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ABSTRACT

Transverse electromagnetic waves that propagate along a uniform

magnetic field in an unbounded, thermally anisotropic plasma are inves

tigated. The linearized Vlasov equations are solved to obtain the dis

persion relation for the electron- and ion-cyclotron waves. This

dispersion relation is used to obtain the critical frequencies and wave-

numbers below which the wave is unstable. The electron-cyclotron

wave is unstable for T > T Numerical solutions for the growth
J.e ze &

and damping rates of the waves obtained from the dispersion relation

show that the maximum growth rate occurs at a frequency slightly below

the marginally stable frequency. For the ion-cyclotron wave, both ion

and electron thermal anisotropy are included, and cold electrons are

shown to have a stabilizing influence on an unstable ion-cyclotron wave;

however, when the electrons are thermally anisotropic, they have a

destabilizing effect for T > T .
& le ze
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I. INTRODUCTION

Anisotropic electron- and ion-velocity distributions occur

naturally during the generation, confinement, and heating of plasma

in confinement experiments, and for plasma confined in the earth's

2
magnetosphere. If the mean kinetic energy or temperature of the

plasma is greater transverse to the magnetic field than along it, then

there is thermal anisotropy which is an energy source available to drive

electromagnetic instabilities. Such instabilities cause a transfer of

kinetic energy from the plasma particles into electromagnetic wave

energy, and they can occur when the phase velocity of the wave is com

parable to the longitudinal thermal velocity of the plasma. The wave

interacts strongly with those particles that have a Doppler-shifted wave

frequency in the neighborhood of their cyclotron frequency. The inter

action of such resonant particles with the electromagnetic field leads

to instabilities for T > T . This paper studies the damping and in

stabilities of transverse electromagnetic waves resulting from the

thermal anisotropy of the plasma particles.

It is assumed that there are many particles in a Debye sphere

3
(nK_ » 1), where n is the density of the plasma, and \ is the

thermal Debye length. It is assumed that the thermal velocities are

non-relativistic and that the plasma is not collision dominated, i.e.,

collision frequencies are much less than the smallest characteristic
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frequency of the plasma. Also, the number of plasma particles in a

deBroglie sphere is negligible and quantum effects are neglected

3
(n(fi/p) « 1) (fi is Planck's constant and p is the thermal momentum

of the plasma).

Section II contains the dispersion relation for electron- and

ion-cyclotron waves. This dispersion relation, which is derived for a

two-dimensional anisotropic Maxwellian particle distribution,is

expressed in terms of the Fried and Conte plasma dispersion function.

In Section III, the interaction of a thermally anisotropic electron

plasma in a stationary-ion background and a right-hand circularly-

polarized wave is considered. The stability threshold for this situation

is determined from the dispersion relation. For situations in which the

transverse thermal energy of the electrons is greater than the longitu

dinal thermal energy, wavelengths longer than a certain critical wave

length are unstable. Numerical solutions of the dispersion relation are

obtained for the temporal growth and damping rates of the wave.

In Section IV, the stability of a left-hand circularly polarized

wave that has a frequency close to the ion-cyclotron frequency is

examined. The thermal anisotropy of the ions and electrons is included

to study the effect of the electron thermal anisotropy on the ion-cyclotron

wave.
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II. DISPERSION RELATION

A homogeneous unbounded plasma in a uniform, static magnetic

field B (in the z-direction) is described by a zero-order velocity dis-

2
tribution f^.(v. , v ), where v and v are the zero-order velocities

Oj i z J. z

perpendicular and parallel to the static magnetic field. The average

density is assumed constant and all perturbations vary as

exp[ -i(cot - kz)] .

The dispersion relation for right- or left-hand circularly-

polarized waves is derived either from the linearized collisionless

Boltzmann equation or from a perturbation analysis of the particle-

orbit equation. The dispersion relation for right- or left-hand

4 5circularly-polarized waves propagating along the magnetic field is '

df 8f

(co - kv ) -r-^- +kv -r-^
2 2 2 V 2 f°° f°° Z 8vx X 3vz 2

co = k c - > co . \ \ ;— - ttv dv dv
Li pi J _ JA (« ± w . - kv ) x x zj -co 0 cj

where the wavenumber, k, is in the z-direction, j indicates the specie,

2 2
<* i - n-e /m-€0» and w • = ^-^q/111-* and carries the sign of the charge.

The upper sign in the denominator of Eq. (1) refers to the right-hand

circularly-polarized waves and the lower sign to left-hand circularly-

polarized waves.
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The two-dimensional Maxwellian used in this analysis is

Oj 3/2 2
it a . a .

exp -

IT v 2
v,

a

J-J

2"~l

a

ZJ-

(2)

where v and v are defined with respect to the magnetic field direc-
x z

tion, a . is the thermal half^width of the velocity distribution in the

J

transverse direction and a . is the longitudinal velocity spread of the

plasma particles. To obtain the dispersion relation, Eq. (2) is sub

stituted into Eq^ (1). After integration over v , Eq. (1) becomes

co =

CO -t

v2 2k c

L PJ J-oo

covkor
- t e

zj

",2K)

+ I
co ♦ 2 "*ta . e

1/2 2 /
-oo tt or . (t -<b

zj I Yr
i

J>

dt

dt

(3)

where the substitutions t = v /a . and 6 ;° = co ± co ./kor . are made to
z zj Tr: cj zj

simplify the dispersion relation.

3
In terms of the Fried and Conte plasma dispersion function,

Eq. (3) is
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2 ,22
co = k c "I "pj ETT Z*r. +(9j -1] f1 ++r. 4r.)j ' (4)

where

^ pOO -t

z V =T72 J 7TT1 dtj tt -co V YrJ

2
is the Fried and Conte plasma dispersion function, and 9. = (a J a )

J •«• J zj

is a measure of the thermal anisotropy of the species.

The plasma dispersion function Z \6 J is complex for real

values of the argument <j> . A solution of the equation for real k

and complex co determines the growth or damping of the wave for a

given set of plasma parameters. These transverse electromagnetic

waves propagate with the electric field vector perpendicular to the

propagation vector. The dispersion relation can be separated into one

for the right-hand circularly-polarized wave and one for the left-hand

circularly-polarized wave. The right-hand polarized wave interacts

strongly with the electrons at the electron-cyclotron frequency and the

left-hand polarized wave interacts strongly with the ions at frequencies

close to the ion-cyclotron frequency.
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III. ELECTRON-CYCLOTRON WAVES

A. Stability

The dispersion relation for the interaction of a thermally anisot

ropic electron plasma in a stationary ion background and a right-hand

circularly-polarized wave is

2 2 2 2
co = k c - co

pe

where

*
re

CO

k« Z(+re> +(6e-l)(l++reZ(+re))
ze

co + co
ce

6 =
e

a
xe

kor
ze

a
ze»

(5)

Equation (5) is complex and, in general, must be solved numerically,

To investigate the stability threshold of the wave for real wave-

numbers, the imaginary part of the frequency is set to zero and the

dispersion relation is separated into its real and imaginary parts.

The real and imaginary parts of Eq. (5) are

CO
2 2 2 2

co = k c - co
r pe

— Re Z(*re) + (ee-l) (1 + 0.re Re Z(* ))

and co
pe

ze

co

: Im Z(d> ) + (9 -1) <j> Im Z(d> )
ka re e re re

ze

where co = co + ico. *
r i
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The stability threshold frequency obtained from Eq. (6b) is

9 -1

co =-| |o> | , (7)
r 9 ' ce' * '

For cases where 9 ^ 1 the transverse thermal energy of electrons is
e OJ

greater than or equal to the longitudinal thermal energy. Isotropic

4
thermal electron distributions are stable for all frequencies, and it

follows that solutions to the dispersion relation for which the real part

of the frequency is less than the threshold frequency defined by Eq. (7)

correspond to growing waves. Equation (7) is substituted into Eq. (6a)

to solve for the critical wavenumber.

k =

2 2 2 2
(9 -1) 9 co + (9 -1) co

e e pe e ce

c9
e

1/2

. (8)

Again, by comparison with the isotropic thermal distribution,

all wavenumbers less than the critical value given by Eq. (8) are un-

6,7
stable. Sudan used a normal-mode approach to obtain relations

equivalent to Eqs. (7) and (8).

Equation (7) shows that the electron-cyclotron wave is never

unstable at frequencies above the electron-cyclotron frequency and that

all frequencies are damped for an isotropic thermal electron distribution.

As the ratio of perpendicular-to-longitudinal thermal energy of the elec

trons is increased from unity, progressively higher frequencies become

unstable, limited by the electron-cyclotron frequency.
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It is convenient to rewrite Eq. (8) in terms of the new variables

U = co /kar ,6 = a /c ,
pe pe ze e ze

-i •£-<•.-•> (£)'•
This stability condition is plotted in Fig. 1 as a function of

U and - U for constant values of 9 . As the thermal anisotropv
pe ce e '

of the electrons is increased, the critical wavelength above which the

waves are unstable becomes shorter. The equation for the marginally

stable density and magnetic field describes an ellipse whose ratio of

major to minor axis is a function of the thermal anisotropy. In the limit

of an isotropic Maxwellian temperature, the plasma is stable for all

ranges of density and magnetic field. Solutions of the dispersion rela

tion which correspond to points inside the ellipse result in a stable

plasma and damping of the electromagnetic field. As the thermal

anisotropy is increased further, the stable region becomes smaller.

The existence of an unstable region implies that for a given thermal

anisotropy and density of the plasma and impressed magnetic field, the

wave has a critical wavenumber above which the wave is damped and

below which the wave amplitude grows in time. If the finite extent of

the system under consideration is less than the marginally stable wave

length in the plasma, then all waves which are supported in the plasma

-9-
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g
are damped. Hall, Heckrotte, and Kammash have considered the effect

of finite lengths in stabilizing instabilities arising from longitudinal

oscillations.

B. Numerical Solution

The dispersion relation for electron-cyclotron waves is solved

numerically. Results for 2co = |co | for an isotropic Maxwellian

distribution are shown in Fig. 2. Note that there are two modes of propa

gation for the right-hand circularly-polarized mode. The slow-wave

mode exhibits whistler-mode behavior for small wavenumbers. As the

wavenumber is increased, the real part of the frequency increases and

there is a resonance at the cyclotron frequency for large wavenumbers.

The damping rate obtained from the imaginary part of the frequency is

shown by the dashed curve. For wavelengths longer than the thermal

Debye length, cyclotron damping caused by the thermal distribution of

velocities along the magnetic field is negligible. As cyclotron resonance

is approached, the slow-wave mode is strongly damped because the

wave is in cyclotron resonance with a maximum number of particles and

the wavelength is much shorter than the thermal Debye length.

The fast-wave mode is cut off above the electron-cyclotron fre

quency, and as the wavenumber is increased, the damping rate increases.

Maximum damping occurs at the wavenumber corresponding to the veloc

ity of light divided by the cyclotron frequency. The phase velocity

-11-
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Fig. 2. Dispersion relation for right-hand circularly polarized
= 5.0X1011 rad/sec; -co =1.0X10^
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approaches the velocity of light, and the damping rate tends toward zero

at large wavenumbers because in the tail of the Maxwellian there are few

particles that are Doppler-shifted to the cyclotron-resonance frequency.

The dispersion curve for Ico I = 0.5co is shown in Fig. 3.
1 ce' pe °

The slow-wave mode is quite similar to the case in which the electron-

cyclotron frequency is greater than the plasma frequency. The main

difference is that the fast-wave mode is cut off above the plasma fre

quency. This means that the frequency is far from electron-cyclotron

resonance for the entire mode and the maximum damping rate is less

-4
than 10 times the real part of the frequency.

The solution to the dispersion relation for an anisotropic

thermal electron distribution is shown in Fig. 4. The slow-wave mode

is the only one that has frequencies corresponding to unstable waves and

thus is the only one discussed. The case illustrated is one for which the

electrons have nine times as much transverse as longitudinal thermal

energy. The plot of the imaginary part of the frequency shows that the

wave is stable for short wavelengths, then is unstable for all wave

lengths longer than the critical wavelength given by the threshold

equation. Note that there is a maximum growth rate which exponentiates

the amplitude of the wave in about five periods of oscillation of the

wave.

-13-
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Fig. 3. Dispersion relation for right-hand circularly polarized
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Fig. 4. Damping.and instabilities for whistler mode in an

anisotropic Maxwellian plasma, co = 5.0 X 10

rad/sec; -co„0 = 1.0 X1012 rad/sec; 9 = 9.0;
a = 9.0 X 107 m/sec.
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IV. ION-CYCLOTRON WAVES

The ion-cyclotron wave is left-hand circularly polarized and

rotates in the direction of the ion gyration around the magnetic field.

Since the electrons are mobile and can interact with the slow ion-

cyclotron wave, the thermal effects of the ion and electrons are

included in the analysis. From Eq. (4) the dispersion relation for a

left-hand circularly polarized wave is

2 ,22 2
co = k c - co

pe

- co

Pi

where

9 =

CO

ze

CO

zi

<x
xe

a
ze>

k« Z(*le)+(ee-i)(i+*lez(+le»

Z(cb.) + (9. -1) (1+<K. Z(<|V))

9. =
l

a

xi

(X
ziy

co- co
ce

CO - CO .
CI

<t>£e ka
ze

* 4i kt* .
zi

(10)

If the frequency of the wave is close to the ion-cyclotron frequency and

if

♦lel^1' (11a)
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the asymptotic expansion applicable for the electron plasma dispersion

function is

lim Z(+fe) - ^-
T£e

lim 1/2(1+c^e Z(^e)) -> -y- •
4>- -»-oo d>.

(lib)

The condition given by Eq. (11a) means that the wavelength of the ion-

cyclotron wave is much greater than the longitudinal distance a thermal

electron moves in an electron-cyclotron period. In this limit the dis

persion relation becomes

2 2 2 2
co = k c + co

pe

- CO

pi

CO

ZI

CO

co- co
ce

(9 -1) /kor
el ze

t CO - CO
ce.

z«t>a>+<e.-iHi++nz<4,n)> (12)

To study wave stability, Eq. (12) is separated into its real and imaginary

parts for Im (co) = 0.
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and

2,22 2
co = k c + co

r pe

co

CO - CO
r ce

(9 -1) /k<*
x e l ze

l CO - CO
ce

2
CO .

pi
jX Re Z(+|l) +(9.-1) (i +%^ Re Z(+|i)

co

Pi

zi

CO /CO - CO

—£- Im Z(cb .) + (9. -1) I-? —lim Z(cb.)
kor . *Y*i' x i ' \ k<* . / XY£i'

zi zi

Zl

(13a)

= 0 . (13b)

From Eq* (13b) the critical frequency below which the wave is unstable

is

9. -1
i

CO = —-— CO .
r 9. ci

(14)

The electrons do not change the critical frequency for stability.

If Eq. (14) is substituted into the real part of the dispersion relation,

the equation for the wavenumber stability threshold is

-2
P.

pi 9.-1 pe

U
ci

2 (9. -1) U . -9. U
\ l ci i ce

-18-
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where

zi
P. = »

1 c

CO

u • = L.ci ka*

ci

U

zi

co
ce

ce ka . *
zi

CO

U _EL
pi kar

zi

CO

U
Pe

pe kar
zi

In the large brackets there are two terms from the electron interaction

with the ion-cyclotron wave.

The first term in the brackets is the cold electron term; the

second term is a result of the electron thermal anisotropy. For

charge neutrality,

2 mi 2
U = — U . ,

pe m pi
e

and Eq. (15) becomes

U
Pi

1 -

m. U
ci

m (9. -1) U . - 9. U
l ci l ce

l/9e-Vaze
AVvl'J (<e.-uu .-e.u N2

P i ci i ce.

9.
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u2.
pi

Since |U . | « |U | and 9. ^ 1, Eq. (17) can be simplified.

,ft n ,2
. . 9 -1 \ m a \

1 _1 / e \ e f ze \ 1
9. 2 6.-1 m. la . I TT2.

l \i / i \ zi / U .
ci

P."2 /u >2

1 \ 1

(18)

Equation (18) is shown in Fig. 5, and the effect of electron thermal

anisotropy is-illustrated for several cases. The dotted curve shows

the stability threshold for ions with infinite temperature electrons,

which are a neutralizing background. The stabilizing effect of an iso

tropic zero-temperature electron distribution is shown by the alter

nating dashed line. Note that for 9 =9.0 the wave is unstable for very

low magnetic fields. This shows that the electrons with an excess

transverse thermal energy interact with an excess transverse thermal

energy interact with an ion-cyclotron wave and cause it to be more

unstable. In this case the excess transverse thermal energy of the

electrons is transferred into the electromagnetic energy of the wave.

Thus the finite-length stabilization effects will not be able to stabilize

the ion-cyclotron wave under these conditions.

From Eq. (18) it can be seen that for an isotropic electron dis

tribution the plasma is unstable for all ion-cyclotron wavelengths

greater than the critical wavelength given by

20-
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2irc9.

x = i uTi • '(w>
2 2 3 2 2 \

(9. -1) co . + (9. - 29. + 9.) go .
l ci l i l pi/

V. CONCLUSIONS

The damping and instabilities of transverse electromagnetic

waves in a plasma are investigated through the dispersion relation

for transverse waves propagating in a plasma with anisotropic Max

wellian velocity distribution functions. For the electron-cyclotron

wave it is shown that electrons with a greater transverse than longi

tudinal thermal energy result in a critical frequency and wavenumber

below which the waves are unstable. As the thermal anisotropy of

the electrons is increased, the spectrum of unstable waves is

increased. The dispersion relation for an isotropic Maxwellian elec

tron distribution function is obtained. It is found that the slow-wave

mode is resonant at the cyclotron frequency and that it is strongly

damped for wavelengths much shorter than the Debye length. The phase

velocity of the .fast -wave mode is asymptotic to the velocity of light for

short wavelengths and the damping rate is peaked near the free-space wave-

number corresponding to the cyclotron frequency. The dispersion rela

tion for an anisotropic thermal electron plasma is solved and agrees
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with the threshold of instability result; the slow-wave mode has a strong

maximum growth rate just below the threshold frequency. The ion and

electron thermal effects are included in the analysis of the ion-

cyclotron wave, and it is demonstrated that zero-temperature electron

distributions have a stabilizing influence on the ion-cyclotron wave as

compared with the case where the electrons are assumed to have

infinite temperature and only serve as a neutralizing background. In

a plasma with a given ion thermal anisotropy, an electron thermal

anisotropy with greater transverse than longitudinal thermal energy

reduces the range of stable ion-cyclotron waves as compared with the

case of an isotropic thermal distribution.
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