Copyright © 1966, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

SOME COMPUTER PROGRAMS USEFUL IN ELLIPSOMETRY

•

ei

by

W. H. Oldham

Memorandum No. ERL-M173 26 August 1966

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

Manuscript submitted: 14 June 1966

R

-

₽

The research reported herein was supported wholly by the Joint Services Electronics Program (U. S. Army, U. S. Navy, U. S. Air Force) under Grant No. AF-AFOSR-139-66.

SOME COMPUTER PROGRAMS USEFUL IN ELLIPSOMETRY

Because of the tedious and often transcendental nature of the computations necessary to reduce ellipsometric data, a series of programs have been developed. All but one are written in Fortran IV language as implemented on the Berkeley DCS (IBM 7090) system, the exception being a Quiktran program.

In ellipsometry, one measures the effect of reflection from a surface on the two components (polarizations) of an incident light beam. In particular, the ratio of the two complex reflection coefficients R_p and R_s for light polarized with the electric vector in and normal to the plane of incidence, respectively, is defined as tan $\Psi e^i \Delta$. In the usual experimental scheme Ψ and Δ are essentially read directly from the instrument settings.¹ The computational task then is to relate Ψ and Δ to the properties of the reflecting object. If we model this object as consisting of a semi-infinite solid with one or more homogenous films of various (constant) thicknesses, the classical theory of optics relates Ψ and Δ to the complex indices of refraction of the substrate and films, the thicknesses of the films, and the other independent variables,

namely the angle of incidence, the index of refraction of the immersing medium (usually air), and the wavelength of light used in the measurement. Thus, there exist two equations ¹

$$\Psi = f (n_{s}, n_{F1}, n_{F2}, \dots, n_{Fn}, t_{F1}, t_{F2}, \dots, t_{Fn}, \varphi, n_{1}, \lambda),$$
(1)

$$\Delta = g(n_{s}, n_{F1}, n_{F2}, \dots, n_{Fn}, t_{F1}, t_{F2}, \dots, t_{Fn}, \varphi, n_{1}, \lambda).$$
(2)

The essential difficulties may be stated as:

1. The functions f and g are extremely tedious to compute involving numerous operations on complex numbers (an average of 10^{-2} sec are required per computation of Ψ and Δ on the IBM 7090 computer).

2. The inverse functions f^{-1} and g^{-1} are known only for the case of a film-free substrate, thus one must either resort to iterative guessing schemes or to graphical methods in order, for example, to solve for n_{F1} and t_{F1} given the other independent variables and having measured Ψ and Δ .

3. If more than two of the independent variables are unknown, then a single measurement of Ψ and Δ is insufficient information to determine the unknowns. Obviously, several measurements at various wavelengths or angles of incidence, etc. could be made and

-2-

a self-consistent solution could be found. However, certain difficulties must be overcome:

a. The method may be too insensitive to discriminate when using certain variables, e.g., angle of incidence.²

b. Immense amounts of information must be scanned if even only three unknowns exist, e.g., suppose one seeks the real film thickness t and the real and imaginary parts of the index of refraction $\underline{n = ik}$ of a thin film, with all other variables known. One could measure $\underline{\Psi = \Psi(\lambda)}$ and $\Delta = \Delta(\lambda)$ at various wavelengths and proceed as follows: Assume k=0, and plot Ψ and Δ vs t for various values of n. At the point on the Ψ , Δ plane where $\Psi = \Psi(\lambda)$ and $\Delta = \Delta(\lambda)$, we have a possible solution k=0, $t=t_{0}$, $n=n_{0}$. Now one repeats the process assuming $k=k_{1}$ which yields t_{1} , n_{1} . Doing this many times one may plot n or t vs k. The whole process is repeated for a different wavelength, and the second plot of n or t vs k is prepared, and the intersection of the two plots would yield the correct values of n, t, k. (Other methods are possible.)²

The above difficulties in data reduction made it necessary to prepare programs so that interesting films could be examined . Another rather complete program in existence is described by McCrackin and Colson.² It was implemented here by R. S. Muller but proved unsatisfactory because of its failure to find a satisfactory

-3-

solution to the third problem discussed above. Rather than patch this program to our needs, T. I. Kamins and R. S. Muller wrote two programs in Fortran IV to compute and plot Δ and Ψ from Eqs. (1) and (2) for the case of a single film. These programs have since been slightly modified and only the modified versions are described here. The remaining programs were written as needed for various other tasks described. All certainly are "patched" and undoubtedly slower than optimum, but insofar as is known are completely debugged.

PROGRAMS

Program "plot" (1) - Computes \triangle and Ψ for single film on a substrate.				
Program "plot" (2) - Computes \triangle and Ψ for two films on a substrate.				
Program "graph" - Computes and plots (CAL COMP PLOTTER)				
Δ and Ψ for a single film on a substrate.				

Program "index" - Computes the substrate index of refraction from a measurement of Δ and Ψ .

Program "Pfeiff" - Quiktran program to compute substrate index of refraction from a measurement of Δ and Ψ .

Program "Optmin" - Computes the film index of refraction by a graphical method for absorbing or non-absorbing films.

-4-

DESCRIPTION OF THE PROGRAMS (all except Pfeiff in Fortran IV)

PROGRAM "PLOT" (Jan. 17 version)

This program computes Ψ and Δ for a system consisting of a film with a complex index of refraction N2 and thickness(es) <u>THICK</u>, <u>THICK + ALPHA</u>, <u>THICK + 2 ALPHA</u>...<u>THICK + N ALPHA</u> on a substrate with a complex index of refraction N3 in an immersing medium with a complex index of refraction N1. The angle of incidence is PHIII and the wavelength LAMBDA. As may be seen from the listing, the computation is divided into three parts:

- i. a section that prints headings, reads data cards, and defines the number of computations (N)
- ii. a subroutine that computes the interfacial reflection coefficients, and
- iii. a subroutine that computes and prints Ψ and Δ .

The INPUT DATA should be in the form of:

PHI11 (11 - 20)

LAMBDA (11 - 20)

- N1 (11 20 real, 21 30 imag.)
- N3 (11 20 real, 21 30 imag)
- N2 (11 20 real, 21 30 imag.), THICK (41 50), ALPHA (61 70), N (76 - 80)

N2 THICK, ALPHA, N 11 11 11 11 11 11 11 11 11 N2 11 11 11 BLANK PHI11 LAMBDA

etc.

The program reads another N2 card after a complete set of Ψ and Δ for the various thicknesses is computed and proceeds to compute another complete set for each N2 card. After a blank card, the program expects to find a complete new data set starting with PHIII. The program halts by running into a \$EOF card, i.e., it runs out of data. The <u>DATA FORMAT</u> is all real F10.0 except N which is integral; thus, decimals and signs (imaginary parts of the indices of refraction are zero or negative) must be put in for the real data.

The computation speed is about 10 ms/computation, i.e., the running time is approximately $0.01 \times N$ sec per N2 card. A sample output is given in Table 1. Binary and source decks are available.

PROGRAM "GRAPH" (May 8 version)

This program is essentially the same as "plot" above except

-6-

ANGLE OF INCIDENCE (PHI11) = 70.	00 DEGREES		
WAVE LENGTH (LAMBDA) = 6328. ANG	STROMS		
INDEX OF REFRACTION OF IMMERSING	MEDĮUM (N1) =	1.0000	0.0000
INDEX OF REFRACTION OF THIN FILM			
INDEX OF REFRACTION OF SUBSTRATE		-0.3000	
INITIAL THICKNESS = 0. ANGST			
THICKNESS INCREMENT (ALPHA) = 1	O. ANGSTROMS		
NUMBER OF INCREMENTS (N) = 400			

THICKNESS	CHANGE IN PHASE WHILE TRAVERSING FILM	PSI	DELTA
(ANGSTROMS)	(SMALL DELTA-DEGREES)	(DEGREES)	(DEGREES)
0.	0.00	10.69	167.78
10.	0.42	10.74	166.09
20.	0.85	10.79	164.42
30.	1.27	10.86	162.76
40 •	1.70	10.93	161.12
50.	2.12	11.01	159.51
60.	2.55	11.10	157.92
70.	2.97	11.19	156.35
80.	3.40	11.28	154.81
90.	3.82	11.39	153.30
100.	4.25	11.50	151.82
110.	4.67	11.61	150.36
120.	5.09	11.73	148.93
130.	5.52	11.86	147.53
140.	5.94	11.99	146.16
150.	6.37	12.13	144.82
160.	6.79	12.27	143.51
170.	7.22	12.41	142.23
180.	7.64	12.56	140.98
190.	8.07	12.71	139.76
200 •	8.49	12.87	138.57
210.	8.92	13.03	137.40
220 •	9.34	13.19	136.27
230.	9.77	13.35	135.16
240.	10.19	13.52	134.08
250 •	10.61	13.70	133.03
260 •	11.04	13.87	132.00
270.	11.46	14.05	131.00
280.	11.89	14.22	130.02
290.	12.31	14.41	129.07
300.	12.74	14.59	128.14
310.	13.16	14.77	127.24
3?0.	13.59	14.96	126.36
330.	14.01	15.15	125.50
340.	14.44	15.34	124.67
350.	14.86	15.53	123.85
360.	15.28	15.72	123.06
370.	15.71	15.92	122.29
380 •	16.13	16.11	121.53
390 •	16.56	16.31	120.80

Table 1.

1

that the results (Δ and Ψ for various thicknesses) are manipulated in a third subroutine and put onto a tape for Calcomp plotting. A plot is produced in the Ψ - Δ plane with thickness as a running parameter along the curve. Several options are available:

 The program will automatically choose its own scale, or alternatively the limits on the coordinates may be specified MINPSI, MAXPSI, MIN DEL, and MAX DEL.

2. A grid may be plotted (automatically scaled) or suppressed. When the value of 1 for NOGRID is encountered, the grid is suppressed.

3. One or more curves may be plotted on the same graph (frame). When a value of 1 for NXTFRM is encountered in the data, the plotter moves one frame.

4. .An "x" is marked on the curve every NTH thickness value,
i.e., at thickness = THICK, thickness = THICK + N x NTH x ALPHA,
etc.

The <u>INPUT DATA</u> should be in the following form: NTH (6-10), MINPSI (16-20), MAXPSI (26-30), MINDEL (36-40),

MAXDEL (46-50), NXTFRM (56-60), NOGRID (66-70) (all integers) PHI 11 (as in "plot")

LAMBDA "

N1 "

N3 "

N2, THICK, ALPHA, N (as in "plot")

N2

N2

BLANK (ONE, TWO, OR THREE BLANKS) NTH PHI 11

etc.

<u>ONE BLANK</u> card has the effect of causing the entire data set (NTH, PHI 11 ... N2) to be reread and another set of curves (according to how many values of N2) to be plotted with the same coordinates, scale, and grid, on the <u>same frame</u>; the NXTFRM option on the first card should be zero.

<u>TWO BLANK</u> cards have the effect of causing the entire data set to be reread and the grid recomputed -- usually then the NXTFRM option on the first card would be one.

THREE BLANK cards have the effect of halting the program.

The computation speed is approximately the same as "plot", i.e., about 10^{-2} sec per point. A sample output is given in Table 2 and Fig. 1. Binary and source decks are available.

-9-

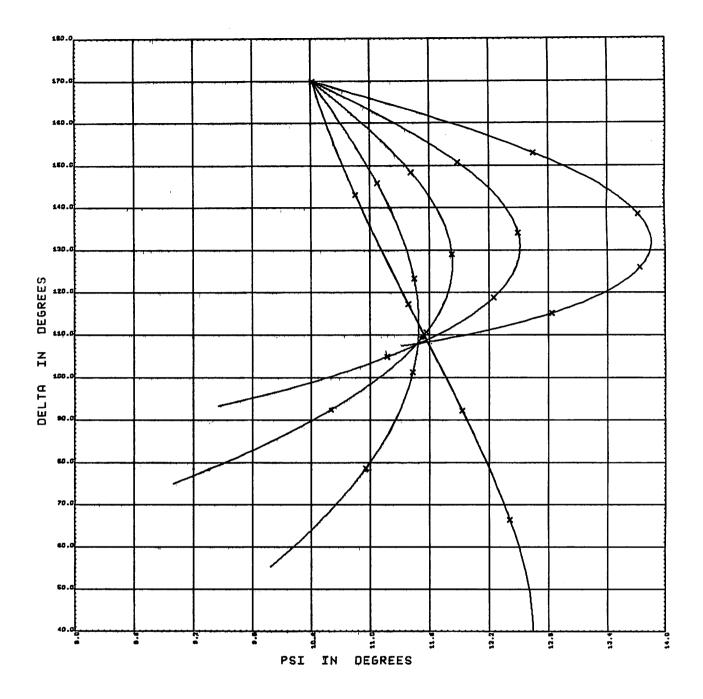


Fig. 1.

•

INDEX OF REFRACTION	OF IMMERSING MEDIUM (N1) = OF THIN FILM (N2) = 2.7	000 -0.0944	000
INDEX OF REFRACTION		1300 - 0.2400	
INITIAL THICKNESS =	6328. ANGSTROMS		
THICKNESS INCREMENT		······	
NUMBER OF INCREMENTS	(N) = 100		
	CHANGE IN PHASE		
THICKNESS	WHILE TRAVERSING FILM	PSI	DELTA
(ANGSTROMS)	(SMALL DELTA-DEGREES)	(DEGREES)	(DEGREES
14000100000		(849)/2407	
0.	0.00	10,42	169.91
5.	0,72	10.44	168.53
10	1.44	10.46	167.15
15.	2.16	10.48	165.78
20.	2.88	10.50	164.41
25.	3.60	10.52	163.04
30.	4.32	10.54	161.68
35.	4•32 5•04	10.54	160.32
40	5.76	10.58	158.96
			157.61
45 .	6.48	10.60	156.26
50.	7,20	10.62	
55.	• •	10.64	154.92
<u> 60</u> •	8,64	10.67	153.57
65.	9.36	10.69	152.24
70.	10.08	10.71	150.90
75.	10.80	10.74	149.57
80.	11.52	10.76	148.24
85.	12.24	10.79	146.92
90.	12.96	10.81	145.60
95.	13.68	10.84	144.28
100.	14.40	10.86	142.97
105.	15.12	10.89	141.66
110.	15.84	10.91	140.35
115.	16.56	10.94	139.05
120.	17.28	10.96	137.74
125.	18.00	10.99	136.45
130.	18.72	11.02	135.15
. 135.	19.44	11.04	133.86
140.	20.16	11.07	132.57
145.	20.88	11,09	131.28
150.	21.60	11.12	129.99
155.	22.32	11.15	128.71
160.	23.04	11.18	127.43
1.65.	23.76	11.20	126.15
170.	24.48	11.23	124.87
175.	25,20	11.26	123.60
180.	25,92	11.28	122.33
195.	26.64	11.31	121.06
190.	27.36	11.34	119.79
1.95.	28.08	11.37	

4

39

•

•

Table 2.

PROGRAM "PLOT (2)" (Mar. 7 version)

This program is also a variation on "PLOT"; it computes Ψ and Δ for a system consisting of <u>two</u> films and a substrate. All parameters are as in plot except that the bottom film complex index of refraction is N4 and thickness is T4. N2 is the complex index of refraction of the top film and its thickness is incremented as in "PLOT."

The INPUT DATA should be in the following form: PHIll (as in "plot") 11 LAMBDA NI 11 11 N3 N4 (11-20, 21-30), Tr (31-40) (F10.0 format - use decimals and signs) N2 (as in "plot") N2 11 N2 BLANK PHIII LAMBDA etc.

A blank card has the effect of causing the program to reread an entire new data set.

The computation speed is the same as "plot." A sample output is given in Table 3. Binary and source decks are available.

PROGRAM "INDEX" (Feb. 20)

This program computes the substrate index refraction from the measured values of Δ and Ψ on film-free sample.

The <u>INPUT</u> <u>DATA</u> are on one card in the form of PSI (11-20), DELTA (31-40), PHI (51-60) (all a're real and should include a decimal.)

The computation will be made for as many data cards as are in the deck. A sample output is given in Table 4.

PROGRAM "PFEIFF" (Jan. 21)

This is a QUIKTRAN program which computes the substrate index of refraction from the measured values of Δ and Ψ for a film-free sample.

To use the program, one first gets the QUIKTRAN console in COMMAND mode (indicated by a - READY reply) then types (TAB)^{*} LOAD (PFEIFF) and upon receiving a + READY reply, may initiate execution by typing (TAB) START (0), at which point the computer will request data.

^{* (}TAB) means hit the TAB key.

BOTT LAYER INDEX=	2.50000 -2.10000		
	2.0000		
	(PHI11) = 70.00 DEGREES		
WAVE LENGTH (LAMBDA)	•	1 0000 0 0000	
	OF IMMERSING MEDIUM (N1) =		
INDEX OF REFRACTION		000 0.0000	
INDEX OF REFRACTION		860 -0.4372	
INITIAL THICKNESS =	O. ANGSTROMS (ALPHA) = 10. ANGSTROMS		
NUMBER OF INCREMENTS			
NOMBER OF INCREMENTS			
122.		36.72	170.54
TTT	CHANGE IN PHASE	201	051 74
THICKNESS	WHILE TRAVERSING FILM	PSI (DECREES)	DELTA
(ANGSTROMS)	(SMALL DELTA-DEGREES)	(DEGREES)	(DEGREES
0.	· · · · · · · · · · · · · · · · · · ·	18.83	137.29
10.		19.04	135.35
20.		19.26	133.45
30.		19.49	131.59
40.		19.73	129.77
50.		19.97	127.99
60.		20.22	126.25
70.		20.47	124.55
80,		20.72	122.89
90.		20.98	121.27
100.		21.25	119.69
110,	••••••••••••••••••••••••••••••••••••••	21.51	118.14
120,		21.78	116.63
130. 140.		22.05 22.33	115.15 113.71
150.		22.60	112.30
160.		22.88	110.92
170.		23.16	109.58
180.		23.43	108.27
190.		23.71	106.99
200.		23.99	105.74
210.		24.28	104.52
220.		24.56	103.32
230.		24.84	102.16
240.		25.12	101.02
250,		25.40	99.91
260.		25.68	98.83
270.		25.96	97.77
280.		26.25	96.74
290,		26.53	95.73
300.	, , , ,	26.81	94.75
310. 320.		27.09 27.37	93.79
320.		27.65	92.85
340.		27.93	91.94 91.05
3400			
350.		28.21	90.18

.

٦

•

-

Table 3.

DELTA = 133.04000 ANGLE OF INC= 70.00000 ANGLE OF INC= 70.00000 HE SUBSTRATE INDEX DF REFRACTION IS 0.98805 4J -5.73166 DELTA = -0.00000 DELTA = -0.00000 MAGLE OF INC= -0.00000 THE SUBSTRATE INDEX OF REFRACTION IS -0.00000 4J 0.00000 THE SUBSTRATE INDEX OF REFRACTION IS -0.00000 7S 0.0000 7S 0.00000 7S 0.000000 7S 0.00000 7S 0.000000 7S 0.000000 7S 0.00000 7S 0.000000 7S 0.00000 7S 0.000000 7S 0.0000000 7S 0.000000 7S 0.0000000 7S 0.000000 7S 0.000000 7S 0.000000 7S 0	PSI	= 41.50000	0000			
LE DF INCE 70.0000 SUBSTRATE INDEX DF REFRACTION IS 0.98805 +J -5.73166 = -0.00000 TA = -0.00000 LE OF INCE -0.00000 LE OF INCE -0.00000 SUBSTRATE INDEX DF REFRACTION IS -0.00000 SUBSTRATE INDEX DF REFRACTION IS -0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 H CALLED. ERROR TYPE = D59 EN CALLED. ERROR TYPE = D59 EN CALLED. ERROR TYPE = D59 EN CALLED. ERROR TAKE. CALLS IN REVERSE UNDEN. ERROR TAKE.	DELTA		4000			
SUBSTRATE INDEX OF REFRACTION IS 0.98805 +J -5.73166 = -0.00000 = -0.00000 TA = -0.00000 -0.00000 LE OF INC= -0.00000 0.000000 -J SUBSTRATE INDEX OF REFRACTION IS -0.00000 -J 0.000000 EAC -0.00000 -J 0.00000 -J SUBSTRATE INDEX OF REFRACTION IS -0.00000 -J 0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 -J 0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 -J 0.00000 SUBSTRATE INDEX ERROR TACE. CALLS IN REVERSE UNDER. ERROR TACE. CALLS IN REVERSE UNDER. OF INPUT DATA B TERMINATED. 1134 STENNINATED. 203 14134 101 D OF TRACE 203 15461 15461 RODD 50 15461 15461 15461 RODD 50 13101 001 15461 D OF TRACE A 20001 XA= 60001 XA= 60001 XA= 60001 XA= 60001 XA= 60001 XA= 60001 XA= 60	GLE OF		0000			
= -0.00000 = -0.00000 TA = -0.00000 LE OF INC= -0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 SUBSTRATE INDEX OF REPRACTION IS -0.00000 SUBSTRATE INDEX -0.00000 SUBSTRATE -0.0000 SUBSTRATE -0.0000 SUBSTRATE -0.0000 SUBSTRATE -0.00000 SUBSTRATE -0.00000 SUBSTRATE -0.00000 SUBSTRATE -0.00000 SUBSTRATE -0.00000 SUBSTRATE -0.00000 SUBSTRATE -0.000	E SUBST	RATE INDEX	0.98805	-5.73166		
= -0.00000 TA = -0.00000 LE OF INC= -0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 ↔ J 0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 ↔ J 0.00000 SUBSTRATE INDEX OF REFRACTION IS -0.00000 ↔ J 0.00000 ERROR TYPE = D59 O F INPUT DATA B TENUIT DATA B TENUIT DATA B TENUIT DATA ERROR TARCE. CALLS IN REVERSE ORDER. CALLING TEN OR TEN OR CALLING CALLING TEN OR TEN OR CALLING TEN OR CALLING TEN OR CALLING TEN OR CALLING TEN OR CALLING TATA CALLING						
= -0.0000 OF INC= -0.00000 UBSTRATE INDEX OF REFRACTION IS -0.00000 →J 0.00000 UBSTRATE INDEX OF REFRACTION IS -0.00000 →J 0.00000 CALLED. ERROR TYPE = D59 CALLED. ERROR TYPE = D59 CALLED. ERROR TYPE = D59 CALLED. ERROR TYPE = D59 FINDUT DATA TENNINATED. ERROR FRACE. CALLS IN REVERSE URDER. ERROR FRACE. CALLS IN REVERSE URDER. CALLING TENNINATED. FIND FI	PSI		0000			
INC= -0.00000 RATE INDEX DF REFRACTION IS -0.00000 -J 0.00000 LED. ERROR TYPE = D59 LED. ERROR TYPE = D59 INDUT DATA INDUT DATA INDET LIN REVERSE URDER. DR FRACE. CALLS IN REVERSE URDER. CALLING 1414 ROUTINE LINE NO. 14134 FIOS 50 14134 FIOS 50 14134 ROUTINE LINE NO. 14134 FIOS 50 14134 FIOS 50 14134 ROUTINE LINE NO. 14134 FIOS 50 50000 7845 5000 7855 50000 7855 50000 7855 50000 5855 500000000	DELTA		0000			
SUBSTRATE INDEX DF REFRACTION IS -0.00000 +J 0.00000 M CALLED. ERROR TYPE = D59 DF INPUT DATA FERMINATED. FERMINATED. ERROR FRACE. CALLS IN REVERSE URDER. ERROR FRACE. CALLS IN REVERSE URDER. ERROR FRACE. CALLS IN REVERSE URDER. CALLING FENDIN FOO TENDIN FOO DF TRACE. CALLS IN REVERSE URDER. ERROR FRACE. CALLS IN REVERSE URDER. FROD DF TRACE. CALLS IN REVERSE URDER. FROD DF TRACE. FROD DF TRACE. FROD FROD DF TRACE. FROD DF TRACE. FROD DF TRACE. FROD DF	ANGLE OF		0000			
I CALLED. ERROR TYPE = D59 OF INPUT DATA TERMINATED. ERROR FRACE. CALLS IN REVEASE URDER. ERROR FRACE. CALLS IN REVEASE URDER. CALLING ABSOLUTE CALLING I ABSOLUTE CALLING I ABSOLUTE I ABS	THE SUBST	INDEX	DF REFRACTION IS -0.00000 +J	0•0000		
DF INPUT DATA TERMINATED. FRRUR FRACE. CALLS IN REVERSE URDER. CALLING CALLING CALLING FRDD FRDD FRDD FRDD FRDD FRDD FRDD FRD	XEM CALI	LED. ERROR	ti ti			
RACE. Calls in Reverse urder. LING IFN DR ABSOLUTE UTINE LINE ND. LOCATION UTINE LINE ND. LOCATION IOS 14134 IOS 50 14134 RDD 50 15461 NDEX 1 3101 EXIT XR1= 63643 XR2= 00001 XR5= 00000 XR6= 00000 ION 13JDB BCDCS 00026.16 XR3= 00001 XR5= 00000 XR6= 00000	END OF IV JOB TERM	NPUT DATA Inated.				
UTINE LINE NO. LOCATION 105 203 14134 100 50 15461 NDEX 1 3101 NDEX 1 3101 EXIT XR1= 63643 XR2= 00001 XR4= 67267 XR3= 00001 XR5= 00000 XR6= 00000 FDN 13JDB BCDCS 00026.16	ERRI		REVERSE ORDER. Jew or	y		
TOS 203 14134 RDD NDEX 50 15461 NDEX 15461 SIO1 3101 EXIT XR1= 63643 XR2= 00001 XR4= 67267 XR3= 00001 XR5= 00000 XR6= 00000 TON 13JDB BCDCS 00026.16		ROUTINE				
RDD NDEX I 15461 3101 EXIT XR1= 63643 XR2= 00001 XR4= 67267 XR3= 00001 XR5= 00000 XR6= 00000 FDN 13JDB BCDCS 00026.16		FIOS				
EXIT XR1= 63643 XR2= 00001 XR4= 67267 XR3= 00001 XR5= 00000 XR6= 00000 fon 13Job BCDCS 00026.16		FRDD INDEX	1			
T XR1= 63643 XR2= 00001 XR4= 67267 XR3= 00001 XR5= 00000 XR6= 00000 13J0B BCDCS 00026.16	ND OF T	RACE				
13JOB	ERI	EXIT	63643 XR2= 00001	XR3= 00001	XR6= 00000	XR7= 00000
	END EX					

.

c

Table 4.

The <u>INPUT DATA</u> are typed in format (TAB) PSI/DELTA/PHI; all should include decimals. A sample output is shown in Table 5.

PROGRAM "OPTIMIN" (Mar. 23 version)

This program is an attempt to attack data-handling problem (3) mentioned above. Assuming one knows the substrate index of refraction and either (a) the real part of the film index, or (b) the imaginary part of the film index, one computes from the measured Δ and Ψ values the thickness and (a) the imaginary film index or (b) the real film index. In practice, one has neither situation (a) nor (b) thus one computes a number of sets n_1 , k_1 , t_1 ; n_2 , k_2 , t_2 ; which satisfy the measurements. The "correct" set may be found by using additional information, e.g., an independent measurement on a film of a different thickness.

The method of solution is essentially graphical and may best be described by an example. Suppose one has measured the values Δ_0 and Ψ_0 and wishes to assume that the imaginary part of the film index is zero. Furthermore, one believes that the real film index n_f lies between 1.0 and 4.0. The program computes the $\Delta - \Psi$ plot vs thickness (a curve on the $\Delta - \Psi$ plane) for each of $n_f = 1, 0,$ $n_f = 1, 0 + \alpha, \quad n_f = 1, 0 + 2\alpha, \ldots, \quad n_f = 4.0$, where α is chosen by the user. It then decides both which curve comes closest to $\Delta_0, \quad \Psi_0$, and what point on this curve is closest, i_{μ}, e_{μ} , the real part of the index n_f and

-16-

FULL QUIKTRAN SERVICE AVAILABLE READY 001 CONSOLE 101. .READY LOAD(PFEIFF) 129. +READY START(0) 107. =0 02 107. = 2 107. = 3 107. = 4 107. = TAB AND ENTER PSI DELTA PHI IH DECIMAL DEGREE IN FORMAT X. /Y. /Z. 5 108, =0 03 PSI DELTA PHI 109. =1 00 11,1/161,/70, 126. =0 99 126, = 2 126, = 3 RESULTS ARE N к NK 127. =0 00 3,83405 0,12501 0,47930 107. =0 02 107, = 2 107, = 3 107, = 4 107, 😑 TAB AND ENTER PSI DELTA PHI IN DECIMAL DEGREE IN FORMAT X. /Y. /Z. 5 108. **=0 03** 109. **=1 00** PSI DELTA PHI 11,1/170./70, 126, =0 99 126. = 2 126, = 127, =0 00 3 RESULTS ARE N ĸ NK 3,92071 0.06681 0,26195 107. =0 02 107. = 2 107, 3 107. = 4 107, = TAB AND ENTER PSI DELTA PHI IN DECIMAL DEGREE IN FORMAT X. /Y. /Z. 5 108, =0 03 PSI DELTA PHI 109. =1 00 11,1/172, 70, 126. =0 99 126, = 126, = 2 **3 RESULTS ARE N** ĸ NK 127. =0 00 3.93308 0.05356 0.21067 107, =0 02 107. = 2 107. = 3 107. = 4

;USER(BE3306)

Table 5.

the thickness t_f . It then reduces the area searched on the $\Delta - \Psi$ plane by reducing the range of thickness and the index searched by a factor of two and continues the search on a finer scale. It will do this as many times as desired.

Thus, in practice, one selects:

(a) The range of thickness values to be examined,

(b) The increments of thickness (i.e., the "distance" between data points for a given curve on a $\triangle - \Psi$ "plot"),

(c) The value of either (i) the real part of the film index of refraction or (ii) the imaginary part of the film index of refraction, and correspondingly,

(d) The range of either (i) the imaginary index or (ii) the real index,

(e) The increments in either the (i) imaginary index or (ii) the real index, i.e., the "distance" between "curves" on the $\triangle - \Psi$ "plot,"

(f) The reduction factor for the thickness increments on the second and following pass,

(h) The number of passes, and

(i) The printout options (to be described).

The actual method of selection of the best index and thickness involves the comparison of Δ_0 , Ψ_0 with discrete points (and lines drawn between them) on the Δ , Ψ plane. Thus, the thickness

-18-

increments must not be too large or the program will not see the curvature in the $\Delta - \Psi$ locus and fail to converge.

The <u>INPUT DATA</u> should be arranged as follows: PHI 11 (11-20), LAMBDA (31-40) N1 (11-20, 21-30), N3 (41-50, 51-60) PSI 0 (11-20), DELTAO (31-40) THICK (11-20), D THICK (13-40), F THICK (51-60) P1 (11-15), P2 (16-20), P3 (21-25), P4 (26-30), P5 (31-35) N2 (11-20, 21-30), FN2R (31-40), FN2I (41-50), DN2R (51-55),

DN2I (56-60), DT (61-65), DN (66-70), L (71-72) N2 etc. . N2 etc. N2 etc. BLANK PHI 11 etc.

PHI ll is the angle of incidence (decimal degrees).

LAMBDA is the wavelength (real, include decimal).

- N1 is the index of refraction of the immersing medium (complex, include sign and decimal).
- N3 is the index of refraction of the substrate (complex, include sign and decimal).

- PSIO and DELTAO are the measured Ψ and Δ values (decimal degrees).
- THICK and F THICK are the beginning and end of the thickness range, and

D THICK is the thickness increment (all are real, include the decimal). Pl is a debug print option and should be left blank.

P2 controls the printing of the individual Δ , Ψ values for each thickness; if P2=1 (integer) a list of Δ and Ψ vs thickness is produced as in program "plot"; if P2=0, this listing is not made. The value of the error, i.e., the distance to the Δ_0 , Ψ_0 point, is also printed.

P3 is a debug printing option and is normally left blank.

- P4 controls the printing of the output array. See sample output, Table 6. If P4 is 0, the array is printed; a 1 (integer) will suppress it.
- P5 controls the printing of nearby output arrays, i.e., the next nearest values of the film index to the optimum. A zero calls for the printout; a l suppresses it. One notes that the usual situation is all zeros for Pl - P5, except occasionally when one wants everything printed and therefore opts P2=1, all others are zero. (Thus a blank card will suffice for this card.)
- N2 specifies the initial value of N2 (complex, includes decimals and signs).

-20-

	300.00	13.15	116.17	9.65
	350.00	12,87	109.88	2.08
	400,00	12.38	101.91	6.98
	450.00	11.71	95,29	12.93
	500 <u>+00</u>	10.84	89.13	19.70
	THE VALUES OF	THE PARAMETERS AT THE	OPTIMUMMINUSONE	INCREMENT VALUE OF N2
FOR THE	FILM INDEX OF	2.90000 -0.90000	THE OPTIMUM THICK	NESS IS 450.00
	THICKNESS	PST	DELTA	ERROR
	350.00	15.18	115.00	10.50
	400.00	14.84	109.65	4.82
	450.00	14,30	104.85	5.96
	500.00	17.61	100.69	9.42
	550,00	12.78	97.32	11.96
	THE	VALUES OF THE PARAMETE	RS AT THE OPTIMUM	- PLUS ONE INCREMENT VALUE OF N
FOR THE	FILM INDEX OF	2.90000 -(.30000	THE OPTIMUM THICK	NESS IS 300.00
	THICKNESS	PSI	DELTA	ERROR
	200 +00	11,40	127.24	19.32
	250.00	11.29	117.16	9.37
	300+00	11.02	107.07	1.59
	350,00	10,59	96.82	12.26
	400.00	10.00	86.28	23.40

.

*****THE VALUES OF THE PARAMETERS AT THE OPTIMUM VALUE OF N2 ARE TABLED HERE****

NGLE OF INCIDENCE = 7	0.	-		
WAVELENGTH = 5	328.			•
AIR INDEX =	1,00000 0,00000			
SUBSTRATE INDEX =	3-84100 -0.24000			
FOR THE FILM INDEX OF THICKNESS	2.90000 -0.45000 PSI	THE DETIMUM THICKNESS	IS 333.33 FRROR	
300,00	12.07	112,41	4.80	
316,67	11.97	109.57	1.86	
333,33	11.84	106.74	1.61	
350.00	11.70	103.93	4.28	
366,67	11.54	101.13	7.00	
THE VALUES OF	THE PARAMETERS AT THE	OPTEMUMMENUSONE INCRE	FMENT VALUE OF N2	
FOR THE FILM INDEX OF	2.90000 -(.59000	THE OPTIMUM THICKNESS		
THICKNESS	PSI	DELTA	ERROR	
316.67	12.71	112.48	5.52	
	12.60	109.94	2.87	
350.00	12.48	107.42	1.56	
356.67	12+33	104.93	3.91	
383,33	12.16	102.47	6.20	
IHE	VALUES OF THE PARAMETE	RS AT THE OPTIMUM PLU	IS ONE INCREMENT N	VALUE OF N2
FOR THE FILM INDEX OF	2.90000 -1.35000		15 333.33	
THICKNESS	PSI	DELTA	ERPOR	
300.00	11.36	109.06	1.19	
316,67	1).24	105.88	2.55	
334,33	11.11	102.69	5.88	
356.00	10.95	99.48	9.24	
366.67	10.77	96.27	12.63	

HERE WE GO AGAIN WITH A SMALLER MESH

2

÷

3

*

.

Table 6.

FN2R specifies the maximum value of the real part of N2 to be tried and DN2R the increments in the real part of N2.

FN2I and DN2I are similar; normally however only one is varied, e.g., FN2R = Real (N2) and DN2R = 0 or FN2I = Imag (N2) and DN2I = 0. (All are real and should include decimals and signs). DT and DN specify the reduction factor for the thickness and index

increment, respectively, (real, include decimal).

L specifies the number of passes (integer).

Obviously, the fastest procedure in such a search is a binary choice, however it almost certainly would not converge. A satisfactory compromise found here is to use ten thickness and ten index increments, i.e., 100 computations per pass. Then the increments are reduced by 2 or 3 each time, and 4 or 5 passes are made. Thus, if THICK=0; D THICK = 100; F THICK = 1000, N2=2.0 - j2.0, FN2R=2.0, DN2R=0.0, FN2I=0; DN2I=0.2, DT=2.0, DN=2.0, L=5, we will determine the index to within 0.012 and the thickness to within 6. in 500 computations.

The <u>computation</u> <u>speed</u> is about 8ms/point or 4 sec for the above example.

The computations will be made for as many N2 cards as are in a sequence. A blank card will cause the computer to read a complete data set PHI 11 ... etc., and two blanks will halt the program.

A sample output is shown in Table 6. Binary and source decks are available.

-22-

REFERENCES

5

7

1. For a description of the instrument and the method of measurement see:

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and

H. L. Steinberg. J. Research NBS A67, 363 1963.

2. F. L. McCrackin and S. P. Colson in "Ellipsometry in the Measurement of Surfaces and Thin Films" NBS Misc Pab w56, 1963.