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PERFORMANCE OF SUBOPTIMUM FEEDBACK FUNCTIONS

Shigetoki Sugimoto

Abstract--The performances of the optimum and several

suboptimum feedback functions for sequential binary communication

systems with a feedback link are evaluated and compared. It is

shown that the power advantage attained by the optimum system can be

achieved without considerable loss by the suboptimum feedback

functionSo

INTRODUCTION

In recent papers [l] , [2] , Turin formulates the problem of the

design of signals for both sequential and nonsequential binary

communication systems with a delayless, infinite-bandwidth, forward

channel disturbed by additive, white, Gaussian noise, and a delayless,

noiseless, feedback link. The transmitter is subject to both peak- and

average-power constraints. The receiver continuously informs the

transmitter, through the feedback link, of the state of its uncertainty

concerning which signal was sent. The transmitter, in turn, uses the

output of the feedback link to modify its transmission so as to hasten,

the receiver's decision. The feedback link is used also, in the



sequential case, to synchronize the transmitter when the receiver has

reached a decision.

SEQUENTIAL CASE

The system considered is shown in Fig. 1.

At time t_, the transmitter of the system starts transmitting

either the signal s or the signal s_, which have a priori probabilities

P, and P_, respectively. A delayless channel adds to the transmitted

signal, white, Gaussian noise whose single-sided power density is

N watts/cps. On the basis of its observation of the channel output z,

the receiver computes, for every t > t , the logarithm of the a

posteriori probability ratio,

Pr[s /z ]

>'(t) =ln p^7I7 • (1)

where z denotes the sample of signal plus noise observed over the

interval [t , t] . The receiver continues to compute y(t) as long as

Y_ < y(t) < Y+.

It makes its decision in favor of s , (or s_) when y first reaches Y+

(or Y_). Such a receiver is a so-called sequential detector,

y(t) is a measure of the receiver's uncertainty at time t, and

the receiver transmits y(t) back to the transmitter over a delayless,

noiseless, feedback link. The transmitter, in turn, uses y(t) in order

to control its transmission; that is, s-j. = s-.j.[y(t), t] .
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The following problem is posed: Given upper bounds P and
av

P , on the average and peak powers available to the transmitter,
peaK

and given a prescribed probability P(e) of an error in the receiver's

decision, find the signals s+(y, t) which minimize the average time T

that it takes for the receiver to come to a decision,

1*
Under the assumptions

(a) s±(y, t)= ±cr(t)U±(y),

(b) U+(y) + U_(y) = 1,

(c) P+ =P_ =\,
(d) Y+ = -Y_ = Y,

2
Turin shows that the problem can be simplified as follows: Find U(y)

in xL which minimizes

where

T (U)^max[T(U), T (U)]0^12

*U t |u(y): U(-y) =1- U(y) for |y| <y}
1 1

U*(y)e" +[1- U(y)]*e
N Y

0 '

Ti(u> =Th. J „
2 "2y

and

a-v * „ y

sinhi-(Y - |y|)
X

cosh

N Y tanh -

T?(U) = -^ ^tT , a > 1,
2 P a> max —

av

Footnotes are listed on p. 25
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dy,

(2)

(3)

(4)

(5)



U = max U (y),
max Y (6)

The symbol U(y) is used for U(y). The quantities T (U) and T(U)

are the lower bounds on T set by the average-power and the peak-power

constraints, respectively.

3
We note that the assumptions (c) and (d) imply

1 - P(e)
Y = In

P(e)

The optimum feedback functions are:

4
Case a. = 1

U(y) = i for all |y| < Y,

Case 1 < a < a
, 5

1 + e
m

U(y) = <^
1 + e

-y.
1 + e

m

y < y < Y,
m —

H<ym>

Y < y < -y ,
— m

where

a

and

A Y[ey/(eY+l)]2(eY-l)/(eY+l)
(YeY)/(eY+l)H; ln[2/(eY+l)]

max U(y)

y = in -—— ,
m 1 - max U(y)

-5
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(8)

(9)

(10)

(11)



The quantities V = max U(y), Y and a are related by
y

V2Y(ey~l)
* = f(V, Y) ' (12)

where

f(V, Y) =V(l-V)(l+eY) -!- (in j~pj [V2 - eY(l-V)2]

- (Y+1)V2 +(Y-l)(l-V)2eY + In 2(1-V)

+ eY In 2V. (13)

Case a > a

U(y) =——- for |y| < Y. (14)
1 + ey

A typical optimum feedback function is shown in Fig, 2 (with

P(e) = 10" and a = 10).

NONSEQUENTIAL CASE

The system considered is similar to that of the sequential case

except for the receiver, which now acts as a nonsequential detector. The

receiver makes its decision at time t + T according to whether

y(tQ-f'T) - y(tQ) is positive (decision s ) or negative (decision s ),

where T is a constant.

As in the sequential case, the following problem is posed: Given

upper bounds P and P on the average and peak powers available

to the transmitter, and given a prescribed probability P(e) of an error

in the receiver's decision, find the signals s (y, t) which minimize the

-6-



I -
J I

1
.0

0
.5 0

4
*

i+
ey

1
I

fT
^T

u+
(y

)

/
/

/

U
(y

)

/
UJ

y)

se
qu

en
ti

al
/

tf
J

i
—

i
—

r

fP
(e

)
=

IO
"6

a
=

1
0

1
I

I
L

J
L

\
-
a

J
1

•Y

-1
2

-
8

-
4

0
4

8
12

L
,

t-
t..

t
ym

ym

F
ig

.
2

.
A

ty
p

ic
a
l

fe
e
d

b
a
c
k

fu
n

ct
io

n
.

Y



time T, the duration of a binary transmission.

Assumptions (a), (b), and (c), which were for the sequential case,

are considered to hold.

The problem can be stated as follows: Find U(y) in i\, which

minimizes

where

A

and

T (U) = max[T(U), T (U)] ,
° <VL l Z

<U = {U(y): U(-y) = 1 - U(y) for all y} ,

Nrt ,fio „ A

av ' -oo

w+iy/1-1.1-u^y/j

T.(U) =^5D2 ,
2 P or max

av

e±y/2 M
Q+(y) = exp

n/tT 0
-JT + y /t ) dr

(15)

(16)

(17)

(18)

(19)

t +T
^ 1 ° 0 2
R = — \ o- (-r)d-r.

0 *0

The quantities R and P(e) are related by

P(e) =j [l - erf(«s/f/2)] , (20)
2 10 A A

and uwov is given by (6). T,(U) and T_(U) are the lower bounds

on T set by the average-power and peak-power constraints, respectively.

-8-



The optimum feedback functions are:

11
Case a. = 1

U(y) = ~ for all y.

Case 1 < a < ax

^
1 + e

U(y) = i
1 + e-

-y
1 + e

m

where
13

and

[eY/(l+eY)]Z R
1 i

.oo

2 ^ooLNl+e7J Q+W+l
1+e'

supU(y)
* A y
v = Inym 1 - supU(y)#

r, . a. 14
Case a > of

U(y) =

1 + e-

for all y.

y ^ y >
— m

yl < V'

A

y < -y
m

Q (y) dy

(21)

(22)

(23)

(24)

(25)

PERFORMANCE OF THE OPTIMUM FEEDBACK FUNCTIONS

We evaluate the performance of the optimum feedback functions

by considering relationship of the error probability to the normalized

transmission rate,

-9-



R
A max ,,/vtj = -_ 9 (26)

where C is the channel capacity of the system and R is the
max

maximum transmission rate.

Some of these evaluations are similar to Horstein's but since we

present them in different forms and for the sake of completeness, we

include them here.

The channel capacity is given by

P

C= N **z (bits/sec), (27)

and the maximum transmission rate R is given, for the sequential
max °

case, by

Therefore,

R
max min T„{U) '

or, for the nonsequential case, by

1
R

max min l^fU) *
a 0

N In 2

P minTn(U)'
av «ul 0

-10-
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for the sequential case, and

N In 2

t, = ^—- , (28b)
P min T JU)

av *• a 0
<U •

for the nonsequential case.

First, we consider the sequential case.

Case a. = 1

Since, when a = 1, T < T , for all U, we have T = T .
1 — £t U &

Therefore, from (5), (6), and (8),

N
. m /TTX 0 Y tanh Y/2 /nrtl

min VU) =P 4 • (29)
"- av

Substituting (29) into (28a), and manipulating the result, we get

11 "" G(P(e)) - H(P(e)) (30)

where

G(x) = -x log2(l-x) - (l-x)log2x for 0 < x < 1, (31)

and

H(x) = -x log£x - (l-x)log (1-x) for 0 < x < 1. (32)

Case 1 < a < a

16
It can be shown that, when 1 < or < a\ the minimum of T

occurs at U such that T (U) = T (U), and that (9) satisfies the

equation. Therefore, from (5) and (9),

N
. _ /TT, 0 Y tanh Y/2 TT2 /ooxmin T U = •= '— U . (33

°)\ 0 P a max
"" av

-11-



Substituting (33) into (28a), and manipulating the result, we get

n = G(P(e)) - H(P(e)) ^2
max

(34)

where P(e) and U are related by (12) with a as a parameter.
max J r

Case a > Of'

17Since, when a > o>\ T > T for all U, we have T = T .
l c. U 1

Therefore, min T (U) does not depend upon T (U), i.e., a and

the performance of the system is the same for any a > a\ From

(4) and (14),

N.
Ye 2

— + Inmin TQ(U) = -
av

Y
e + 1 1 + e

Substituting (35) into (28a), and manipulating the result, we get

r\ =
1

1 " H(P(e)) '

Next, we consider the nonsequential case.

Case a = 1

A A

Since, when a = 1, T < T for all U, we have T = T.
12 0 i

Therefore, from (10) and (21),

N ~
A n rn£nT0(U) =̂ |.

^L av

Substituting (37) into (28b), we have

4 In 2
r\ =

R

-12-
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Case 1 < a < a1

It can be shown that, when 1 < a < a , the minimum of T

A A

occurs at U such that T (U) = T (U), and that (22) satisfies the
X &

equation. Therefore, from (17),

S . (U )
£ ._T. min max .,,_.

^ T0(U) = P ' (39)
^IJL av

where

__ N oo A

smi»(0m«) - — \ {u (y)Q+(y) +[1- v{y)] Q.(y)>dy> <40>
-00

U(y) being given by (22). Substituting (39) irto (2 8b), we have

2 In 2
r\ = -3 . (41)

2 S . (U )/N
mm max 0

The values of the denominator are given in Fig. 5 of Horstein

[3].

Case a > a'

Since, when en > a\ T (U) > T (U) for all U, min T (U)
A

does not depend upon T^U), i.e., a. Therefore, the performance

of the system is the same for any a > a\ The quantity r\ is

obtained by putting U =1 in (41). Notice that, when a > a\ U(v)
max » w /

A A

given by (25) minimizes T (U), i.e., T(U).

Fig. 3 shows the P(e) vs n characteristic with a as a

parameter when the optimum feedback functions are used. These curves

can be considered as lower bounds on the error probability that can be

-13-
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achieved with feedback systems of the type considered. The lower

bounds are achieved with the optimum feedback functions.

PERFORMANCE OF SUBOPTIMUM FEEDBACK FUNCTIONS

We have seen that the optimum feedback functions have, in

general, the form l/(l+e^). Since it is very difficult to realize the

optimum functions in practical systems, it is useful to evaluate the

performance of some feedback functions which are more easily

implemented. The evaluation may give us some idea about the

degredation of the performance of the systems caused by using

nonoptimum feedback functions.

A

Since the expression for T (U) is rather involved, we restrict

ourselves to the sequential case.

First, we consider the following class of feedback functions:

1
- K, 0 < y < Y

%c» U(y): U(y) = 1 2'
y = 0

I+K, -Y < y < 0

1° elsewhere

where 0 < K < —.

We compute the value K for which T (U) is minimized for

the given a and P(e), i.e., Y. Notice that since U*^ includes
K

U(Y) = 1/2, the expression for r\ for a = 1 is given by (30).

-15-



Substitution of U(y) of (42) into (4) and (5) yields

v2 , ,2r

Ti<u)=4^r{(H(eY"Y"1)+^"K (Y-l)eY +l

and

T2(u,-Aii2l=a(| +K)2.
av ff(e +1) \ /

respectively.

If we restrict ourselves to the feedback function

Ug(y) = \ [1 - sgn y] ,

we get, by putting K = 1/2 in (43) and (44),

and

N~ Y v ,
t (U) = -2- e -Y~l

V ' P Y ,
av e + 1

N Y

t,(u) =^2- Y(e -1'
2X ' P Y

av e + 1

By computation, we have

T1(U) I T2(U) £°r *IV
where

' A Y(e -1)
q; = i i

s Y
e - Y-l

Therefore, we have, from (28a) and (46),

-16-
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r\ = (In 2)
eY + l

eY - Y - 1

In 2

1 - 2P(e) - P(e) In
^, . for a > a

1 - P(e) - s
P(e)

(49)

and from (28a) and (47)

Y
.._. e+1 a In 2 »n = (a In 2) = 1 . p/ex for or < a .

Y(e -1) [l-2P(e)]ln * ,( '
P(e)

(50)

N ow we again consider ^LL . By computation, we see that T_(U)
K 1

takes on a minimum value for K = K ,
0*

then

TX(U)

_l e -Y-l
K0 ~ 2 " Z"""Y (51)

K=K
0

Y(e -1)

Notice that 0 < KQ < 1/2 for Y> 0. Since both T (U) and T (U) are

quadratic and convex with respect to K and T (U) is monotonically

increasing for K > 0, if

> T2(U) (52)
K=K.

min T (U = T U
11 ° l

K
K=K

(53)

0

If (52) does not hold, then the value of K which minimizes T (U)

must satisfy T^U) = T2(U). It is clear that the smaller value of K,

say Kj, among the two which satisfy T (U) = T (U), minimizes T (U),

-17-



Then

min T (U) TX(U) = T (U)
K=K !K=K

From (43) and (51), we get

TX(U)
N 2Y 2 Y

0 (Y-l)e - (Y -2)e - (Y+l)

K=K. av
Y Y

Y(e+l)(e -1)

Inequality (52) together with (44), (51), and (55) imply that K is

optimum when

a >
[(Y-l)2eY +1] 2
2Y 2 Y

(Y-l)e - (Y -2)e - (Y+l)

A '

= \

K is obtained from (43) and (44) as

where

and

and

T (U)

-Vt2 -2
Kl = 2A

A4 (l-I)Y(eY_1);

B£ Y(eY+l)+ (2-I)(eY-l),

N v0 Y(eY-l)

lK=K1 Pav <*(eY+l)
B +a-Vb2-a21

2A

(54)

(55)

(56)

(57)

(58)

The discussion above may be summarized by the expression

-18-



r]= <

G(P(e)) - H(P(e))

NQln2

P TJU)
av 2

'K=K,

N0ln2

P T.(U)
av 1 c K.

for a = 1,

for 1 < a < ct. ,
k

for a > or, .
— k

Next, we consider the following class of functions:

Uc(a) k — <U(y): U(y) =

ca+I, a < y < Y

cy + "7> -a < y < a

-ca + -r, -Y < y < -a

0 elsewhere

where - — < c < 0 and a is a fixed
2a —

positive value.

(59)

(60)

We denote by ^^U the collection of °W (a) for all positive values

of a.

Since *U^ contains 'TJ , it is clear that the performance

of *(jLc is not worse than that of <7lk, and since ^J. is contained

in *\kt the performance of % is not better than that of °IL
c

Substituting U(y) of (60) into (4) and (5), we get

N.

where

T1(U) =P cosh (Y/2) (Ac2+Bc +C),
av

-19-
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and

and

a2 Y 2 Y
A = — (3Y - 2a)sinh — - (a - 2)cosh —

- 2a sinh ( — - a

2

(|-a)- 2cosh(|-a),
Y /a^ \ Y / YB = -a sinh —- f—— aY + 1] cosh —+ cosh ( •=• -

Y Y
C = -r sinh —,

4 2

N
0 Y tanh (Y/2) / 1 \T2(U) - - - [j - ca j , (62)
av

respectively.

Case a = 1

Since the expressions for r\ for ^A. and for *^_r coincide, the

same expression must hold for ^U . In fact, letting a-*0 in (60)

gives (8).

Case a - oo

Since, when a = oo, T (U) = 0, the minimum value of T (U)

is equal to that of T.(U). It can be shown that °\L (a) is a convex
1 c

19function space and T.(U) is convex on °Vi (a). Therefore, for
1 c

any given a and Y, A must be positive. Then, it is easily seen

that

N Y

min T (U) = k —2- Y(e -1), (63)
°U.c(a) l av 4(eY+l)

where

-20-



1" 4AC if " 2A < °'
k = <

Since

min T.(U)

^c

we get from (28a),

r\ =

mm

a

if --|>0.

mm TX(U)

N Y. iN0 Y(e -1)
= mm k — -

a av 4(e +1)

(4 In 2)(e +1)
i

[min k
\ a

)Y(eY-l)

(64)

(65)

(66)

where k is given by (64).

Case 1 < a < oo

It is easy to see from (62) that for any a > 0, Y > 0, and

a > 1, T (U) is quadratic and convex with respect to c, and that

c = l/2a > 0 gives the minimum value of T (U). Therefore, in the

range c which we are interested in, i.e., c < 0, T (U) decreases

monotonically as c increases.

Moreover, for any finite a,

N.

TX(U)

and

-21-

A 0 Y tanh (Y/2)= limT^U) =
c=0 c-^0 av



T (U)

Therefore,

N0 Y tanh (Y/2)
= lim T,(U) =

rt 2 P 4ff
c=0 c->0 av

TL(U) > T (U)
c=0 L c=0

Then, if T (U) = T (U) has valid solutions for c, at least one of
JL Cd

them gives min "^ (U), and min T (U) is given by
^c ^"C

min min T (U)<,
a <U(a) 0

c

If T (U) = T (U) does not have any valid solution, T^U) > T£(U)

for any value of c. Then min T (U) is given by (65).

For both cases, r\ is obtained by (28a).

The relationship between the error probability, P(e), and the

normalized transmission rate, t|, for the best functions within aX,

L\- and °Ul (for each ex and P(e)), and also for the function
K c

U , is illustrated in Fig. 4.
s

Since the curves for ^-^ a*id lJ- coincide well for a < 20

and since the performance of the best function in lJL lies between
c

the performances of the best functions in U_ and tL, curves

for *IA, for a = 3, 5 and 10 are disregarded in the illustration.

DISCUSSION

It can be seen from Fig. 4 that the best feedback function in

lM. gives an excellent performance for all the possible combinations

-22-
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of P(e) and or, and that the best feedback function in "U^ also

gives a good performance for the values of P(e) and ex of practical

-5
interest, say P(e) < 10 and a < 10.

Note that when ex < oo, it is impossible to achieve P(e) = 0

with any feedback function. However, if ex = oo, we have P(e) = 0

with (see (36), (49), (59), (66))

r| = 1 for the best function of *U., U(y) =

and

1 r n
r\ = In 2 'for U , U(y) = -|.l - sgn yj ,

s £•

T! = In 2 for ^ U(y) =j [l - sgn y] ,

tj = r\ for the best function of <3LL ,
0 c

1 + eY

o, 2. 55 < y

-0.392y +i |y|< 2.55

.1, y < -2.55,

U(y) =

where r\ lies between 0.977 and 1.
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FOOTNOTES

1 Turin has formulated the problem in more general terms.

2 (40) and (41), [l] .

3 (6), [1],

4 See p. 405, [l] .

5 (27), [3] . Notice that (27) is valid for any a > 1. It is mainly

for convenience of discussion that we consider the cases

separately.

6 (33), [3] . Also see [4] . Equation 10 is obtained by substituting

(14) into (4) and (5), and equating the results. For further

discussions, see pp. 13-14, [5] .

7 Equation 12 is obtained by substituting (9) into (4) and (5), and

equating the results.

8 (48a), [l] . Turin has shown that (14) is optimum if

a > a[ = -In P(e)/ln 2, the approximation holding for a » 1.

9 (15) and (17), [2].
2 2

10 In (6), max U (y) is to be interpreted as sup U (y) whenever
y y

it is necessary to do so.

11 See p. 9, [2] .

12 (44), [3] . Notice that (44) is valid for any a > 1. It is mainly

for convenience of discussion that we consider the cases

separately.
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13 See pp. 13-14, [5], for a similar discussion.

14 (22), [2] . Turin has shown that (25) is optimum if ex > a
*j

=-4 In P(e)/ln 2, the approximation holding for a » 1.

15 Shannon, C. E., "The zero-error capacity of a noisy channel,"

IRE Trans, on Information Theory, Vol. IT-2, pp. S8-S19,

September 1956; also see footnote 4, [2] .

16 See pp. 13-20, [5] .

17 See p. 405, [l] .

18 See pp. 13-16 and pp. 34-36, [ 5] .

19 See p. 11, [5] .
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