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An Approach to the System Identification Problem'

D. J. Sakrison

SUMMARY

The identification or modeling of a given plant or system seems

to be of current interest in regard to control problems. In particular,

attention is often focused upon the case in which the given system is

assumed to be linear and time invariant with a rational, transfer function

whose order is known not to exceed some number n. In this case it is

desirable to estimate the poles and zeros of the transfer function, or,

alternatively, the coefficients of the numerator and denominator poly

nomials. Here we describe a method based on certain results in

stochastic approximation and optimum filter theory. This method is

OJfcA
computationally simple,* has a rate of convergence inversely propor

tional to the observation time. The method requires a knowledge of the

correlation properties of the observation noise.
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I. INTRODUCTION

The identification or modeling of a given plant or system seems

to be of current interest in regard to control problems. In particular,

attention is often focused upon the case in which the given system is

assumed to be linear and time-invariant with a rational transfer function

whose order is known not to exceed some number n. In this case it is

desired to estimate the poles and zeros of the transfer function, or

alternatively, the coefficients of the numerator and denominator poly

nomials. One way of achieving this is through the use of an estimation

method referred to as the instrumental variable method [1, 2]. In this

paper we described an alternate method based on certain results in

stochastic approximation and optimum filter theory. Our method is

computationally simpler than the instrumental variable method, while

also having a rate of convergence inversely proportional to the obser

vation time, in common with the instrumental variable method [2],

Our method requires a knowledge of the correlation properties of the

observation noise, while the instrumental variable method does not.

II. DESCRIPTION OF THE METHOD

We consider the situation shown in Fig. 1. The signal U(t) is

the input to the system, and the signals N (t) and N_(t) represent

measurement noise in the observations of the input and output signals,
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respectively. We assume that these three signals are mutually uncor

rected, stationary, random processes and that N (t) and N (t) are
J. c*

zero mean. Our method requires that the correlation functions of the

processesiare known: we denote these two correlation functions by

<j> (t) and <}> (t), respectively. In many cases, these correlation
nl n2

functions can be determined from a model of the noise based on a

knowledge of its physical origin. In fact, the measurement noise may

often be considered "white" compared to the spectrum of the process

U(t) . If these correlation functions cannot be determined from a

knowledge of the origin of the noise, they can be estimated from obser

vations made in the absence of the system input. The transfer function

of the unknown situation is assumed to be of the form

m

V a sJ
L, n+l+j

H(S) " B[sT n (1)

k=l

Before the identification procedure itself is discussed, it is

useful to consider the configuration to be used in the identification pro

cedure and to derive some relations that exist among the processes

involved. This will provide motivation for the method to be used.

The configuration used in the identification procedure was suggested to
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the author by Professor O. J. M. Smith; results on the convergence of

the procedure follow from some earlier work of the present author on

filter design [3-5]. The identification procedure considered here is

similar to the procedure considered by Ho and Lee [ 6] for the time-

discrete case, but their work contains an oversight. The proof of con

vergence for their method requires that the w (t) sequence in their

appendix be independent for any time shift equal to an integral number of

basic sample times. Thus, the proof of convergence-applies to their

identification procedure only if the same restriction applies to their

co(t) sequence in section II (contrary to their Eq. (2)). As can be seen

from their Eq. (23), this greatly limits the system configurations to

which their method applies. Professor Ho has informed the present

author that the method will still work when the system has no numerator

dynamics.

The configuration used in the identification procedure is shown

in Fig. 2. The transfer functions G^s) and G^s) are given respec-

tively by

m

G,(s) = ) a.
1 Z_j i+n+1

sj
Q(s)

i f k
G2<s> = Q(ir+ L *k Q^y • (2)

j=0 k=l

in which Q(s) is chosen only to guarantee that the response of s /Q(s)

to either N (t) or N (t) has a finite mean-square value. The quantities

a,, j=l, . • ., n+m+1, simply denote generic values that the
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parameters in G (s) and G (s) may take. "We denote by or. the esti

mate of a. that we will generate. Thus, a. denotes simply a variable
J J

nonrandom parameter while a is a random variable. We denote the
J

m+n+1 tuple of parameters (or, a_, . „ ., a .) by the n+m+1
1 2 n+m+1

dimensional vector a, and the n+m+1 tuple of estimates {a , a , . . .,

a ) by the vector random variable a. It is convenient to define
n+m+1 J

the following processes:

Q (t) = response of 1/Q(s) to the process U(t) ,

Q (t) = response of 1/Q(s) totheprocess X(t) ,

Z(t) = response of 1/Q(s) B(s) to the process U(t) ,

P (t) = response of 1/Q(s) to the process N (t) , and

P (t) = response of l/Q(s) to the process N (t) .

L»et us now consider the mean-square value of the "error" signal

E(t) defined in Fig. 2 when the parameters in G and G have the non-

random value a. By simple manipulations it can be shown that this

quantity may be expressed in terms of the above processes as

E{Et ) =m^or) +m^a) +m^or) (3)

in which the functions m , m , and m are given by
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m^a) = E<

m

I;- i P'M
m m

J+k

Z-i Z_. J+n+1 k+n+lv ' -11- T~ x
k _£

j=0 k=0

n

m (a) = E P2«*> +I"k3 P2<*>
k=l dt

and

* (0) +
P2

n

I V"1^
k=l

n n

4> (T)
dTk P2

k d
j+k

I I «, "k^" ^TTU ♦- M
j=l k=l

V+k p;

(4)

T=0

T=0

(5)

T=0

— n m

°x(t) +I "k 3 <V"
k=i dt j=o

—«2

m3(ar) = E

= E<

m

M*.
L-j=0

-I

^ d3 Z(t)
+n+l " "j+n+1J dtj

m n

,J

<*.^ m -^ Q (t)J+n+1 dtj u

J+k

♦ Z ZK-, - a, a.

j=0 k=l

+n+l k j+n+iy dtj+k Z(t)
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Let us now make some observations concerning these functions.

First, note that m (a), m (a), and m Ja) are all nonnegative quad

ratic functions of a and from Eq. (6) we see that

m Ja) = 0 for a = a (7)

in which a is the m+n+1 tuple of true parameter values, (a^ a.^, • • .,

a .). Shortly we state a condition guaranteeing that m (or) is
• m+n+1 3 ~

(strictly) positive definite. In this case, it is possible to show from

previous work on filter optimization [3] that m Ja) is unimodal and

that its gradient satisfies

2 2k H5 - a|| < (grad m^a), a - a) ^ k^ ||or - a|| for some kQ and WQ

0 < kQ ^ k^ < co . (8)

By grad m (a) we mean the m+n+1 dimensional vector whose com

ponents are the partial derivatives of m with respect to the components

of a. The notation ||• || and (•, •) stands, respectively, for the

Euclidean norm and inner product. Equation (7) and inequality (8)

suggest that a gradient-seeking procedure could be used to find the value

a = a if the function m {a) could be observed. Although we cannot

observe the function

-9-



m3(a) =E{Et} - m^a) - m^a) , (9)

2
we can observe E .and mJa) and mJa) are known functions of a.

Further, since E is quadratic in a ,

grad EIe* \ =EJgrad eH . (10)

The random process

Y(t, a) =grad|E2(t) - grad m^a) - grad m^a) (11)

2
can be easily generated since grad E (t) can be formed in a simple

manner from E(t) and the signals P (t), Q (t), P2(t) and Q (t) ,

while grad m (a) and grad m (a) are known linear functions of a.

Moreover, Y (a) is a random variable whose mean value is grad m (a)

Thus a stochastic approximation procedure (in particular the Robbins-

Monro method) which properly averages out the random fluctuations

can be used to estimate a, the value of a for which grad m (a) = 0 .

In particular, one could pick a{0) arbitrarily and generate the

estimate a(t) by the differential equation

liJl1 ='-a(t)Y[t, S(t)] . (12)
dt

-10-



Equivalently, if a{t) were to be generated by digital computation equip-

2
ment, grad E (t) could be sampled periodically (we take the sample

time here to be unity for notational convenience) and a(t) could be

generated by the recursion equation

a(t+l) = a{t) - at Y[t +1, a{t+l)] (13)

t = 0, 1, 2, ...

In the continuous-time case we would choose the function a(t) to

satisfy

pCO pOO
\ a (t) dt < co ; \ a(t) dt = 00 , (14)

and in the discrete-time case

co co

y a <co; ya =oo. (15)

n=0 n=0

To guarantee convergence of a(t) to a, we need to impose

some regularity properties on the processes involved. Let the vector

valued random process S(t) be defined as

d dm dnS(t) =[Qu(t), s Qu(t), . . ., — Qu(t), QJt), . . ., — Qx(t),
dt dt

Px(t), . . ., ^ Px(t), P2(t) — P2(t)j (16)
dt

-11-



We then assume the following conditions on Z(t) :

1. Each component of Z(t) has variance less than or equal to

2
some value or , <r < oo .

2. Consider predicting S(t + t) by any functional on the past of

this process, S(s), s ^ t. Let S(t + t) denote the mini

mum mean-square error prediction. Then the minimum

mean-square prediction error, E^||S - S || L, must
2

approach its asymptotic value at least as fast as 1/t for

large values of the prediction time t. This rate of decrease

is hardly a stringent requirement: if for example, U(t),

N (t), and N (t) were Gaussian processes with rational
J. L*

spectra, then this prediction error would decrease exponen

tially with t.

3. The set of random variables

, ,n d dm

Qx<*>' dT Qx«t'- • • - 7J Qx<4>- Qu(t)' d7 Qu(t> 7S Qu<4>
dt dt

are a linearly independent set, i.e., the correlation coeffi

cient between any one of these random variables and any

linear combination of the rest is unequal to ±1. Further, we

assume that each of these random variables has nonzero

variance. This will guarantee that mJa) is (strictly) posi

tive definite.
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The above three assumptions, together with Eqs. (8) and (14) (or (15)

for the discrete-time case) guarantee that a(t) converges to a in the

mean-square sense,

lim e]|R - a||2} =0. (17)
t->co L - J

In fact, if we choose a(t) to be

a(t) = A/(t +1), t > 0 (18)

in which A is sufficiently large, then it can be shown that

{ll5t-°-H2}* K/t, K < co . (19)

Proofs of these two statements for the continuous-time procedure for

Eq. (13) have been presented [4] in a slightly different but equivalent

formulation. Relevant material is also presented in references [3],

[5], and [6].

The computational features of the method should be pointed out.

The differential equation described by Eq. (13) is easily implemented

with analog computation equipment, while the recursion relation of

Eq. (14) can be easily implemented with a modest digital computation

-13-



facility. The only difficulty in either case is generating Y(t, a) . How

ever, this poses no real problem since grad mJ a) and grad m (a) are
X *** c*

known, constant linear functions of or, while

and

P2(t) + Qx(t)-£- E2(t) =E(t)
da.

k dt L_

k. — J., Ctj • . • , n,

9a
E2(t) E(t)

k+n+1 dt

Px(t) +QJt)

k = 0, 1, 2, . . ., m.

(20)

(21)

The signal E(t) is available using the configuration shown in Fig. 2

while the signals

dtJ
Px(t) + Qu(t) and

dt

P2(t) + Qx(t)0
1 kare, respectively, the responses of sJ/Q(s) to V(t) and s /Q(s) to

Y(t) . A block diagram for generating Y[t, a{t)~] and a(t) is shown

in Fig. 3 for the continuous-time estimation algorithm of Eq. (12).

The double arrows (=^) indicate vector-valued signals (m+n+1

tuples).
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Fig. 3. Configuration used in continuous-time estimation
procedure.
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III. CONCLUSION

We have presented a computationally practical method for

identifying a linear, time-invariant system with rational transfer func

tion whose order is known to be less than some number n. Our pro

cedure is predicated on the assumption that the system input and output

are both observable in the presence of noiseswith known correlation

functions. The estimate generated by our procedure converges to the

true value in the mean-square sense at a rate inversely proportional

to the observation time.
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