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Lecture 1: Circuits of R's and Cb which can amplify..

. The analysis of time-varying networks say he approached from two standpoints:

1) ^y using the mathematical theory of linear differential

equation

2) By extending the theory of fixed circuits«

The problem with using the first approach is that the equations which arise from

circuits only constitute a small class of all linear differential equations.

Hence, the second approach will he employed to ascertain which concepts of fixed

circuits generalize, and what modifications must be made to obtain analogous

quantities for time-varying circuits»

A time-varying network element may be obtained by mechanically varying a

linear element er as a small signal approximation for a pumped nonlinear element „

Fixed AkV u'' T~V

E =* KQ

Q = CE

1
K =

C

E « K(t)Q

Q - C(t)E

K(t) =
era

For a nonlinear capacitor,

Q * F(E) a

Suppose now that the voltage E driving this capacitor is composed of two elements

the signal voltage E and the pump voltage E :
8 P



P

Suppose further that

|BBl«|^|

(this is a small signal approxfe ;;nen

Since

for no 6ignal (ice., E#
s

whex e

8L ES =̂ ^8

o> ' %

-- 0), one can say

Q8 . C(t.) BB ,

C(t) *1
~6E

E

Such a time-varying capacitor might be obtained as shown below.

Since the energy stored in a capacitor is

1 ?

2 KQi '



if K inc .3, then the b1 energy increases. A simple netwoi

a time-varying capacit on is shown below„

vi° di \ *2-Jt

%•

When C is largest (thus V is smallest) charge will be transfered from C. to C
X X J. x

until V- and V are equal. 5hen, as C decreases, V increases and there is no
•L X X

current flow through cL, but charge is transferred through dp to C. until Vp and

"V are equal, Thus, the signal. V\. at C. is carried to C at the higher level Vp,

In the steady state, the amplification approaches the limit

v, = c . "
1 x min

If V. were initially negative, however, no such amplification would occur because

of the diode orientation* Tils problem can be overcame by using a tiice-varying

resistor as a switch (each properly synchronised) in place of the diode* Ultimate

ly, one might obtain linear, time-varying networks, and then replace the time-

varying resistors with diodes.

-S+ or

;>. o.

Pictured below is a low frequency amplifier which takes advantage of the effects

described above.
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TU
X

A disadvantage is that only voltage gain is provided (as with grounded base tran

sistor). To carry the transistor analogy further, one may consider the time-

varying network analog of the grounded en transistor shown below.

V

In the steady state, the voltages approach the lis.

hence.

V. - V0 C
1 2 x max.

'1
C , *

c ram

x max

'x rain
- 1

On the average the current input is aero; be being an analog of the grounded

emitter transistor, this circuit is an analog of a magnetic amplifier.

One might obtain a multistage amplifier with both current and voltage gain

by cascading a number of the above described amplifiers as shown below.



V
/.

1
7\

7
-J-

This might even be made into a feedback amplifier by the addition of a feedback

element as shown below.

vWv-F

By considering the simple network shown below with positive feedback, one can

easily see how it is possible to obtain real mode instability with time-varying

R's and C's.

Positive Feedback

Time-varying capacitors may also be used as transformers» Consider the

stationary network shown below; current flows through the resistor until the
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I

1*—

-:- a.

w

voltage V between terminals one and two goes to aero. But the voltage at node c

i6 not necessarily zero; one cannot 'bell external3.y (without using c) whether

there is hidden charge on the capacitors. If the capacitors are time-varying (as

below) the voltage V goes to sero on the average, but the voltage never becom

identically zero. If one wished to create a Thevenin equivalent for this^ situa

tion, it would take the form shown below* The only instance in which the

V(t)

G(t)
A~

capacitor C(t) would be time-invariant would be when

C^tJ" +SgffcJ - constant*

The generator v(t) compensates for the voltage difference created when

C^t) s^C2(t).

6



•*c may x obtain an

•r. C. ) ere li (i.e., one is large when

is small) and vary much faster than the signal voltage E • It is not necessary
s

-A-Vv-

c2(t)

E
/ c,(t) IL

that both of the capacitors vary; replacing one of the time-varying capacitors by

a stationary capacitor and utilizing a half-wave rectifier, one obtains the follow

ing network which has been previously discussed.

E *L

half-wave rectifier

Similar circuits have been described by W. 3?. Mason and R. F. Wick, and also by

J. Ro Baird:

JMason, W. P. and Wick, R. F., "Ferroelectrics and the dielectric
amplifier", Proc. IRE, Vol. h2, pp. I606-I62O, Nov., 1952*-.

Mason, W. P., "Ferroelectrics", Proc. of the Symposium on the Role of
Solid State Phenomena in Electric Circuits, Polytechnic Institute of
Brooklyn, April, 1957-

Baird; J- R, "Low frequency reactance amplifier", Proc, IRE, Voir 51,
pp. 298-303, Feb., 1963.



Variable networks containing capacitors can also be used as transformers.

Consider the sequence of events shown below.

U /2

0 1'

u.

1 Vx/2

r

T.
fv2

1
'B

1
'B

8

i i
'B V2~2

If this cycle of switching the series combination of C , C and C. to the parallel

combination of C-, C and CL and vice-versa is repeated the voltage on C?B ap

proaches half of that on C., but C_ receives twice the charge as that taken from



C.. Thus, the circuit acts like a transformer with a 2:1 voltage ratio which

works even at d.c. J

In the above analyses the-tacit assumption that the signal frequency is

much smaller than the pump frequency has been used. It might be possible, how

ever, to amplify signals of frequencies comparable to that of the pump,, As a

starting point, one might consider the magnetic pulse regenerator shown below<,

Input
Pulses

Clock

Pulses

OJypical time relations are shown below.

Input

Clock

Output

Steering diode

Output
Pulses

"I '—I S : 1

The same effect can be obtained by using a nonlinear capacitor as a time-varying

capacitor. For the circuit shown below where C(t) is large during the signal and



small during the output (the pump is equivalent he clock), there is possible

retiming, reshaping and amplification.

MEW:mt
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Input -/
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Lecture 2: Properties of linear, time-varying transducers of finite orderc

I. References:

1. C. A. Desoer and A. Paige, "Linear Time-Varying G-C Networks: Stable and
Unstable," IEEE Trans, on Circuit Theory; to appear June, I963.

2. L, A. Zadeh, "Time-varing Networks—I," Proc. IRE, Vol. k$, pp. 1488-
1501; Oct. I96L

3. So Darlington, "Time Variable Transducers," Polytechnic Institute of
Brooklyn, Proc. of the Symposium on Active Networks and Feedback Systems,
pp. 621-633; April, 1960o

IIo Background.

Much of the mathematics to be presented here appears in texts or classical

references. The purpose here will be to investigate the external properties

of linear transducers of finite order (characterized by Variable coefficient

differential equations of finite order), and to attempt to point up the

similarities and differences between them and lumped stationary networks.

IIIo Time-varying Linear Transducers.

Consideration of the operator notation

P s
at -

leads to many useful analogies between fixed and time-varying networks

A. Network characterization,,

lo Fixed circuits:

where A(e) and B(s) are polynomials of finite order.

2. Time-varying circuits:

*U)>.
Finite

Linear

Time-varying

» arft)



where

12

Ay(t) - Bx(t),

kA=J] a^p1
k=l

m

B=J2 v^k •
k^l

3o The essential difference is that the a. and b are functions of time

for time-varying networks.

Bo Solutions of network equations.

1. Fixed circuits:

Ay(t) - 0 =~>y(t) = 2_j \ e >
k=l

Bjt
$(, (t) « e are natural modes.

2. Time-varying circuits:

Ay(t) =0=-, y(t) =]T]\ flfk(t) ;
V-I

0, (t) ere basis functions.

3. Since for a fixed network

B.t

0k(*) =e j

there is an analogy between poles (s. ) and basis functions (0. ).

The problem is that the s Js are relatively easy to find compared

to the 0k8s in the general case.

Co Zero response»

1. Fixed circuits:

m

0 =Bx(t) *-^x(t) » Y~* C eV



2. Time-varying circuits:

m
s .t0=Bx(t) =5> x(t) = Y^ C e «*

3=1

z.(t) are zero response functions.

3. These zero response functions are those input functions which yield

the same effect as no input at all. In this respect, they are analo«

gous to zeros of stationary network functions; in fact* for a fixed

network

s.t

Zj(t) -e* .

where the s's are the zeros.
J

IV. Solution for the Driven Time-varying Network.

A. Impulse response:

Suppose that the input is

x(t) • 5(t - t),

a:a impulse applied at time , "then the impulse response takes the form

n

y(t) =J2*kM \{X) '
k=l

B. General response:

The response to an arbitrary function, x(t), is

y(t) " j XX(t) \(r) x(r) d7r
*co k=l

(for a causal network).

C. Fixed circuits:

\ n

y(t) - f 2 *fc(t) \{Z) x(x) *z 9
*oo k=l

where

13



(J, is the residue).

-\

k

and

14

wk(r)=Jke

Do .Explicit forcing function:

Suppose that the forcing function is f(t), i.e., the network equation

is

Ay(t) = f(t);

•&hen one has the solution

\ a

y(t) = fEVtltfk0(tlf(t)d •
*4 k=i

Here, the solution for the special case

Ay(t) = 8 (t - X )

would be

n

y(t)- XX(t)\°(r)'
k=0.

I. Classical Green's function theory, coupled with the constraint of

physical realizability, gives

n

J2 v*> \°™ -°
k=l

n

£ KM \°M - o
ML

J2 ^(nrl)(t) \°w -o
ML



ML n

2. For the input x(t) the solution takes the form

\ n

**> -j XX<*> V<*> [Ev*> ;4x(^
^od ML - 3=1

d^

Ey repeated application of integration by parts,

ix) at »u(r) v(r) -J u'iz )v(r) d* ,fu(-tf) V

one ultimately arrives at the expression

v*j • E("i)3

The expression (in terms of t)

m

which operates on W , is of course the adjoint of the original operator

n

B=Evt)pj"

3. References:

Friedman, Coddington and Levinson, Hildebrand (Meth. of Appl. Math.).

V. Inverse problem: given the basis functions, find the operator A.

^V** V<*>]

y(t) y(t) . o • y(n)(t)

Ay(t) • K(t) aet

^(t) . .

.... • o o o

*„<t) #nu> • • . 0n(a)(t)
where K(t) is an arbitrary nonzero multiplier. Note that

15



y(t) » flfk(t) —^Ay(t) =0

as two rows of the matrix are the same — this goes for any y(t) which is

a linear combination of ^.(tj's.

A. Fixed circuits:

1. Distinct poles,

5»k(t) =3^ . * ,

etc.

A V
Ay(t) «K(t)l e

Ml

If one takes

K(t)
k=l

y y

1 s„

o o o

O O 9

IS 0 .
n

Xn)

n

a

n

Ay(t) becomes a differential equation with constant coefficients

2. Multiple poles,

0k(t) *e"**
s.t

The above method easily generalizes.

B, Time-varying circuits:

Assume

0k(t) =H^t) e** ,

16



where H. (t) is periodic; this would be the case for periodically variable

networks from Floquet theory. Actually in the most general case one

might have

etc. The form of H. (t) might be as complicated as

oo co

V*> -E E % eos (ff0Ji* *fMa +v •
«r=o #=o

Under the first assumption, one can derive the differential equation from

the basis functions. For the case of multiple poles^ this cannot always

be done.

D„ 0|pen problem:

What is a general class of such bounded coefficients for differential

equations?

VI. Operator Manipulations

A. Operator identity:

d / \

p =at ' as a^ '

pax *^ax)

b ax + ax

= (a + ap)x

/. pa « a. + ap

Note: a = const =^- a and p commu

B. Cascade of operators:

• i.4unpi(p + a) (p +b)
7r

y a (p + a)x

y2 •> (p + D)yx
assume 1st order

17



•'•y2 =(p +b) [(p +a)x]
= (p +b)(p * a)x

o

* (p + bp + pa + ba)x

* I p +(b +a)p +a +ba~] x

Reverse order

(p + a)(p + b) • p + (b + a)p + b + ba

£ (p + b)(p * a)

These two operators do not commute unless

a » b + const.

C. Factoring:

y2 a As

Attempt to put this in the form

*» D

A * CD

I* 0t/ •••* $ are basis functions of A, choose $L, ..., ^m, m<n to

be basis functions of D (Say the first m — the order of the original

$*b can be arbitrarily rearranged); then,

A $. = 0 =^CD 0. « 0 , k * 1, ..., n

C(D d ) = 0 « C(0), k « 1, ..., ra,

as D jt e 0, k « 1, ..., m.

But

C(D flf ) = 0, k » m+1, ..., n;

18



.*. D & must be the basis functions of C for k = ra+1, ..., n.

D can be found as in V from $-, ..., Jf as an mth order operator; C

can be found as in V from D flL^n, •«>., D 0 as an (n-m)th order opera

tor.

Do More general cascade:

X w

h>\
y-t

VB2

Vi - v

Vs =Vi •

The problem is to find an expression

Ay2 = Bx .

Introduce arbitrary operators M and N; then,

NAgy2 =HB^ .

Let

then

Bence

where

MEW.mt
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MA1 = HB2,

^2 -»Vl"MAlyl"1®lX

A = NA^ and B = MB- ,

M^ » KB2 .

19
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Dr. S. Darlington

Lecture 3: Stability :ks of Resistors

I. Review of Some Matrix Algebra Formulae.

0 = scalar ; A, B, X, Y » mati'icas

A. Operations on matrices.

X(A + B)Y = XAY + XBY (distributitive)

$XY » X$Y = XY$ (scalar commutes)

(XY)* « Y*** (transposition)

(XY)"1 = jTV"1 (inversion)

B. Derivation of soma matrix functions.

pX2 a XX + XX /- 2XX

pXYZ » XXZ + xfe -J- XK&

xT^ix""1
,r\t

Ptx-1)

Pr =

pA0 a 0A + #nA

pAe^ =e^(0A +pA)
C. Some operator identities.

pA a A + Ap

p2A aA +2Ap +Ap2
2 * 2

pAp « Ap + Ap a « pA + p A

D. Matrices of order one (scalars).

W,V « column matrices

Lag 19ft

If Y*' =Y, then W^V +V^tf, V^V aV^YV a|P( v*YV) -|V^YV.
If Y* «-Y, then V*YV a-V4? m0.

H. Background.

A. Assume all time-varying R8s and C's are positive and not discontinuous-



B.» Network equatic

I = (G + pC)E,

where

I a

V I i
n

the matrix of branch currents, and

E

S

the matrix of node voltages; G and C are time-dependent nxn square

matrices.

C„ For the given graph,

the simple branch relation is

E
i

~ datum

H
K

I

since for the resistance
-V

and for the capacitance



or

D. Further assumptions.

1. G a g, C a c for the network matrices.

2. G is a positive definite or semi-definite matrix. C is a positive

definite or semi-definite matrix. These conditions can be assured

hy a suitable choice of network variables (see Desoer and Paige).

III. Formulation.

A. Pure mathematical approach.

Let Q « CE, E a c" Q; then I = (A + p)Q, where

A = GC"1.

The mathematical approach degenerates at this point to a study of this

specific first order differential equation which characterizes the

network.

B. Circuit theory approach.

I = (G + pC)E a (G + C + Cp)E

IV. Stability Conditions by Studying the Power for the Unexcited Hetwork.

A. Power into network:

hVk-B

E^G +C+Cp)E

E GE + E CE + E CE

=tfo& +I^CE +^jpE^CE (since Cac*)

.\ PaE*(G +|6)E +jj^GE .
B. A "symmetrical" expression for the network current can be obtained from

the following two expressions for I:

I a (G + C + Cp)E (1)

I a (G + pC)E . (2)

22



Transformation of variables:

Define the instantaneous transformation

A A -h
E = NE , I =0 ,

Then

I={H* [<J +gC +|(Cp +pC)] N Ê.

Expanding this, one obtains

I =N*(G +|6)NE +^CpKE +^pCKE.

But

I^CpN a^CNp +I^CN

and

¥ pCH = iplS^CH -. ^CN

Define

A

G = H*(Q +fc)H
A

C = H*©!

J = nftsi - N*CN <

Note; J is an antimetrical mat:

J* « - j
•

Moreover,

a*
A

a G

and

at A
= C .

A nonsingular transformation matrix N implies G and C are positive-

definite. Pick the matrix N so as to simultaneously dlagonalize the

A A .

matrices G and C (this is well-known from math); i.e.,

C a N*CN au (the identity matrix)

23



G=r(G +|C)N =-J^ « . |

D. Power in the new variables:

X - (-JL + Pu + J)E

p - A . ttftt - W

.'. P =sfy-.A. +pU +J)E

Since j a - j,

E JE a o ;

therefore,

P - 8*(-JV-+ PU)B.

Or

p--£*A2+§>E \J
k»a w.

0

n

V. Stability of R-C Networks with Periodically Variable Elements.

A. Unexcited network

0 a (G + pCjE^.

*V -HE,.
A +

I = N*I a 0

B. H will be periodic, as will be a...

C. Suppose

E<r cH<re '

where Eg- is periodic; then
a a «**
Er " H<re

where

H- « NH>

Dafine

V c H^e° '

24



where 0 is a scalar and is periodic in time;

then

B

E<r =Fcre
«*-*

The equation governing the unexcited network is
s t-9

0 =(-A +Pu +JJ^e * .
But

s^t-9 . -, S<rt-9
&ce a L(s<r " 9;F<r +F<rJe

Therefore,

o = [(8<r - o)u - A +p +J]v-
One can premultiply this equation by F^. to obtain

0 =F<r [(v - 0)U - A +I*J+j]F<r.
Since

F^JF^ a0,
this becomes

n n

F,.2 +ip Y^ Fk2
kal kal

Everything is periodic, so one can take the average; e,g.

Over one period then

ave |p V Fk2 =0.

If Ffc is bounded, but not necessarily periodic, this average can be taken

over a long interval; then
n

*E
kal

Finally one obtains

F —* 0



L kal

where the A, *s are the roots of
K.

det [ AC +|c +gJ a0 .
Consider the instantaneous minimum and maximum eigenvalues

flmin l Al* ' An>

and

amax - ,uax f*l' •••' *n3'
then from the above (by adjusting 9 so that

and

^min +ei = const- =ave *min

"A + ©« - consto a ave A
max 2 max

in each instance) one obtains

ave *min ~ V * ave *max

If

then

s > 0 + } , for all time,

0 = ava

r n

E<
*~ kal

"

8<r-°-^k)V
...

would be impossible (similarly for s < 0 + "A . )
min'

MEW:mt
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]5r. So Barling-iv

Lecture kz Stability of Time-".'••• .. Two-Element-Kind Its.

I. Complex 1 is.

For a fixed network the basis fui form

V . •«* ,2 sa*
e i te , o e , . . .

In the noti-degenerate case, for time-varying networks, one might have

or

where H , II are periodic. Could use complex notation or let

then

. (v^P*
J**- e

would be "basis functions". These would represent the actual basis functions:

s ,t

^real e

•a*
%ime *

where %-rpan aa& ^rim are no* aeeessariiy periodic but are still bounded for

large t. Hence, F- is still bounded.

II. Second-order example.

A ' ** °
0 7\

(s \



and

Suppose

and

then

Since

then

implies

0 J,

~J12 °

/.0-(.r.9. AX)F +F +J^

0aave [(.,- 9- A^2 +(., -0- ^)F^2 ]

v- *i + G

\> *2>

Oaave^^X^2]

*1 ~ ^2 > ° '

F so ;
^2

0" *^

v°
But this is an incompatibility. Thus,

III. Analysis of time-varying R-C network on mesh basis.

E « (K + Rp)Q



EajK-I R+|(Rp +pR)1 Q
Through the equivalent of a frequency transformation, the mesh analysis of

R-L networks is equivalent to the nodal analysis of G-C networks, etc.

IV. Time-varying L-C networks.

Let

( 5V is the flux); then the network equations become

I a (S + pCp) <§ .

where

S = I.""1 .

The power is

P a E^ a 1*1 ;

hence,

*--§$*«$ +§ 1*6$ +|p(itflJ) +|»(|cj).
Far stability bounds, transform the power relation (compare to R-C case).

I » 0 a=^P » 0 .

Basis functions:
SJt

& a $ a He (neglect degenerate case),

or

Bjb+Q

sj;-*e

Substituting these in power relation,

0•F<r*[<V+•» -Is] V+V* [(V+4)c +i5] V
+|&*Bt *|PFr'^ff •

29



As before, one obtains

0=ave {T* [(.„, +9)8 -§s] ^ ♦ »ff'* [(8#.+e)C +§c] Ff'}.
This expression is still not in diagonal form; hence, let

and pick N so that

HSH* = U

and

|HOT*--A
Furthermore, introduce still another transformation

so that

and

Hence,

v - »•V

IPCS** a u

| ..«•*- -A
n

0=ave ]̂P (S(r +0- "Ak)F 2+£^ (8<r+ ©- ^)F 2J .
kal K k«l

/ * \ / * ' \Again (s_+ 0 - Xk) end (s + 9 - ?[.} cannot be positive or negative for

all k and t.

Theorem;

ave *> . £ s^ £ ave "X *
/wmin - 6^ - ^xcax '

where X^ ( Amnv^ i8 **ie instantaneous minimum (maximum) of the eigen

values in the combined set

and

These eigenvalues are obtained from the equations

aet [7lS -|S] »0

30
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and

det [a'c +i cj =0 .
For a fixed L-C network,

S a C = 0 ;

hence,

*k " \ =° ' tar a11 kD

This is the well-known property of no damping for L-C networks.

V. R-L-C networks.

The problem here is that the resistive effects are only associated with one

kind of energy storage element. On the node basis

I. « (s +Gp +pCp) §

leads to

det [7lS - is] a0
and

det [Ti'c +i C+g] a 0,

A similar relation arises on the mesh basis.

MEW:mt
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Lecture 5: Time-Varying IC Networks,

I. A property of the basis functions of LC'networks.

If

bhen

where

Proof;

(s^+^Jt
BLe is a basis function,

v -(a^+JcD^t
H^e is a basis function;

H__ and H_. are different periodic functions

The solution to the driven equation in Green's function form is

r >$(t) = 0x(t) w^-e) i(r) ar +I 02(t) w2(t) i(-«) at.

0.(t) are basis functions.

}
$(t) = I 0(t) w(-e) i(r) ar

J*

*-Wj, *2> "J
an

w \ f
2a

«-n —>

Must show that $(t) is a solution to the differential equation

(S + pCp)# = I •

}
$(t) -#t) I v(-k) i(r) dr



33

pf * [P#] j W(1?) I(?) dt +0(t) W(t) I(t)
*1

But physical realizability dictates that

#(*) W(t) a o ;

Is

Hence,

f.% p# =[rf] J w(r) Kr) d
'i

pCpf =pc 1[tf] f w(r) i(-r) drV

a [pCp^] j w(r) i( r) az +c$rc.
*l

(s+ppp)$= [(s-pCp)^Jf w(r) i(r) dr +okc
\

But %

(S + pCp)0 = o ,

as <$ is the solution of the homogeneous equation,

.'.(S + pCp)f a o^wi .

But

. (S + pCp)f = I

is given; therefore it must be true that

Ojfol a I,

or

C$tf au (the identity matrix).

Succinctly stated, the conditions have become

0(t) W(t) » 0 ,

C(t) #(t) W(t) = u ,



(S + pCp) 0(t) a o .

From the second condition, one obtains

0fW =C"1 ,

or, from the first and second conditions,

(Mi*
But

4

is a 2n x 2n nonsingular matrix

i\ \h ?J l
«— 2n —*

therefore,

W i IfiU
We wish to examine column <T of the basis function matrix

(where p_ a s^ + ♦fca^), and column (T of

Column C of

(?)
is

%•! i*te5^ .

Ho

34



Ehus,

0 H

B'

H

H'

pt
e X ppt 0

e

V

D

where f„,} is periodic and D is the diagonal matrix of exponentials

Hence,

w

W = D

and

w*-

W

H
-,-1

0

H'

D
.-1

h r1/ o
-1

H'
.-i

h r1 / o
-,t

K"
.-1

h r1 # o

H1
,-1

•1

t , -p.t

9 -n + °-P2*
e

0 -pat

But W is also a solution to the given differential equation:

0W a o (1)

C0W a U (2)

(S + pCp)0 = 0 . (3)

The second condition leads to

P[(Cp^)wJ =0
or

(pCp#)W + (Cp0)W = 0 .

Adding S#W a o to both sides of this equation yields

(S0 + pCp0)W + (Cp#)W « S^W a o .

35



But, from the third condition, this equation reduces to

c^i =o.

From the first condition, one obtains

\tt + 0W a o .

.'. O0W a - c#vr ;

hence, from the second condition

Oft a - u

or

0WC - - U.

Differentiating the last result, one obtains

0WC + #p(WC) a o .

Now let

# •

0WC a $WF ;

therefore,

0[W +p(WC)] «0,
which expands to

h TW1F +p("lC)J +^2[V +p(*2C>] a° •
Choose F such that

WXF +p^C) «0 j
hut

02*0;

therefore,

WgF +p(W2C) - 0

as well. Hence,

W + pWC - 0 .

But

optic a swc

36



(0#)(WC) a swc .

Moreover,

P[(QP0)WC] a (pCp(0(WC) +(C#) p(WC) .
Thus, premultiplying

W + p(WC) = 0

hy (00) yields

(<#)(WF) + (<#) p(WC) a o ,

or

or

or

p ♦ p [(Cp^)wcJ - (pcwO(wj) »o,

F+p [(Cp0)Wc] + (SfO(UC) a o,

f + p(o0wc) - s = o .

But, from above,

C#tf « o*

/. F - S a 0 ,

or

F a S .

Therefore,

WS + p(pW)C a o o

Or, taking the transpose, one obtains

SW* +pCpW* =0,

or

(S + pQp)Wt =0.

Thus, since W is a solution of the equation, the basis functions have

the exponents

e

as was shown above. This result could also be obtained from the classical

37



theory of Green's functions for a self-adjoint differential operator

(ref: Courant and Hilbert):

S + pCp is self-adjoint .

The counterpart of this theorem in fixed networks follows from

= a s [even function of SJ .

.*» y * [even function of Sj j
" I

thus, the poles occur in + pairs (quadrantal symmetry).

MEW:mt
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Lecture 6: Transformations, Equivalent Circuits, and Synthesis.

I. New '.Cnterpretation of Synthesis Problem.

A. State equations:

K(t) 0(t) w(t) i(x) az .•1
B. But the actual equation for a single transducer might specify the

output E.(t) for an input IK(T):

E(t) = [row jof 0(t)J
-co

::

[column K
of

. W( ) J
ik(t) ax .

39

C. The problem of filling in the entire 0 and W matrices given but these

parts is an alternate statement the classical network synthesis problem.

B. The network constraints (e.g., reciprocity) become constraints on the

matrices 0 and W.

II. Equivalent Circuits by Transformation.

A. Problem: Given a complete circuit, find its equivalents.

This can be restated as in the R-C example where

I = (G + pC)E ;

when G and C are given, one seeks new matrices G and C via a transformation



which leaves certain desired components of I and E in The moBt

general transformation might have the form

B « NE ,

I « M*l j

then

Recall

then

where

and

I a M^G + pC)tfE

M*p = - M* + pM* ;

A A A A
I a (G + pC)E ,

G = M^N - mW

A t
C a M°CN

A restriction (for reciprocal networks) is of course that

At A
o «a

and

M and N must be found which preserve this properly. N might be chosen

arbitrarily, and then a compatible M could be found•

B. State equation approachr.
A

E*a N~"^

I =(mY1 I

But the state equation is

t

E(t) = f 0f(t) W(*tf) i(*) at.
Sod

In view of the above transformations, this relation becomes

40



E(t) =^(t) E(t)
t

*00

.A A

Consequently, in the new (E - I) coordinate system the matrices

N-1(t) 0(t)

and

play the roles of <$ and W in the old, respectively.

C. Special case*

Assume that the element values have periodic variations, and that all

coefficients of the exponentials in the fundamental matrix are periodic:

-\ 0(t) =H(t) DQ(t)

where H(t) is periodic and

St

e «+ °

0 '• 8a*
e

Moreover, as was shown last time,

Hence, an acceptable transformation is to let

N(t) aH(t)

and

then

M(T) aQ(^) ;

E(t) =J De(t) d^c-b) i(r) ar[t) =

-0D

B^t-Z)

-00

s2(t-r) lxi(r)dr.

sn(t-r)
e

41



This equation is equivalent to the canonic differential equation

0
+ pU

A

E,

For a fixed network, one diagonalizes a matrix to find the basis functions;

for a time-varying network, one needs the basis functions to find the

diagonalization.

B. Howitt (K-afflne) transformations.

Suppose one is interested in I, and E. and nothing else (one port network).

To keep I. and E_ invariant under the transformation N and M must be

partially specified:

1

N a

Then

M

A

El - Ei '

For two-port equivalence,

Li

and

N

1

0

0

1

> 0 ... 0 \

) 0 ... 0 j

An open question: are there enough coefficients left to meet symmetry

requirements?

42



E. L-C case.

I a (S * pCp)E

is self-adjoint. Similarly,

I a M^fS + pCp)KE

must remain self-adjoint. A sufficient condition (which is probably

necessary as well) is

M a H .

The most general self-adjoint, second-order differential system is

A A A .A
I a (S + pj - Jp + pCp)E ,

where

At A
S « 8 ,

A+ A

C = C ,

J* =-J ;

the L-C circuit gives a special subclass of this general self-adjoint

differential operator where

J s o .

III. Synthesis of Network from Basis Functions.

0 a (G + pC)E

rll -*u
G =

-G
12 '22

C a U =

1

0

43



/ fJ
\ / ^2)

Ith« above equation (.and separating real and

btains

- y:-G12 +*1 "°

'As - , * y2 . 0 .

: l umed jymroetry of G, we have four equations in th??

For compatability, the determinant of the

restri( *ions:

:

c



r,2= e^f>s2>
chzn

0, Pi + 0. ft
CO

and

2 Q2 + *
fi - rv v^ •

2©1+03
P2 afMr 92

But (6. -©2) has zero average value; therefore, (9., -©2) must have zeros.

Since p. , P2 ,and a, are all positive, (©2 +to) and (6. +o>) must both

have zeros at the zeros of (0. -62), and, furthermore, they must be of op

posite sign. Hence, atypical plot of 6- and 0g might be as follows:

-<D

Note: all intersections at same level, where

0- » Op a -co

One can also obtain damping and complex modes from time-varying R-C networks,

0 a (G +pU)E^

Consider the transformation N so that

Qa(H^N +N^NjE^ .
Fix N so that

45



Then

MEW:mt

5-21-63

0 = (iftar + aN% + pK^E- e"0* .



Br. So Darlington

UNiVERSITi" OF CALIFOPIOA
Ele; eering
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Lecture 7: Properties of Multiterminal Networks without Transformers.

References:

a) IRE Trans, on Circuit Theory, Dec. 1955; papers by

1. Lucal

2 e Darlington

b) So Darlington, "Some properties of multiterminal RC Networks,"
IRE Int. Conv. Record, Part 2, 1962.

I.. Some general concepts of three terminal networks.

A three terminal network is commonly viewed as a two-port network in

which the two ports share a common terminal* Asin Fig. 1 the two ports of the

network share terminal 3- Given the network with no further restrictions, we

can form two other two-ports by using terminal 1 and 2 as a common terminal•

E.

Fig. 1. A three-terminal network as a two-port.

Thus a three-terminal RC network can be represented by the block diagram

in Fig. 2 below.

yn(s)

V>

R and C

no

transformers W->

6

3

Figc. 2. A three-terminal RC network.

-« 2
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A roe the so-

called indefinite matrix Y:

r"
Y -Y -Y111 *12 X13

-Y
12

Y -Y*22 x23

"X13 *"Y23 '33

Corresponding to the general three-terminal network there is an equiva

lent it network as shown in Fig. 3.

2

lO-

Fig. 3. Equivalent * or A

It can be shown that

Y22 " Y12 +Y23

Y33 =Y13 +Y23

Thus, the external behavior of the -three-terminal network may be speci«

fied in terms of Y-p, Y. , t (as a function of frequency) rather than Y^.,

*22> Y12°

U. Decompositions

Tfoere are two decomposition techniques, namely series and parallel as

given in Table 1.



Par

Parallel

Connection

of

Subnetworks

Series

Connection

of

Subnetworks

x.

J

Connection of Subnetwo-

-o-tt-

The short circuit admittance of

the network is equal to the sum
of the short circuit admittances

of subnetworks.

The open circuit impedance of
the network is equal to the sum
of the open circuit impedances
of subnetworks.

For a series-parallel decomposition, we separate the admittance functions

or the impedance functions into parts appropriate for parallel connected or

series connected subnetworks. Then we decompose each subnetwork in a similar

way until the subnetworks are single branches. Here we come up to Darlington's

conjecture:

Darlington's conjecture: We can realize any 3-set as series-parallel form

(two Internal nodes cases only).

A typical realization of such form is shown in Fig. k0

In every branch we can move out one of the two components by general

transformation schemes. After tranformation we have the network as in Fig. 5°



50

Fig. h. A typical realization of series-parallel form.

5(a)



5(b)

Fig. 5« A typical network synthesis in terms
of parallel-T subnetworks.

Since the outside elements of the network in Fig. 5(b) have the

general nature of the inside elements, so we omit them from consideration.

A complete set of thirteen RC two-element kind, 3T, 5 node networks is

given in Table 2.



ice

—> Topologically onfigv ns.

Notation:

means r-*-j •* p-j

Symbols: A-C - Reduced by 2 node admittance change.
C-N « Reduced by elimination of a capacitor-only node.
A-Y « Reduced by a A to Y transformation.

s^~*Z

(1) >X x^| £ (A-C)
(2) y y

C4-Y)

y y NyK Vyl*""

X^"" >«y«< s%y^ y

y i (c-n)
T T

(A-Y)

<3' Y T « N*H>lK ^yV
T T

(C-H)

^ ^ (A-*) (C-H)

^ J (C-H)



3forEi'

I*t us consider a typical I 5 node network as in Fig. 6

where

Fig. 60 A typical RC, 3T, 5 node network.

The admittance matrix of the network in Fig. 6 is

0 0 ! -gi4

62 ° \-°2k -%50

0 8 -
t g3^

.«J5-.

-a., -a., ! 6, -c'*ih-%k-*& ! S
-G15 "S25 "g35 ! "c*

S - «* +C15

£2 =^5 + °2h

&3 = s34 + 635

S = BiA + °Uk

65 " s55 +C55

S55 = %5 + g35

C55 " CX5 + C*

-c.

35

k
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Now it is desired :\ tat

Original
Network

T
Very small

admittance

This transformation can be obtained by adding an extra node and then

making transformation which is available.

V

lo-

°6JL
(1-6)831. T2

tt

•II—

Tl(l-6)C4
-L/^^

•c 2

Fig. 7. The network after an extra node (node 4')
is added to the original network of Fig. 6.

In Fig. 7, because the voltages at the same nodes are the same, i.e.,

V. - V* = 0, so we can add extra elements between these pairs of internal

nodes. The admittance matrix of the network in Fig. 7 is

6x 0 0
-*u -C15 "««*

0 62 0 "C2* "%5 "«%fc
0 0

s -*3* •«35 -6834

"*iA •°2k -834 •V^e "C4 -ec6

-C15 -%5 -«35 i -cu 65 -ec^

*hh -6C24 "frs3^ j -6C6 ^ e<V°6>
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9S

q.aqq. pa^ an

(V) 0 - (^O* +^3 )©* +^0 +^9* DJaqa

(*W9)3 0 0

0 (VS*) W+S v
0 V 90 +S

2£*--<J

'ArjBTTorps

<Wg)9 (V^£- 0

(VS*)3- s V

0 V W?

vi

0* - 90

ol-

asq&

aABq an *o • (90 - ^0^)9 2BTO»I

(VS*)^+(W9)9 (Vfi •*£- (W)5>
(V5?*)9- S9 V

(W)9 V 90^

(Vb)» ^09- 909-

W H V

905- V %**?

5

3*-

"X xwwa jo

se^qop etft- t*T) xfJ^Btiiqns aqq. no uo'pj.uo^.q.'e ^no oqsjaneouoo sn 3.9*1

3,1-



Y =

56

Substituting (B) into (A) we get

The resultant:

0

e.

0

0 -c24

•2ai

-g25+^g2i,-rg25) ^M(rg25-g2V)

5 .^SSI^
-&fr -C

'24 -g3^

-'V^^1 -(g25-^C2^) -g35
-^(g^-rC^) -€M(C2^pgg5) -tMfg^-rg^)

V*6 -C^
-C,

0 0

Remarks:

1. r condition gives single M for g and C parts.

2. r condition gives T with a Job of original network
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