approach, each of the

others in turn can be assumed 4 0.)

In (A3) replace n? by the equation

mm

n_ = for s = -srt (A6)
2 n, 0

(A3) becomes

(An +Bm )(m +n )

Z1("S0) =(Cn1+Dm2)(m1+n1) (A7)

We will prove by contradiction that both the numerator and the denomi

nator will not simultaneously be zero.

At s = -s , if (m +n ) = 0 then from (A3), (m_+n?) = 0 also.

This means that there must be a common factor (s+s ) between the

numerator and the denominator of Z (s) which contradicts the as

sumption. Next, if

An + Bm2 =0 (A8)

Cn + Dm = 0

(Note that n. 4 0.) For this set to have a solution requires that

AD- BC = 0 (A9)
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which contradicts (A5). Hence, no cancellation can take place for this

case and Z will have an nth order to zero at s = -s .

(2) T has a zero of the nth order at s = -s but AD - BC also
Z0 " °

has a zero at s = -s to mth order. In this case, cancellations are

certainly possible. What will be shown is that T must always have
Zl

a zero at s = -s at least to the nth order.

In the proof, we need to decompose the lossless two-port N into

m + 1 cascaded sections. To justify the scheme, a previous re suit by
5

Obno is given below with slight modifications.

"A lossless two-port N is completely determined up to within.a

possible gyrator at the output and a twist of the output leads by

r* , ^ D + B
2 ' = C + A a strict right-half plane zeros of AD - BC. "

In the statement, Z (s) is defined as in Fig. 2. To determine N,

we realize Z (s) as a cascade of Darlington—E sections, one for each

factor (s+sQ) of AD - BC. Since there is a factor (s+s )m, we end
up with m + 1 sections as shown in Fig. Al, where the first one con

tains all the other transmission zeros.

18 < r*- Z0(s)

Z2(s)

Fig. A 1
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In Fig. Al ,
t. =

i

A. B.
i 1

C D. . . _ _
i i / l = 1, 2, . . . m

is the corresponding polynomial chain matrix of the ith section.

Z (s) is defined in Fig. Al ; also

A.D. - B. C.= (s+s0)(s+s0)(s-s0)(s-s0)

and AoDo-Bo V° at s="so

By Oono's theorem, either

or

Z^s) = K Z^s)

z1*(s)= _!_1 KZ^s)

Hence, T_# and T have the same zeros.

zi zi

,m,
Let us first consider Z (s) as shown in Fig. A2,

*>>
Fig. A 2

-52-
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From (All), A D -B C = 0 at s = -s„
m m m m 0

but -j=- (A D -B C )
ds m m m m

4 o.
s = -s.

Now we prove that the cancellation of the factor (s+s ) in

A Z +B
,_m _ m 0 m
Z0(S)~ C Z +D

m 0 m

can at most be of the first order.

(A15)

(A16)

(A17)

.m
For both the numerator and the denominator of Z to equal zero,

it is necessary that

B

Zrt + A
0 A

m

m

D

zo + c
m

m

= 0 (A18)

s = -s.

= 0 (A19)

s = -s.

since A (-s.) 4 0 and C (-s.) 4 0 . If the numerator and denominator
m 0 m 0

were to have a second order zero at -s , it would be necessary to have

£<Z0<*»+i(^) = 0

s = -s

(A20)

dT<V'» +s(^) = 0

s = -s

(A21)
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By subtracting these two, there results,

= 0
d / m m

dslA " C
\ m m

s = -s

which implies

-f- (A D -B C )
ds m m mm

s = -s,

(A22)

= 0 (A23)

which contradicts (A16). So, a second order zero is not possible.

We can conclude thattfor each section, at most a first order cancella

tion can take place, no matter what Z (s) is. It follows that for m

cascaded sections in Fig. Al, at most an mth order cancellation can

take place. For the last section,

ArtD„ - B„ Crt
0 0 0 0

4 0
s = -s

(A24)

0

we then can use the result established in part I to see that no further

cancellation can take place for s = -s .

*
Since the maximum possible order of the t-zero of Z at s = -s

equals n + m, and at most an mth order factor is cancelled, T

has at least an nth order zero at s = -s . Q.E.D.
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APPENDIX B

Conditions of Theorem 1.

The Laurent series expansions around s.(s , s or other frequen

cies) for the following functions are given by

ZJs) = a (s-s.)"m + a . _ .. (s-s.)~lm~ + . . . + aft + a.(s-s.) + . . .
0 -m i' -(raf-1) 1 Oil

Zn(-s) =b (s-s.)'n +b . _. (s-s.f^"^ +. . . +bn +b.(s-s.) +. . .
0 -n i -(n-1) i Oli

- '4>r =c-k(s-si)"k+c-(k-i)(s-si)"(k"1) +-••+c0 +c1(S-si) +...

p(s) =d_£ (s-s.)"1 +d_(i-1) (s-8.)"(i"1) +. . . +dQ +dx (s-s.) +. . .

Z?(s) = k (s-jco.) + k + . . . where k is real and positive.
Ct — JL 1 U — i.

Theorem 1.

Let Z (s) be a given rational impedance which may be either

active or passive but non-Foster. Then

Zn(s) + Z (-s)

Z2<S>= l-p(s) " Z0(S)

is a positive real function and Z (s) + Z (s) 4 0 for Re s > 0, except

for degenerate cases, if and only if p(s) satisfies the following three

conditions

Condition 1(a) : In the RHP, 1 - p(s) is not zero except at a

Ev Z (s) zero s or order r or possibly at poles of Z (s). Th

latter case will be included in Condition 3. In the former case,
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do = co = x

and if Z (s ) is regular,

d = 0, i=l, 2, . . . , r - 1

And if Zfs ) is a pole of order m
Or r

and

d. = c. = 0 , i=l, 2, . . ., r + m-1

d. = c. ; i=r + m,...,r + 2m - 1
li

Condition 1(b) : On the jco-axis, the function 1 - p(s) may have a first

order zero at jco , which is neither a Ev Z zero nor a pole of

ZQ(s). Then

p(s) = 1 + dx (s-jcoQ) + . . .

where d is real and

Re Z (jco)

1

At a zero of Ev Z (s) , jco , of order r ,

0 0 '

and if Z (jco ) is regular,

d. = 0 , i = 1, 2, . . . , r - 1

and d 4 0 (if degenerate)
r-1
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And Z (jco ) is a pole of order m ,

and

and

d. = c. = 0 , i = 1, 2, . . . , r + m - 1

d. = c. , i=r + m, r + m + 1, ..., r + 2m - 1

d = c - k c . (if degenerate)
r+2m-l r+2m-l -1 r+m/a-m

where k is real and positive.

Condition 2: On the jco-axis , | p(jco) | satisfies the following

|p(jco)| >1 if Re (ZQ(jco)) <0

|p(jco)| < 1 if Re( ZQ(jco)) >0

Condition 3(a): In the open RHP, p(s) is analytic except at s ,
It

which is a pole of Z (s) of order m and is a pole of Z (-s) of order

n, m, n > 0. Then

d. = 0, i < m - n - 1
i

f Zm-n+q
if m>n, (m-n=l)
and c

and d. =.. = c. , i = n - n, m-n + 1 . . . J
ii a

m-n+i=0,

i=l, 2, . . . q

m - n (if m>n)

2m -n -1 (if m<n)

and if m = 0 , the second equation is not needed.

Condition 3(b): On the jco-axis, p(s) is analytic. At s = jco

which is a pole of Z (s) and Z (-s) of order m, we have
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d. = c. , i = 0 , 1, . . . m - 1
i l

and d , = c , + k , (1-c )/
m-1 m-1 -1 0' a (if degenerate)

-m ° '

and if

c = 1 and c. = 0, i = 1, 2, . . . q

d. = c. , i = 0, 1, . . . m + q
li ^

d , = c , - k , c,, .
m+q m+q -1 1+q /

a
-m

and if m = 1

coa-i+k-i
d0 = —a—+d (degenerate)

and if m = 1 and c = 1, d = c = 1 and

a c

-11
d. =

1 a +k

where k is real and positive .
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