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INTRODUCTION

The state space approach to network analysis has generated con

siderable amount of interest recently.. For linear time-invariant RLC

networks the analysis problem is completely solved. Methods exist

for writing state equations in explicit form and for determining the

order of complexity of an arbitrary given network. Extensions to

general linear passive networks which contain multi-winding transformers

and gyrators are, however, far from trivial, and are given in this paper.

While the analysis problem for linear time-invariant passive net

works has essentially been solved, the synthesis problem is only at a

beginning stage. We can divide the synthesis problem into two sub-

problems depending on whether the given information is in terms of a

state characterization or an input-output characterization.

Consider a lumped, linear, time-invariant and passive network,

the familiar state characterization is

x = A x + .B u

Y_ = — Hi * P —

where x is the state vector and usually has as its components capacitor
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voltages and inductor currents, u is the input vector, and y the output

vector. A is characterized by network topology and element values,

B specifies a relation between the input and the state, C gives a relation

between the output and the state, while D describes the direct input-

output relation which is independent of the state. From the analysis

point-of-view, the main problem is to express A in terms of given

network topology and elements. The determination of B, C, and D

introduces no additional difficulties. From the synthesis point-of-view

we propose two problems. The first one is, from a given A, find a

network which has a set of state variables specified by x = Ax. Thus

we are interested in only the zero-input response of the state x. The

analysis and synthesis problems of A will be treated in Part I.

In Part II we deal with the second problem of synthesis. From the

state equations, we obtain the input-output characterization:

y_ = [D +C(pl - AJ^Bju

Let u be a current source vector and y_ be a voltage response vector,

then the impedance matrix is

Z(p) =D+C(pl - A)_1B

The problem is, from a specified positive real square matrix Z(p) , to

determine the matrices A, B, C and D which in turn lead to all equiv-
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alent passive network realizations.

PART I

Analysis and Synthesis of A-Matrix

1. Passive and reciprocal networks

1.1 Network elements, characterization of general multi-winding

transformers:

Since we are interested in the zero-input responses, we can

assume that there are no sources in the network. For passive and

reciprocal networks the allowed elements are R, L, C and T (trans

formers) . Let us give a brief but general treatment of the character-

2
ization of multi-winding transformers. Consider a typical five-

winding transformer as shown in Fig. la, we wish to determine the

electric properties of the transformer in terms of 5-dimensional

voltage and current vectors, v_T and _iT . The magnetic property of

the transformer can be characterized by a magnetic graph shown in

Fig. l.b and its branch flux vector ^ and m.m.f. vector |[. Let K_

be a diagonal matrix which specifies the turns of windings. Then

Kirchhoff laws for the magnetic circuit states

9Mi = £ <la>

BMi = £ (lb)
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where Q^. and B are the fundamental cut-set and loop matrices for

a chosen tree of the magnetic graph, M. The relation between v and

ip is

dip dip

IT = K— or — = K" vT (2a)

and the relation between i -, and £ is
— 1 —

i = !S1T (2 b)

Combining (1) and (2), we obtain the two basic equations which charac

terize an arbitrary multi-winding transformer:

QW^T =£• 3W - 5MK"' (3a)

BW1T = 0, BW^BMK (3b)

1.2 Network equations and the order of complexity:

Let us partition the network branches into two classes depending

on whether they are R, L and C, or transformers. We use subscript

S to denote the former and subscript T to denote the latter: Thus

KCL states

Q_i = 0

or
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^s
[Qs, QT] = 0 (4 a)

and KVL states

B v = 0

or

^S

[**• 2t12' -T
= 0 (4 b)

^T

where i and v are branch current and voltage vectors, Q is the

fundamental cut-set matrix and B is the fundamental loop matrix for

a chosen tree of the network graph N. The branch relations for R,

L and C elements can be simply stated as follows:

5LRAS-Xc^s= £

where

Ic

5lr R

P^i_
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and

pC

*c ±r (5c)

iL

R, C, and L are branch parameter matrices for the resistors,

capacitors, and inductors, respectively. Combining Eqs. (3), (4) and

(5), we obtain the complete characterization of the network in terms of

the equation

°s ^•^ fp 1 0 0

0 0 i 5S *t

ZLR 10

; ~Ic
0

0 2W I 0 £

0 0 | 0 -W_

is

±t

^S

= 0 (6)

Definition 1.1. The natural frequencies of a linear time-invariant network

are defined as the roots of the polynomial, det[6(p)] where
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e(p) =

Se »^pp 0 0

0 0 2s *t

*LR 0 -2c 0

0 *w 0 0

0 0 0 2W

(7)

The total number of natural frequencies is called the order of

complexity of the network.

1.3 Fundamental results:

Definition 1.2. A proper tree of an RLCT network is any set of branches

which forms a tree and such that its transformer branches form a tree

in its magnetic graph M.

Definition 1.3. A maximal proper tree of an RLCT network is defined

as a proper tree having (nc - nL) a maximum, where nc is the

number of tree capacitors and n is the number of tree inductors.

Theorem 1.1. A necessary condition for an RLCT network N to have

a unique solution is that N contains at least one proper tree.

Theorem 1.2. The (maximum) order of complexity of an RLCT network

is equal to the sum of the number of capacitors in any maximal proper

tree and the number of inductors in the corresponding co-tree.

The proof of the two theorems is straightforward. It depends

on the expansion of det[£(p)] by the rule of Laplace expansion and is
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omitted here.

Theorem 1.3. If a maximal proper tree is chosen, let us denote the

tree-branch capacitor voltages by v _ and link inductor currents by

i , then the explicit form of the zero-input state equation of an RLCT
—L

network is

^c c
-1

V
C

±L o X
-1 yC z ^L

(8)

where the matrices {& , oC, (J , J"!, Cj are given explicitly in terms

of the element values of the capacitors, inductors, resistors, trans

former turn matrix, and the submatrices of Q and Q . Note that (8)

is of the same form as the state equations for RLC network without

transformers. We refer to Reference 3 for the explicit forms and the

proof.

1.4 Synthesis of A :

Theorem 1.4. A real matrix A in the state equation, x = A x , is the

A matrix of an RLCT network if it admits a decomposition of the form

A = -

a
-1 0

<£
-1

-'H

^ Z
(9)



where C© and oO are symmetric and positive definite, LA and /o are

symmetric and positive semi-definite; the state variables, that is, the

elements of x are then certain voltages and currents in the network.

Proof: Since (^ and J[j are positive definite, by congruent transfor

mations, we have

Ir.Qlr. = ±r> Ii.fe = A. (10)

where A _ and A are diagonal matrices with positive elements. Let
— {_, —J_/

i i t t

i _ , v ^ and i , v T be the currents and voltages for the capacitors
—C —C —L —L

and inductors in the network as shown in Fig. 2. Then

Ac =^C^C ' ?-L =^L (11)

The congruent transformations can be interpreted as defining equations

for the transformers in the network. The equations are

' t '
i = T i . v =Tv
-C —C-C -C -C-C

IL =^L^L' 1L =^L-iL

Substituting (10), (11) and (12) in (8), we obtain

•ic % * ^c
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which is the hybrid characterization of an RT network as shown in Fig. 2.

2. Passive and nonreciprocal networks

2,1 Characterization of general passive network elements:

In the treatment of general passive networks we allow R, L, C,

ideal transformers (T) and gyrators (G) as network elements. However,

we will demonstrate that it is only necessary to consider RCG networks.

First it is well-known that an inductor is equivalent to a gyrator which

is terminated at a capacitor. Next we will show that any multi-winding

transformer has an equivalent circuit with gyrators only. Let us con

sider the 5-winding transformer in Fig. la, we assert that it has an

equivalent representation shown in Fig. 3. The proof is straightforward.

Consider the gyrator (') branches which constitute a graph M, which is

by construction identical to the magnetic graph of the transformer. Thus

using the same tree, we have

qui'G - o. bmv; = 0 (14)

Let K be the gyration constant matrix of the gyrators, then

-iG =K"1^. v; =K1g d5)

Combining (14) and (15), we obtain immediately
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Q__ K^v-. = 0, B Kir = 0
—M— —G — —M -G —

(16)

which are precisely Eqs. (3 a) and (3 b) of the multi-winding transformer.

2.2 Fundamental results:

Definition 2.1. A proper tree in an RCG network is a tree in which both

branches of each gyrator are either in the tree or both in its co-tree.

Definition 2.2. A maximal proper tree in an RCG network is a proper

tree having n_ a maximum, where n^ is the number of capacitor tree

branches.

We will consider a special case of an RCG network N-. The

special case is specified in terms of a modified network N , that is,

a subnetwork of N which is obtained from N by contracting (short

circuit) all capacitor branches. We will study only the case where N

possesses a proper tree. Let us partition the branches of N into two

classes, namely: the capacitor branches and the rest. Let us denote

by subscript C the former and the subscript 2 the latter. Furthermore,

subscript 1 represents cotree-branches and subscript 2 represents the

tree branches. Then for a chosen maximal proper tree, KVL states

z-ci ^cc 2. -C2

(17 a)

2-2U i-SC -2£j Lr-Z2-
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and KCL states

±C2

is2

F* r*
-cc —sc

4,

±ci
(17 b)

L±si

Remarks: (a) By assuming that N possesses a proper tree, we

guarantee that a proper tree can always be drawn for N which includes

the maximum number of tree capacitors, which is equal to the total

number of capacitors less the number of independent capacitor loops,

(b) The reason that there exists a zero in the upper right corner of F

is obvious. For each fundamental loop which is defined by a capacitor

link, the fundamental loop must contain only capacitors and no elements

of the other kind, for otherwise the capacitor link should have been in

the tree.

Let the branch relations be

±C1

•C2

21

-22

_d_
dt

£1

° £2

Ri

^Cl
(18 a)

-C2

isi
(18 b)

22

The reason that there exist two zeros in (18b) is because a proper tree
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is being used. Thus there are no gyrator couplings between tree

branches and links.

By eliminating unwanted variables in (17) and (18) we arrive at

the following explicit form of the state equation.

where

where

£<GvC2) =-GvC2

G = 1 — CC I]

2. ^2

GU ^2C R0 -2C

S0= Si+EssS^ss

-F
-CC

Remarks: (a) \o is symmetric and positive definite, (b) It can be

(19 a)

(20a)

(20b)

(20 c)

easily shown that R exists if and only if N possesses a
— 0 \^i

unique solution. Furthermore the symmetric part of vie is positive

-1
semi-definite, (c) In general R exists. If it does not, the

number of state variables is reduced by the nullity of R . In other

words the dimension of state vector or the order of complexity of the
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network at most equals the rank of R . (d) If N has no pure gyrator

cutsets, then N has a proper tree.
\^)

In the following we give two conjectures for general RCG networks

Theorem 2.1 (Conjectured) : The maximum order of complexity of an

RCG network is equal to the number of tree capacitors in any maximal

proper tree.

Theorem 2,2: (Conjectured) : If an RCG network has no proper tree,

then it does not possess a unique solution.

2.3 Synthesis:

Theorem 2,3, A real matrix A is the A-matrix of a passive network in

the state equation x = A x, if and only if A is a stable matrix, that is,

all eigenvalues of A lie in the closed LHP, and in its Jordan canonical

form all imaginary eigenvalues are contained in 1 X 1 blocks.

Proof: The necessity is obvious because a passive network is necessarily

4,5
stable. The proof of sufficiency depends on a well-known Inertia Theorem,

that is, a stable matrix can be decomposed as

a= -Q&

where \& is real, symmetric and positive definite, and the symmetric

part of the real matrix (j^, is positive semi-definite. The network
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M

(b)

Fig,. 1. Five'-winding ideal tr.ansfptpief-ax^d,its.pagnetic graph, M

RT

network

Fig. 2. Synthesis of the A -matrix.

I 0

RTG

network

Fig. 3. Gyrator network which Fig. 4. Synthesis of the A-
is equivalent to a 5 matrix for general
winding ideal transformer. passive networks.

-15-



realization is similar to the reciprocal case and is shown in Fig. 4.

PART II

Minimal Synthesis of a Positive Real Matrix

Given a positive real square matrix Z(p), it is desired to find

a network containing passive elements for which the given matrix is the

impedance matrix. We first consider the decomposition of Z(p) into a

minimal set of state equations:

x = A x + Bu

(1)

y_ = C_ x + Du

The matrices A, B , C and D are then shown to characterize a fre

quency independent network which when terminated in a minimal set of

reactive elements at the secondary ports produces the desired impedance

matrix Z(p) at the primary ports. In Section 1 we will present the

general passive synthesis problem, thus our main concern is to investi

gate the passivity constraint. In Section 2 we will introduce, in addition,

the reciprocity constraint.

With no loss of generality we assume that the given Z(p) is

regular on the jco-axis. We say that {A, B, C, D} constitutes a

minimal realization of Z(p) if

Z(p) = D + C(pl - A)'1 B (2)
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and if the order of A is equal to the McMillan degree of Z(p), 6(Z).

Following the system theory terminology we use the word realization

to mean the determination of {A, B, C, D} from the given Z(p) .

Recent work by Kalman and others give straightforward procedures of

6-11
obtaining all equivalent minimal realizations of Z(p). That is, if

{A, B, C, D} is a minimal realization, and T any non-singular real

matrix,

{l"1^!, Z"1?* 9.1* 5} (3)

constitutes another minimal realization.

From conventional network synthesis, it is well-known that

there exist methods of obtaining passive networks which have the

12 13
specified impedance matrix, any positive real Z(p). ' Furthermore

passive networks with a minimum number of reactive elements equal

to 6(Z), can be obtained, and we call such a synthesis minimal synthesis

The problem of finding equivalent networks has interests among network

11 14theorists for decades. ' Our present approach to synthesis can be

viewed as an attempt to find all equivalent minimum synthesis from a

given positive real matrix, Z(p) . The strategy is to start with any

minimal realization of Z(p) and from this obtain a network realization,

possibly non-passive, but employing the minimum number of reactive

elements; we then introduce coordinate transformation in the state

-17-



representation as indicated by the transformation in (3) to satisfy the

constraints of passivity and reciprocity. Recent work by Youla and

.9Tissi was based on the scattering matrix characterization of an n-port

13
network and depended on the synthesis method of Oono and Yasuura.

We will attack the problem directly in terms of impedance and hybrid

matrices.

1. General Passive Network Synthesis

1.1 Reactance extraction and the impedance matrix of a frequency

independent network:

Consider any minimal passive synthesis of a given Z(p). We

assume with no loss of generality that the network is shown in Fig. 1

where N is frequency independent and all reactive elements are inductors

of one henry. This can obviously be done since capacitors can be

replaced by gyrators and inductors, while ideal transformers can be

used to make all inductances unity. Let N be specified by the impedance

matrix

5-11 ^12
Z = (4)

-21 -22

then
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-1Z(p) = z - z12(pi+ z22) z21 (5)

Comparing (5) with (2) or rather using the alternate, more general form

of minimal realization in (3), we can make the following identifications

z = D
-11 -

ia= -Z_12

More concisely, we have

Z =

0 T
-1

^12 = £1
(6)

*2Z = -1_1AT

D 1 0

(7)

-B -A 0 T

Thus if any minimal realization {A, B, C, D} has been obtained, (7)

gives the impedance matrix of a desired frequency independent network,

which, when appropriately terminated in inductors, gives the synthesis of

Z(p) . The non-singular transformation matrix T gives flexibility to

introduce passivity and reciprocity constraints. In the next section we

will determine the passivity constraint in terms of the impedance matrix

Z.

Remark: The proof that an impedance characterization for the network

10
N exists is omitted. However, it is important to point out that the

fact depends on two assumptions, namely: (1) the given Z(p) is regular
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at infinity and (2) the synthesis is minimal.

1.2 Characterization of passivity:

If Z is the impedance matrix of a frequency independent passive

network, the symmetric part must be p. s.d. (positive semi-definite).

The network N is then easily synthesized since the symmetric part of

Z can be synthesized by an RT network while the skew symmetric part

of Z represents a gyrator network. We will now use the p. s.d. property

of Z to derive the necessary and sufficient condition for a minimal passive

realization of {A, B, C, D} . For simplicity we will state and prove

the main theorem in terms of a scalar positive real function z(p) . For

a scalar z(p), we have

z(p) =d +J{?1- A)"1 b (8)

where d is a scalar, c_ and b are column vectors.

Theorem 1. z(p) is a positive real function if and only if there exists a

positive definite symmetric matrix P and a matrix L such that

PA +A* P+jt (Pb - c_)(Pb - c)* = - LL* (9)

Proof: We prove necessity first, that is, we assume that z(p) is

positive real and derive (9) . Given a positive real z(p) , there exists

a minimal, passive network realization. Since the network realization

-20-



is minimal, the frequency independent part has an impedance matrix

characterization. Since the network realization is passive, the impedance

matrix is positive semi-definite. Thus given any minimal realization,

there exists a non-singular T such that

and

1 0 d c

Z =

0 T
-1

-b -A

Z + Z =

2d k

k Q

1 0

0 T

is positive semi-definite, where

k = ^c - T"Xb

Q = - T_1AT - TtAtT"lt

Thus

2dxI + 2xx<k>x2> +<x2, Qx2>

(10)

(11)

> 0

for any real number x and any real vector x_ .(of appropriate dimen

sion) . By completing the square involving the first two terms, we

obtain
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1 I2n/2o~ x1 + <^k,x2^> +<^x.2,
N/2d

Q - ~- k k*
— 2d *2>> °

Hence we conclude that Q - — k k must be positive semi-definite.
— cq.

Using (11) and defining

P= T-^T"1 (12)

we obtain the desired result in (9) where L is some real matrix since

LL is p. s. d.

We next prove sufficiency by assuming that if {A, b, c_, d } is

given along with a symmetric positive semi-definite P and a real L

which satisfy (9)j z(p) is positive real. First we factor P = T T

according to (12) and let Q and k be defined as in (11). Then (9) implies

that

<iL2» 9^2>- Zd^.'-Z^ > 0

hence tracing backwards, we find Z + Z is positive semi-definite.

Thus the matrix Z can be synthesized as a passive frequency independent

network which when terminated in unit inductances produces the desired

positive real z(p) . Q. E. D.

Remarks: (a) When d = 0, (9) reduces to the familiar conditions for

. ., 6,7
passivity
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PA+AtP= -LLt

P b = c

(b) Results similar to (9) have appeared in Ref. 7 and 8. In Ref. 7,

Kalman's result is a special case of (9) under the condition L = 0^,

thus there exists P which satisfy (9) but is not included in Kalman's

result. The result in Ref. 8 is again not as broad as ours for a similar

reason.

(c) The above derivation can be generalized to yield the following

theorem for a positive real matrix. The proof is given in Ref. 10.

Theorem 2 . Z(p) is a positive real matrix with Z(oo) < oo, and {A, B,

C, D } is an arbitrary minimal realization of Z (p). Let U be the orthog

onal matrix which diagonalizes the symmetric part of D, i. e. ,

D + D* = U*
A 0

0 0

Partition U as follows: U =

U , where A is nonsingular,

U U
-1 -2

H3 H4

where U is of the same

order as A. Then Z(p) is positive real if and only if there exists a

positive definite symmetric matrix P and a real matrix L such that

-23-



(i) [PB - C*]
H*3

= 0

£

("> E6+^E+ [££- S^ltZ* - £t]t = -ll*

where

i= i^zi'A-'e,^]

is the pseudo-inverse of D + D .

Remark: The above theorems are existence theorems. In synthesis,

7 8
we need to determine P. Kalman and Meyer gave constructive

techniques for obtaining P. An alternate approach is given in Ref. 10.

2. Passive Reciprocal Network Synthesis

In this section we are dealing with positive real matrix Z(p)

which is symmetric and we restrict the passive elements to be RLCT .

2.1 The hybrid matrix of a frequency independent network:

Consider the network in Fig. 2a where N is a RT network

while its terminations contain k inductors of one henry and k_ capacitors

of one farad, and k + k_ = 6(Z). Similar to the treatment in Section 1
JL £

we can think of the k_ capacitors being replaced by gyrators terminated
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at k_ inductors, then the frequency independent network contains k_
& Li

gyrators in addition. This is shown in Fig. 2 b, where N includes the

gyrators. In Section 1 we indicated the existence of impedance charac

terization of network N. Introducing equations for the gyrators, we

can easily show that there exists a hybrid characterization for the

network N . Then open-circuit ports for N are the input ports and the

inductively terminated ports while the short circuit ports are the

capacitively terminated ports. Let the hybrid matrix of N be

^11 -12
H =

^21 52.22

Reciprocity of N requires that h and h be symmetric and h = - h.^,

Passivity of N requires that h and h22 be p. s.d. If both requirements

* are satisfied, N can be synthesized as shown in Fig. 3.

An alternate way of expressing reciprocity is to introduce a

diagonal matrix _S which contain +l's and -l's only. We can then

state the following Lemma on reciprocity.

Lemma 1: A square matrix of real numbers, H ,is the hybrid matrix

of a reciprocal network if and only if there exists a diagonal matrix 2 ,

such that 2 H is symmetric.
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2.2. Characterization of Reciprocity

Again we start with a minimal realization {A, B, C, D } of the

given symmetric, positive real Z(p) , Since from conventional network

synthesis we know that there exist passive, reciprocal minimal networks

which have the given Z (p) as the impedance matrix, we assert that

there exist transformations such that

M =
-1

D C

-B -A 0 T

(13)

is the hybrid matrix of a passive, reciprocal, frequency independent

network. From the reciprocity requirement in Lemma 1, we know that the

matrix 2 M is symmetric. For convenience we partition 2 as follows

0

2 =

where 2 is of order 6(Z) and contains k + l's and k_ -l's . Writing

2 M = (2 M)*, we have

1 0~ "l 0 "d c" "l 0 " 1 o" rDt "B1 "l 0 "l 0

0_
I

2 _0 I'1. _-B -A_ _0 T- _ 0 T- _c" -aI _0 z"1! _0_
t

2_

1 0 1 0

Multiplying on the left by
0 T

-It
and on the right by

0 T
-1

, and
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s etting

S = T"U2' T"1 (14)

we obtain an equivalent statement of reciprocity in terms of the symmetric

matrix S :

1 0 D

is symmetric (15)

0 S -B -A

which implies

S B = - C

(16)

SA = AS

We now state and prove the following:

Lemma 2 : Let Z(p) be a symmetric rational matrix and {A, B, C, D}

any minimal realization; then the symmetric nonsingular matrix S

defined in (16) is uniquely determined.

Proof: Let S and S be two symmetric matrices which both satisfy (16),
-~1 t.

let Y = S _^2» then

YB = 0_

Y A = A* Y

-27-



Thus we have

Y B = 0

YAB=AtYB=0

YA2B = AtYAB=0

In particular, if the characteristic polynomial of A has degree k= 6 (Z) we

2 k-1have Y[B, AB , A B, . . . , A B] = 0_. Since minimal realization

2
implies complete controllability, that is, columns of [B, AB, A B,

k-1
... , A B] span a k-dimensional space; hence Y = 0_, S =^?«

1 L Q.E.D.

The determination of _S for a given minimal realization is

straightforward and is obtained by solving the linear equations in (16).

Alternately, S can be determined as follows: from (16) ,

SB = -C*

SAB = A* SB = - A* C*

2 t2 tSAS = -At C*

SAk"1B= -A^^C2

Thus S[B, AB, ..., Ak-1B] = - [c\ A* C*, . .., A* k"X C*]

Hence S = - [C*, A* c\ . .. , A* k"1 Ct] [B, AB, ..., A^B]"1 (17)

-28-



Once S is found, we only need to factor it according to (14) to obtain a

transformation matrix T. It is seen that the class of transformations

T is precisely that class which reduces the quadratic form<^x, Sx ^>

to a sum of squares. Thus by the invariance of the number of positive

and negative signs in any such reduction, we conclude that the number

of inductors k^ and the number of capacitors k_ are fixed in any

minimal reciprocal synthesis. This agrees with Ref. 9.

2.3. Reciprocity and Passivity

It should be clear that even though S is uniquely determined

-It ' -1
from a given minimal realization, its decomposition into T 2 T

is not unique. The flexibility allows us to introduce the passivity con

straint to guarantee a passive reciprocal synthesis. The problem can

be illustrated with the diagram in Fig. 4, where Hi represents the

class of all minimal realization {A, B, C, D} , {y is the class of all

passive minimal realization and gkj is the class of all reciprocal

realization. More specifically,

VT = {M | M€Kll, M is p. s. d. }

0s^ = {M | M € (MM) , 2 M is symmetric}

Given a symmetric positive real Z(p) it is known that ^J I I£\_is

non-empty. Starting with any minimal realization, we can determine all

passive minimal realizations as in Section 1. Similarly, starting with
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any minimal realization we can obtain all reciprocal realization by

decomposing the matrix S_ according to (14). What we wish to find is

a transformation which maps Mo into u I IQj . There are two

approaches. The first is to start with a passive realization and intro

duce a transformation which maintains passivity but satisfies recipoc-

ity. The second is to start with a reciprocal realization and introduce

a transformation which maintains reciprocity but satisfies passivity.

The following interesting properties are noted:

Let M € iZ( , thus 2 M = I 2.
0 27

M is symmetric.

The mapping T : j^-^^has the property T~ 2 T~ = S = 2 . In

particular, if the given Z(p) corresponds to the impedance matrix of

' -It -1
an RL or RC network, 2 is either J_ or "i • Thus T T = 1_,

that is, T is an orthogonal transformation. Since an orthogonal trans

formation preserves the p. s.d. property, starting with a reciprocal

realization which is passive, we always end up with a passive realization.

Thus it can be shown that all reciprocal realizations for RL or RC im

pedance matrices are passive.

In general, the transformation which maintains reciprocity has

-It ' -1 ' -1 ' -It '
the property T_ Z!T = S , or T 2 Z =2, which implies

-It -1 ' -It -1 'T. X J± Z. X = ^ • Thus we can introduce the reciprocity con

straint in terms of the symmetric positive definite matrix P = T^ T^ :

P 21 P = 2* (18)
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Eq. (18) can be used in conjunction with the passivity constraint in

Theorem 1 or 2 to determine P. It should be noted that the matrix

P satisfying (18) and the passivity constraint will not, in general,

produce directly a network which is reciprocal. Since by factoring

P = T T , a transformation matrix T may not satisfy the reciprocity

-It ' -1 '
constraint T 2 T = 2 . However, we are guaranteed that we are

within an orthogonal transformation to yield a reciprocal and passive

network realization. This is clear since (18) implies

or

-It -1 ' -It -1 '
TT2TT=2

-1 • -It t '
T 2 T = T 2 T (19)

A

which is orthogonal. Introducing T = TU where U is the orthogonal

t '
matrix which diagonalizes T ST, we obtain

or

or

t t ' '
UTS T U = 2

Af Ai i
T 2 T = 2

A-lt ' A-l '
T 2 T = 2
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which is the reciprocity constraint.

We will not discuss the determination of P which satisfies

these constraints. Our main purpose is to derive the constraints of

passivity and reciprocity in terms of a minimal realization of a

symmetric and positive real matrix.
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Z(p)

Fig. 1. Passive synthesis of a positive real Z (p)

(b) N

R,T
) <

> (

6(Z)

^+k2 =6(Z)

Fig. 2. Passive reciprocal synthesis of a symmetric positive real
Z(p). _33
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input
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terminated
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J capacitively

terminated

ports

Fig. 3. Synthesis of passive, reciprocal, frequency-independent
network.

Fig. 4. Diagram illustrating synthesis of passive reciprocal networks
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