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April, 1963

Linesyr, Time-varying Circults

Hotes on leciures delivered by 5. Darlington
of Bell Telepbhone Laborabories.

Iecture 1l: Circuits of R's and C's which can amplify.

The analysis of time-veryling networks mey be spproached fron two standpoinis:
1) By using the mathamotical theory of linear differential
equations; :
2) By extending the theory of fixed circuits.
The problem with using the first approach lis that the equations which arise from
circuits only constitute a small class of all linear differential equations.
Hence, the second approach wlll be emplcyed to ascertein which concepts of Tixed
circuits generalize, and what modifications must be m;zde to obtain analogous
quantlities for time-verying cirvcuits.
A time-varying network element mey be cbbtained by mechenicsally verying a

linear element er es a small signal approximstion for a pumped nonlinear element.

I e
1 H
C=z o(t) = glgy
K Fixed K(% TV
B B
E = KQ E = K(t)q
Q =CE Q = C(4)E
K =-(-J=;.'- K(%) =E-€7'E)'

For a nonlinear capacitor,
Q=FE) .
Suppcse now that the voltage E driving this cgpacitor ie compesed of two elements -

the signsl volbage EB end the puwp volbege Ep:



Suppose further thaf
Ir,sl << |EP|
(this is a small signsl approximetion); then

ok Lty OF
F(E) _rt,Ep) +~5—§E B, = QP+ Qg -

b
Since
FE = :
(By) = q
for no signal (i.e., E, = 0), one can say
Q, = C(t) E_,
where
c(s) = 2

dEE
2

Such a time~varying capacitor might be cobtained as shown below.

4

Q

\ Epr_h ‘ | l c(t)
- o~

g E

B
5

Since the energy stored in a capacitor is

L sine
g



if X incrsases, then the storad energy increases. A simple nebwork which ubilizes

a time-varying cgpacitence to obtain volisge amplification is shown below.

1 ~NLL X mde v,

<2

Nam\
[ |
i

When C_ is lergest {thus v, is smellest) charge will be transfered from C. to -+

1
watil Vl and Vx are equal. Then, as Cx deereases, Vx inereases and there is no

current flow through 6.1, but charge is traneferred through d2 0 Ca until Ve and

Vx are equal. Thus, the signal Vl et Cl is carvied to C2 at the higher lewvel V2=

In the steady state, the swplification epproaches the limit

Y_g_ = cx max
VZl. cx min

Ir Vl were initially negative, however, no such amplification would occur because
of the dicde orientation. This problem can be overcome by using a time-varying
resistor as a switch (each properly synchronized) in place of the dicde. Ulbtimate-

ly, one might obtain linear, time-verying networks, and then replace the time-

—h

s

varying resistors with diodes.

Pictured below is a low frequency amplifier which takes advantage of the effects

described above.

~
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A disadventege is that only veltage gain is provided (as with grounded base tran-~
sigtor). To carry the transistor enalogy further, one may consider the time-

varying network analog of the grounded emitter transistor showa below.

B
I~

Vl Jﬁ:_
e G
| i % T"a

a,
A e 2
N

In the steady state, the volisges spproach the linmit

b T - » Cy max :
=5 2
vl. Cc min
hence,
)z & (cx mex 1)
g e T 1 i
2 X min

On the average the current imput is zero; besides being an snelog of the grounded
emltter transistor, this circuit is an analog of o megnetic amplifier.
One might obtain a multistage amplifier with both current and voltage gain

by cascading a number of the sbove described amplifiers aes shown below.

Y
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This might even be made into s feedback smplifier by the addition of a feedback

alement as shown below.

md
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By é‘onsidering the simple network shown below with positive feedback, one can
easlily see how it is possi.‘ble to cbtain reel mode inetability with time-varying

R's and C's,
Pogitive Feedback

A —

e < ;e

|

Time-varying capacltors may also be used as transformers. Consider the

stationary network showm below; current flows through the resistor until the
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voltage V between terminals one and two goes to zero. Bul the voliage at node ¢
is not necessarily zero; one camot tell externally (without using c) whether
there is hidden charge on the capacltors. If the capacitors are time-varying (as

below) the voltage V goss to zero on the aversge, bub the voltage never becomes

r !

7
|/

o

identically zero. If one wished to creste a Thevenin equivalent for this situa-

tion, it would take the form shown below. The only instance in wvhich the

v(t)
- m+
/S

c(t) 7?

capacitor C(t) would be time-inveriant would be when

1 1
cl(t')— % E;(t) = constant.

The generator v(t) compensates for the voltage difference crested when

cl(t) i 02(1:) 1



The principle describad above may be used to cobtain an amplifier as shown
helow. 01{'2;} and Ce(“c} sre in phase opposition (i.e., one is large when the othe

is small) and very much faster than the signal voliage Es' It is not necessary

E_ (‘)' =ptic. (t) RECTIFIER R

that both of the cgpecitors vary; replecing one of the time-varying capecitors by
a stationary capacitor and ubilizing e half-wave vectifier, one obtains the follow-

ing network which has been previously discussed.

:
ol
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8
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helf-wave rectifier

Similer circuits have been described by W. P. Mason end R. F. Wick, and also by
J. R. Balrd:

Mason, W. P. and Wick, R. F., "Ferroelectrics and the diclectric
smplifier", Proc. IRE, Vol. it2, Pp. 1606-1620, Nov., 1954,

Mason, W. P., "Ferroelectrics", Proc. of the Symposium on the Role of
Solid State Phenamena in Electric Circuits, Polytechnic Institute of
Brooklyn, April, 1957.

Baird, J. R, "Low frequency reactance amplifier"”, Proc. IRE, Vol. 51,
pp. 298-303, Feb., 1963.

2
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Variable networks containing capacitors can slso be used as transformers.

Consider the sequence of events shown below.
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If this cyele of switching the series combinstion of Cl, 02 and CA to the parallel

combination of Cl, 02 and CB and vice-versa is repeated the voltage on CB ap-
proaches half of that on CA’ but CB receives twice the charge as that taken from



CA'

works even gt d.c.!

Thue, the circuit acts like a transformer with a 2:1 volisge ratio which

In the sbove analyses the-tacit assumption that the sigral frequency is
much smaller than the pump frequency has been used. It might be possible, howe
ever, to amplify signals of frequencies comparable to that of the pump. As a

starting point, one might consider the magnetic pulse regenerstor shown below.

CORE JSteering diode
=
t Output
%ﬁ:&ﬂ T — Mz:s
o o
(004

Typical time relatiocns are shown below.

e L i A

1 5 1 0 5 &

2 Wy Y,
e A

The same effect can be obtained by using a nonlinear capacitor as a time-varying

capecitor. For the circuit shown below where C(t) is large during the signsl and



small during the output (the pump is eguivalent %o the cleck), there is possible

retiming, reshaping and amplification.

Pulse ' . Pulse
Tnput ~ 7 7£ Output ™ 7

O
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Lecture 2: Properties of linear, time-varying trensducers of finite order.

References:

l. C. A. Desoer and A. Paige, "Linesr Time-Varying G-C Networks: Stable and
Unstable," IEEE Trans. on Circuit Theory; to eppear Juns, 1963.

2. L. A. Zadeh, "Time-vering Networks--I," Proc. IRE, Vol. 49, pp. 1488-
1501; Oct. 1961. AR e

3. 8. Darlington, "Time Veriable Transducers,"” Polytechnic Institute of
Brooklyn, Pro¢. of the Symposium on Active Networks and Feedback Systems,
ppc &1-633; Apl’il, l@o X

Background.

Much of the mathematics to be presented hers appears in texts or classical
references. The purpose here will be to investigete the externsl properties
of linear transducers of finite order (characterized by varieble coefficient
differential equations of finite order), and to ettempt to point up the
similarities and differences between them and lumped stetionary networks.
Time-varying ILinear Transducers.

Consideration of the operator notation

d
Paa‘.ﬁ':

n
p? = S
at

leads to many useful analogies between fixed and time-verying networks.

A, Network charscterizetion.
l. Fixed circuits:
Als
: w(s) = 454,
vhere A(s) and B(s) sre polynomisls of finite order.
2. Time-varying circuits:

Finite
2Bl ldneer  |fepeX(E)
Time-verying




B.

C.

ay(%) = Bxlt),

wvhere
n
A= Z o, (t)p"
k=1
m
B = Z bk('b)pk &
k=1

3. The essentiel difference is thet the 8. and bk are functions of time
for time-varying networks.
Solutiong of network egquations.

1. Fixed circuits:

n
: T
M) =0 =yt = ) K e

skt
¢k(1‘-) =e are natural modes.

2. Time-varying circuits:

n
ay(t) = 0 == y(t) = Zxk AOF

k=1

dk(t) ere basis functions.

3. Since for a fixed retwork

t
g (6) =e &,

there is an analogy between poles (sk) and basis functions (¢k).
The problem is that the sk's are relatively easy to find compared
to the ¢k"s in the general case.

Zero response.

l. Fixed circuits:

m
B
0 = Bx(t) == x(t) = ZCJ ¢=."3‘:l i
=1

==
e



Tinme-varying cirvcuibs:

m
: =

0 = Bx{t) == x(t) = Eca e 9
J=1
zj(t) are zero response functlons.
These zero response functions are those input funetions which yield
the same effect as no input 2t all. In this respect they are analo-
gous to zeros of stationary network functions; in fact;, for a fixed
network

g.t
z'j('i'.)=e'j .

where the s.'s are the zeros.

J

I¥. Bolution for the Driven Time-varying Network.

A. Impulse response;

Suppose that the input is

x(t) = (¢t - T),

an impulse applied ab tiﬁae » then the impulse response takes the form

n
y(8) = ) g (8) ul2)

k=1

B. G=neral response:

Tae response to en arbitrary function, x(t), is

%

n
y(t) = f 5,0 0 (7) K 2) ax
w k=l

(for a causal network).

C. Fixed circults:

43
y(t) aj Z g (t) w (T) =(x) ez,

oo k=1L

wasre



D.

g (t) = eskt

and
Wk( T) = I € "
{Jk is the residue).
Zxplieit forcing function:
Suppose that the forcing function is £(t), i.e., the network equaticn
is
Ay(t) = £(t);
then one has the soluticn

% .8
y(t) = f Y ) uAr) ey a .

“® k=l
Here, the solution for the special case
Ay(t) = §(t - T)
would be

a
y(6) = ) g (8) ©.2(%).

k=1

1. Classical Green's function theory, coupled with the constreint of

physical realizability, gives

n
Z g (8) W (t) =0
k=1

o

z ¢ '(+) W.(t) =0

37 #2e) w2 =0
k=1



V.

2.

n

X

> A0 %0 =

=1
For the input x(t) the solution takes the form
t n m P
W o a
y(t) = J PR ACRA S [ijcz) - x(r)] ax.
@ k=l J=1 '

By repeated application of integration by paris,

fu(m’) vi(z) a2 aul{v) v(t) -f wi{n} we) av,

one uliimetely arrives at the expression
m
d
d
(z) = ) (-1 P [o,(2) wl(2)]
J=1

The expression {in terms of %)

m
PG FOR
3=1

which operates on Wko, is of course the edjoint of the original operator
m
B = E () o’ .
=1
References:

Friedman, Coddington and levinson, Hildebrend (Meth. of Appl. Math.).

Inverse problem: given the basis functions, find the operator A.

) ) ... ¥®)

d() g ... g D)
Ay(t) = K(t) det

g0 F0 ... g D

vhere K(t) is an arbitrary nonzero multiplier. Note that
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: y(t) = ¢, () =2ay(t) =0

as two rows of the matyrix ave the semwe -- this goes for any y(t) which is
a linear combination of ¢ li('l:.) 'S,
A, Fixed circuits:

1. Distinct poles,

t
dk(t) 2 esk ’
T
ak(t) = Bk eBk 3

etc.

2ot
A3 E) xct)ﬂlesk

If cone tekes
n

K(%) = T e‘skt a5

=

Ay(%) becomes a differential equation with constant coefficients.
2. Multiple poles,

g, () = egkt

t
Prsa(8) = te &

B (8) = 5
The above method easily generalizes.
B, ':l‘ime-varying circuits:
Assume

%
g (8) =B () o ¥ ,



D,

where Hk(t) is periodic; this would be the case for periodically variable
networks from Floguet theory. Actually in the most general case one
might have
sk'{'.
() = (H,(2) + B () e * .,
etc. The form of H (%) might be es complicated as
0 .
Hk(t) = E E Bkﬂ_P eos (B'wl'i‘. + pmy + ﬁo_p) *
=0 o=0
Under- the first assunption, one caen derive the differential eguation fran
the basis functions. "For the case of multiple poles,. this cennot always
be done.
Open problem:
What is a general class of such bounded coefficients for differential

equations?

Operator Msnipulations

A,

B.

Operator identity:
D= -% s & = a(t)

2

-
pax = g={ax)

[ ] e
= ax + ax

L}

(a + ap)x
S, Pa =8 +ap
Note: & = const ==» o and p comrutes.

Cascade of operatcré:

f

Y : Vo
-&-—p——(p.,.a) s (p+b)'—-F-f—

¥y = (o +a)x
asgune lst order
yz = (P + b)yl i

- e il s, e e oy
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fl

{p + 1) I:(p i a)x]

(p +d)(p + a)x

-. ya

= (Pe'*'bp"'pa'-i'ba)x
=[P2+(b+a)p+a+ba] x
Reverse order
(p+a)p+b) =p°+ (b+a)p+b+ba
#(p+1)p +a)
These two operators do nobt commute unless
a =D + const.

C. Factoring:

¥, = Ax

Avtempt to put this in the form

x yl ya
e ) = c e T

A =CD
if ¢1?' welay ¢n are basis functions of A, choose dl, ooy Gom<mto
be basis functions of D (Say the first m -~ the order of the original
¢k'a can be arbitrerily resrranged); then,
A¢k=o=;~cn¢k=o sw L Jesg D
C(D ¢k) =0 = C(O)’ k= l, e0vy Ill,

aﬂn¢k=o,k=l, cesy M.
But

c(D ¢k) ’30’ k =m+l, seag n;



D.

5-13-63

P ¢k must be the bagis functions of C for k = m+l, ..., N

D can be found as in V from ¢l, Sony ¢m as @n mth order operator; C
can be found as in V from D¢m+1, . D¢n as an (n-m)th order cpera-
tor.

More general cascade:

¥
b 4 8 Y,
B o Al, Bl r g Ae, B2 e & O
Ay = Byx
Ax¥p = Bo¥y o
The problem is to find an expression
ME = Bx o
Introduce arbitrary operators M and N; then,
RigTs =8By »
Iet
MAl = NBQ,
then
WAoo = Moy, = Mhy, =MB.x .
Hence
A= NA2 and B = M:Bl 2
vhere -
= NB2 °

19
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Lecture 3: Stability of Webtworks of Reslsgtors snd Capaciltors.

I. Review of Bome Matwiyx Algebrs Pommulas.
¢ = scalar ; A, B, X, ¥ = matrices
4. Opersbions on matrices.
X(A + B)Y = XaY + XBY (distributitive)
| g3 = XPY = XYY  (scalar commutes)
(%)% = ¥5%° (transposition)
(x)t = v (inversion)
B. Derivation of some matrix functions.
pX2 = XX+ XX # oxX
pXYZ = X2 + XIZ + X2
(XY = - it
. (mx)®
nig = A + gip
phe? = &F(in + pa)
C. Some operabor identities.

pA = A + Ap
p2A=X+2Ap+Ap2

php = fp + hp° = - pA + PA
D. HMatrices of order one (secalars).

W,V = column matrices
WOV = g = VW
12 Y =¥, thanw*‘rw Vi, VY = vV = £ p(vhe) -—-v"‘w
£ ¥% = - ¥, then YUYV = - V¥V = o.
II. Background.

A. Assume all time-varying R's end C's sre positive and not discontinuous.



B. Network equations ave

I= {G P PC)E:
where

b
- ° 2

\s,

the melbrix of branch currents, and

E

E = °

E ’
n

the matrix of node volteges; G and C are time-dependent nxn square

maltrices.

C. For the given graph, 5
EJ\J

5
i

= datum
the simple branch relation is G
a— ¥ P ||
E B
[P R L
J TR K
i
T e

i}

I, =(G, +3C.)E, - B),
since for the resista&e & g EK
IJK = G:ﬁ{(s‘1 - EK),
and for the.capacitance



cr

T = pCJK(EJ - EJ).
D. Further assumptions.

Lo @Y

= G, Ct = C for the network metrices.

2. G is a positive definite or semi-definite matrix. C is e positive
definite or semi-definite matrix. These conditions can be assured
by & suitable choice of network varisbles (see Desocer and Paige).

III. PFormulation.
A. Pure mathematical approach.
Iet Q = CE, E = C"1q; then I = (A + p)Q, where
A=gc™t,
The methematical spproach degenerates st this point o a study of this
specific first order differential eguation which charscterizes the
network.
"~ B. Circuit theory spproach.
I=(G+pC)E =(G+C + Cp)E
IV. BStability Conditions by Studying the Power for the Unexcited Network.
A. Power into network:

1==Z; BI =ET

= EYG + C + Cp)E

= E'GE + E'CE + ECCE

- B%E + 28°E + 2oE%E (stnce C = ¢%)
" t : t
. P = BYG + Z0)B + ZoEVCE .
B. A "symmetrical" expression for the network current can be cbtained from
the fou.wing two expressions for I:
I=(G+C+CpE (1)
I=(c+3pC)E. (2)

22



C.

- 3[@+ @) [o 5+ Fo + e

Transformation of variables:
Define the instantaneous transformetion
E=xf , ?-5%.
Then
B {Nt[e+%é+%(cp+pc)]me ;
Expanding this, one obtains
? = Nt(G + %c)mﬁ + %NthNﬁ + -%-'1\!1"13(:}!:‘2:‘°

But
% & .
An*cpn = Intemp + Zutcn
and
% 3 "%
5 pGN:%pNCH-a CN .

. Define

Note: J is an antimeirical matrix; i.e.,
il
Moreover,
¢t =¢
and
¢ md.
A nonsingular transformation metrix N implies 6 and 3 are positive-
definite. Pick the matrix N so as to simultaneously disgonalize the
matrices G and & (this is well-known from mg.th); i.e.,

A +
C = N°CN = U (the identity matrix)

i3



A A
Gant(G-l--Q]-‘c)N:-_/\__:- 2o 0

D. Power in the new varisbles:
T = (- AU+ D)E
P 2in mit'r - 2%
P =§t(-_jL+pU +J)§ ‘
Since & =~ J,
Bof = 0 ;
therefore,
P = B%(-_A_+ pU)E.

n n
Pe-) MBS B) ) A
k=1

k=l

V. Stability of R-C Networks with Periodically Variable Elements.
A, Unexeited netwark
0 = (G + pC)E_
EG’ = Nﬁ‘r
I=FT=0
B. BN will be periodic, as will be 7‘1:'
C. Suppose
Ee = Ho.esst,

where H, is periodic; then

A A Bgt
Ed‘ = Hﬁ.e ’
where
A
Hd— = mG- ®
Dafine

iv
NN



vhere @ is a scalar and is pericdic in tinme;

then
A So.i;-g
Er = FG- e °
The equation governing the unexcited network is p
8,.1-0
0=(-A+PU+J)F<I'E .
But :
s . t-@ s t-0
¢ < . 'y
p.Fre = £(B¢ ) G)F‘- + Fﬁ._. e °
Therefore,

0 = [(sd,--e)U- A +p+J:|F°_°
One can premultiply this equation by Fo.t %o obtain
0 =F§'[(ad_ ~O)U - A+ U] Fp.

Since
+
Fo., J'Fo_ =0,
this beccmes
n n
2 1 2
O—E (Bo“"@'nk)i?k +§P§__;Fk
k=1 k=1

Everything is periodic,. so one can teke the aversge; e.g.

ave X = ?—:_t-;‘f Xdt = E T o
2 T e
s

Over one period then
2
ave # 2 Fk = O o
5 % 4 Fk is bounded, but not necessarily periodic, this average can be tsken

over a long interval; then
n
ave%p E er--»o .
k=1

Finslly one cbtains
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~ 1 -

I s .
0 = ave L)J(sgm@-- '}‘-._k)er 3
k=1 4

vhere the ?\.k“s are the rcois of

aet[nc+%c-+é] sl

Consider the instentanecus minimm and maximum eigenvalues

U

A min %;\l, isinp 7{13

min

and

Rmax max f?{l, “vep Jtni,

then from the above (by adjusting @ so that

2

% 91 = const. = ave A

min min
and
?Lmax * 92 = const. = ave A
in eech instance) one obtaiuns
P A ®
m lmin = B R Amax
5 i
56_> e + 1max_,forallt1me,
then

n
0 = ave [Z (sﬁ_ il hk)er]
k=1

would be impossible (similerly for Bk @+ % i

min
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Iix.

Iecture b Stebility of Time-Varying, Two-Element Kind Fetworks.

Complex basis functions.

Por s fixed network the basis funciious take the form

sﬁ;t : aa_t 5 sb_t
e ’ .m ’ ﬁ e ’ - - °

In the nop~degenerste case, for time~varying netwrks, one wight have

nl,e"t

or
sﬁ:i‘.
. (Hd_l + Ec,a'b) e "
where Hc" Ha‘ are periodic. Could use complex notatlon or let
» 4
8 = (85 + o),
then
2 (st )t
310, e )
would be "basis functions”. These would represent the schbuel basis fumetions:
8.0
¢
Hﬂ'real =
"B8.%

g

Hem® o
whersa Bo. A LBy and Hﬁ.m are nob necessar&.ly pericdic but are still hounded for
lerge t. Hence, F, is still bounded. '
Second-opder example.

i
0 2,
F

0.

S 1
o=

FG"'

2



III.

1 5 &%
and
OmlB et « A W +T. <o
('3 2c, oy 1276y
O=ave |(s_-0- A P2+ (s -6- A,)
[V} L a 2
Suppose
S A8
and
Ay > 2
then
2
0 = ave [(7&1- 12)5‘6,_2] %
Since
21'12)0’
¥r_ EOQ
65
then
0=-~4Jd,.F
120'1 .
implies
F 500
o

But this is an incompatibility. Thus,
8. F A 1 +0 .

Anglysie of time-varying R-C network on mesh basis.
E = (K + Rp)Q

28



K -1

it

c

E

fi

< A AR & :
[x-22+ k)] a
Through the equivalent of a frequency lwransformetion, the mesh analysis of
R-L natworks is equivalent to the nodel analysis of G-C networks, etc.

IV. Time-varying I-C networks.
Let

B =p &
(ék is the flux); then the network equations become
I=(s+pcp)d .

s=1t,
The power is

P=Et‘I=§tI;

hence, :
b L] L] o
Pe-28%8+5 8% +20(8%8) +30(dcd).
For stability bounds, transform the power relation (compare to R-C case).

'—'0 #PHOo
Bagis functions:

é i QTO_ - Hd‘eso.t (neglect degenerate case),

b 140
QG‘ =Fo. eso.
. - 8,510
B =28~ [ s (g 9] o ¢*
=Fﬁ' e °

Substituting these in power relation,
t ] 1 @ 't o 1 e 'l
0=F°., [(ao,_+o)8--é-s] F6'+Fa' [(go_+g)c+.é.c] 7

1 TN W
+'§1‘FtBFu'+§'PFﬂ' CPg -

v
O



As before, one obtains

i % . _1_ » ' _:_1._ ¢ : :3
0 = ave {Fo. [(su,+e)s -3 s] FG_ i [(sﬁ_-* e)c+2 c]rd. .
This expression is stlill not in disgenal form; hence, let
A
FG- = RFO- 9
and pick N so that

o = U

-%mgntﬂ-_A. a

Furthermore, introduce still another transformetion

Fg' = N'ﬁss
80 that

NCN ¥ =y
and

2 w o

"é H'w = "_A_ o
Hence,

n n
o 2 By
O=m_§§ (sc,+0-‘,\k)Fk+ E (so.+a-‘ak)1-"k}.
k=1 k=1

Again (sG.+ G 7"k) and (ao,+ 0 - A;) cennot be positive or negative for
all k and €.
Theorem:
ave 7me £ sr £ ave A

nax °

values in the combined set
{Ars woee 2}
{2;, A 7‘:1} X
These eigenvalues are cobtained firom the equations

and



and
| ls
dget [AC+3c] =0.
For a fixed I~C network,
é:é:o;

hence,
T

A, =0 , for all k.

il

2k
This is the well-known proﬁerty of no demping for I-C networks.
V. R=L-C networks.
The problem here is that the resistive effects are only associsted with one
kind of energy storage element. On the node basis
Le (S + Gp + 20p) §
leads to
det [A8 - -%' s] = 0

det [h'c+%é+u] 0

" A similar relation srises on the mesh basis.

MEVV:
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I.

Iecture 5: Time-Varying IC Networks.

A property of the basis functione of 1LC networks.

1
(B‘-"Jno')t

H‘e is a basis function,
‘then

Ho.e is a basis function;
where

: v

Ho‘ and HE are different periodic functions.
Proof:

The solution to the driven equation in Green‘'s function form is
G

t 3
é(t>=j h®) W) 12) az v [ gy(a) Wyle) () ae
tl tl

¢1(t) ere basis functions.

t\
(x) = f ¢(t) wiz) 1(7) ax
Jt

&

t
9’=(¢1: ¢2) ?
<« 2n —>
W= (Wl) 21;'1
W2 \lv

€« n —>

Must show thet & (%) is a solution to the differential equation

(s +pCp) & =1 .

$(t) = ¢(tJj wr) x{z) ay
t

il



p$ = Epﬂ,ﬁ]‘j W) () aT + gle) wit) I(z) .
Yy
But physical realizebility dictates that

@(t) Ww(t) =0 ;

%,
s pf = [p‘iji _W('t) () dx .
1

t,
pOp § =p0{[p¢]j W) (z) d‘c}
) tl

i :
= [pcpﬁ]f W(T) () aT + oL,

b
Fence,

t

@+ 508 - [+ 200 [ #2) 2(2) v + o,
T
l 3

But -
(s + pCp)g =0 ,
es ¢ is the solution of the homogeneous eguation.

<8 +pCp)% =C¢WI o

But
(s +20p)2 =1
is given; therefore 1t must be true that
W“I:
or

Gji = U (the identity mabrix).
Succinctly stated, the conditions have become

#(s) w(t) =0,

o(t) @(v) W(t) =v,



(s + pCp) @(t) =0

From the second condition, one obtains
s -1
W =C 2

or, from the first and second conditions,

[3)- ()
(4)

isa2nx2nnms:fngulsrmatrix

HEEIEE

o 2 D

But

 therefore,

(3] (2]

We wish to examine colunm ¢ of the besis function matrix

§), =Bt

{vhere Py = 8¢ + Jo.), and colum ¢ of
&-Ed_' Ps® 3

Hy' = Ho + pH, .
Column ¢ of

is

34



H
=0 D,

35

where ( g,) is periodic and De is the diagonal metrix of exponentials.

Hence,

- [(2) ] (=)
23] ()

and & t
g\t /o
¢ -l
W = -1 D »
. o\ c =
+ .t
g™ Lo a ¥ 0
H gt g
' 0 . =p.t
s
Butb Wt is also a solution to the given differential equation:
gi =0
q@‘@'w = U
(s +pCp)g =0 .
The second condition leads to
» [(cop)w] =0,
or

(pCpd)W + (Cog)W =0 .
Adding SgW = 0 to both sides of this equation yields

(8¢ + pCpp)W + (Cp@)W = SgW =0 .

(1)
(2)
(3)



But, from the third condition, this equation reduces to

oW =0 .
From the first condition, one cobtains
@+ g =0 .
o = -~ OV ;
hence, from the second condition
ot = < 3
or
#ic = - U,
Differentiating the last result, one obtains
gwc + gp(WC) =0 .
Now let
gic = giF ;
therefore,
g [wr + p(ic)] =0,
which expands to

¢, [ + p,0)] + g, [WF + 200, 0)] =0 .
Choose F such that
er + p(ﬁlc) =0 ;

¢, #0;
therefare,

ﬂ2!'+p(1:120) =0
as well. Hence,

WF + pWC = 0 .

%-M

36



(eg)(We) = swe .
Moreover,

p [(cop)ic] = (pcog)(iic) + (o) (i) .
Thus, premultiplying

WF + p(WC) =0
vy (Cf) yields

(cg)(wP) + (cf) p(¥C) =0 ,

or

F+p [(copve] - (aopp)(WC) =0,
or

F +p [(copdiic] + (sg)Cic) = o,
or

But, from sbove,
opW = O

e P-820,

F 8.
Therefore,
WS + p(pW)C =0 .
Or, taking the transpose, one obtalns
SW® + pCpW® = 0,

(s + pCp)W° = o.
Thus, since Ht is & solution of the equation, the basis functions have
the exponents
.pc't,
e

as was shown sbove. This result could also be cbtained from the eclassical
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theory of Green's functions for a self-adjoint differentizl operastor
{ref: Courant and Hilbert):

S +plp 1is self-adjoint .
The counterpart of this theorem in fixed networks follows from

% =5 [even function of S] .

% “ [even Punction of s] ;

thus, the poles occur in + pairs (guadrantel symmetry).
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II.

Lecture 6: Transformations, Equivalent Circuits, and Synthesis.

New Interpretation of Synthesis Froblem.

B.

D.

1
R T

EKK ..f:r-'ﬂ‘-"“'j E

/ - ey
)

Stete equatlons:

t
E(t) = f g(t) w(r) I(x) az.
-5

But the actusl equation Pfor a single transducer might specify the

output E,(t) for en imput T le)e

olumn K

4
Ed(t) = «.L, [rmr j of ¢(t)] 5 [c w?f : ]IK('r) g s

The problem of £illing in the entire ¢ and W matrices given but these
parts is an alternate statement the classical network synthesis problem.
The network constraints (e.g., reciprocity) become constraints on the

matrices § and W.

Equivalent Circuits by Treasformation.

A.

Problem: Given a complete circult, find its equivalents.
This can be restated as in the R-C example where
I=(G+pC)E ;

when G and C are given, one seeks new matrices G and C vie a transformetion



B.

which leaves certain desired componenis of I and E invarianit. The nosth

general transformation might have the form

E = RE ,

f:Mt'I;
then

T =n%c + po)ng .
Recall

Mtp=-ﬁt+wt;
then

I+,
vhere

G = MeN - My
and

6=MtGN.

A restriction (for reciprocal networks) is of course that

A

G* =@
and

at=6;

M and N must be found which preserve this property. N might be chosen
arbitrarily, and then a compatible M could be found.
State equation gpprosach.
E=N1g
0 ¢t
But the state equation is
t

E(t) =f g(t) wle) 1(v) ax.

=Q0

In view of the above transformations, this relation becomes



41
A =1
E(t) = () E(¢)

7
- f [ gw] [w0)02) ] 8w 2
@

A
Consequently, in the new (E - f) coordinate system the matrices
¥ Ht) ¢l+)

wz) [t ]
play the roles of ¢ and W in the old, respectively.
Special case.
Assume that the element values have periodic variations, and that all
coefficients of the exponentials in the fundamental mairix are periodic:
<~ g(%) = (%) D_(%)
vhere H(t) is periodic and

%
eal Sk (8]
De(t) = e 2
0 8t
e B

Moreover, as wes shown last time,
Wiz ) = =) o, Hx)

Hence, an acceptable transformation is to let
N(t) = H(t)

M(7) = ) ;

£(+) =j b (+) o, Y %) U¢) az

=0

By (t~7) ¥
a j . sy(t-2) xI(¥) L .

e

0 ik esn(t-a‘r)

=0



This equation is equivalent to the canonic differential equation

I= o +PU En

For a fixed network, one disgonalizes a matrix to find the basis runcﬁons -
for & time-varying network, one needs the basis functions to find the
diagonalization.

Howitt (K-affine) transformations.

Suppose one is interested in I, and E, and nothing else (one port network).

1

1 and El invariant under the transformstion N and M must be

partially specified:

‘ l 0 0 0.'900
BANS e )

To keep I

Then
A
g Pt T
Il=91-
¥oar two-port equivalence,
STl B « (U - (TR S
N = .3 Q@ O &sn 0
and

1000.,.0\

An open question: are there enough coefficients left to meet symmetry

M

requirements?

42



E,

III.

(AN
L

IL-C case.

I=(S + pCp)E
is self-gdjoint. Similarly,

T = u%(s + pOp)NE
nust remain self-sdjoint. A sufficient condition (which is probebly
necessary as well) is

M=N. :
The most general self-asdjoint, second-order differential sy:stem ‘is

ASSTEN A (A
I=(8+pJ~Jp+pCplE,

where !
%t-—-g,
'étaﬁ,
T

the L-C circuit gives a special subclass of this general self-adjoint
differential operator where

Jd=0.

Synthesis of Network from Basls Functions.

0=(a+ pC)EG

P!

i—-—

Fsp

1-]_

G13  Go

-G G,

12 o0
1 0
FHb=le 1

G =



Bk aae oy‘}{‘mﬁg
g ey Fa?

D‘xgl.lya

!auﬂ J ll_ljt"ge )

Plpeing B, C, and C in the above equation {and separating real and imeginas

parts), one cbtains
% - Rl i =0
¥48y, =¥ 08, * N.'l =0
X0 = Xy0yp * %y =0

Yolpp = ¥3lyp # ¥ =0 -

Zaceune of the assumed symmetry of G, we have four equations in three upknoui::

".;:‘1' Gl,a" B—r*d GE?_.

For compatabllity, the determinant of the coafficlents

sust be zero, thus restricting tbhe possible basis functlions:

X 0 -xp xl

1 >
asb{ 3 9 =¥ Iy | aa,
1 o B

‘/""
o
(=
n
<
e
o .
S

jpon expansion of the deteroinant this condition becomes

'd

(a7 = ¥p%) [ Gy +oyd) + (o - w%) | =0

[

2 D atalc . S i' 2.", -+ a )} + rr i 4 5 ] &
{'-H = u---il,\ia;‘} '."l L F)l A !'.-1-, L g Y r 92) X O

' o

Win condiition can ba met 1F elther

(6, = ©y) =0 orx (not intereating)



Define

2 o 2
g < R o R
‘then
B >
o e R -
and
8. +tw
2 o €
f1 Ps 5, -9, °
9. +w
2 2 9 .
= P
& = P 5, -6,

But (61 - 62) has zero average value; therefore, (61 - 62) must have zeros.
8ince (212, ‘D22, and (96.,2 are all positive, (62 + @) snd (51 + o) must both
have zeros at the zeros of (51 - 62), and, furthermore, they must be of op-

posite sign. Hence, a typical plot of 61 and 52 might be as follows:

Note: all intersections at same level, vhere
01'025"00

One can also obtain damping and complex modes from time-verying R-C networks.

0=(G+ pU)Ed,
Consider the transformation N so thab
A
0 = (NN + NpN)E, .
Fix N so that



Then

MEVV:mit
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? A
0 = (N°GN + oN'N + pNtN)EG e

-0
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Lécture 7: Properties of Multiterminal Networks without Transformers.

References:
a) IRE Trans. on Circuit Theory, Dec. 1955; papers by

1. Iucal
2. Darlington

b) S. Darlington, "Some properties of multiterminal RC Networks,"
IRE Tnt. Conv. Record, Part 2, 1962.

1. Some general concepts of three terminal networks.

A three terminal network is commonly viewed as a two-port network in
vhich the two ports share a cammon terminal. Asin Fig. 1 the two ports of the
network share terminal 3. Given the network with no further restrictions, we

can form two other two-ports by using terminal 1 and 2 as a common terminal.

Network

B 1 E,

3
Fig. 1. A three-terminal network as a two-port.

Thus a three-terminal RC network can be represented by the block diagram

in Fig. 2 below.

Y, (s)
R and C
O e no : 2 2
Yll( 8) transformers Yee( 8)
3

Fig. 2. A three-terminal RC network.



A matrix represention which retains the three-wsy sympetyxy is the so-

called indefinite matrix Y:

i e Ty
Y= .
> TR i
(5 o Y |

Corresponding to the general three-terminal network there is an equiva-

/2

lent = network as shown in Fig. 3.

2 |
10 <2 \

—

A

& - 0
3

Fig. 3. Equivalent x or A . ‘3

It can he shown that

Ty =¥ * 1y,
222 = Y Y 23
Eog gy T oy o

Thus, the external behavior of the three-terminal network may be speci-

fied in terms of Y,, (aa a function of frequency) rather than b 5N

13’

Y

T

1f. Decompositions

There are two decomposition techniques, namely series and parallel as

given in Table l.



fable 1. Perallel and Series Connection of Subnetworks.

Parallel %o SEES IS The short circuit admittance of
Connection the network is equal to the sum
of of the short circuit admittances
Subnetworks t_ of subnetworks.
Series it L =" __I""""| The open circuit impedence of
Connection } the network is equal to the sum
of of the open circult impedances
Subnetworks of subnetworks.

For a series-parallel decomposition, we separate the admittance functions
or the impedance functions into parts appropriate for parallel connected or
series connected subnetworks. Then we decompose each subnetwork in a similar
wey until the subnetworks are single branches. Here we come up to Darlington's
conjecture:

Derlington's conjecture: We cen reslize any 3-set as series-parallel form

(%wo internal nodes cases only).

A typical realization of such form is shown in Fig. 4.

In every branch we can move out one of the two components by general
transformation schemes. After tranformation we have the network as in Fig. 5.






5(b)

Fig. 5. A typical network synthesis in terms
of parallel-T subnetworks.

Since the outside elements of the network in Fig. 5(b) have the
general nature of the inside elements, so we omit them from consideration.
A complete set of thirteen RC two-element kind, 3T, 5 node networks is

given in Table 2.



Notation:

¥ v

Symbols: A=C = Reduced by 2 node admittance change.
C-N = Reduced by elimination of a capacitor-only ncde.
A-Y = Reduced by 2 A to Y transformation.

Y e

I (2)

L

oy

¥ X

Y

Y

Y
S e
Y Y

(3)

T R
e T

w/\{\\’ Y/\:FN’ -

(k)

KA N
¥

i /0
‘1? K-]C -

V.g_c\v' vx¥\\/ (c-H)
= :




w

HI.

trensformation technique
let us consider a typical RC, 3T, 5 node network as in Fig. 6.
&1 13 f;%!;
&3y
1
L
=%
il 5 A
G % &5
3
Fig. 6. A typiecal RC, 3T, 5 node network.
The admittance matrix of the network in Pig. 6 is
- \
€, ©o o ! L
]
. O iy B t ~Coy ~Eps
= 3
0 0 & i-g B
---------------- u;.-----.--..—--,—.-
& O By, § €y G
]
_"C15 "Ba5 “E35 170y €5
where
€, =8y +Cs
€p = 8y5 T Oy,
€3 =83, " &35
€y =8y * Oy,
By = By T gy
Ch, = oy +
€5 =855 * Cs5
855 = 85 * &35
Mge = Lo + Oy



Wow it iz desired that el S e

o—JOriginal| _
Network

This transformation can be obtained by adding an extra node and then
making transformstion which is availeble.

&y, L
i AAAA— o { : 2
C6 :;_’: % _L ch
Colem \u 5 L
10— % -J- (1-e)c — 2
11 3
LR

L

Fig. 7. The network after an extra node (node 4!)
is added to the original network of Fig. 6.

In Fig. 7, because the voltages at the same nodes are the ssme, l.e.,
VJ - V! =0, so wve can add extra elements between these pairs of internal

nodes.,:l The admittance matrix of the ﬁetwcrk in Fig. T is
4 h Y
. ° ® i 8y <G5 €8y,
€& © i Coy By €&y,
gw | T KGRy Wy WL,
"Glu ~Cpy =83y Eeu*fcs -G,  -€Cq
€15 85 "335§ C & &
\-eslh -€C,), -Gg3h_§ -€C, €0, €(€),+Cg) J



Trh,
() Y

qETy DUTS an
) 0= (Mox+M39)d + Yo+ 932 s
("ox3)3 0 0
0 ("oS91) 9d+53  To-
5 . % 41y
‘ATIBTTUTS

(ons)s  (Mor'pap- o ) A

(oiSz)3-  S3 Mg
0 - 903+
\_/
J o0 w

oz = 9o|
aney an ‘0 = (%9 - Mox)s Bumsgern
(osSsm)aze(oaliys (o app- (90-Tox)3

(T 9)5-

3 -

(Oos9ys  Mge-  Ipye )
3~

o= S5 Mg~
%3 o= o2l
F—a-&:/

*X XTIy8m JO

{ oma II Ta330p aul E'[.'.j‘ XTIiBOONE 8073 TO U0TIUalle Jno 938UodU0D €N 18]



')

Substituting (B) into (A} we get

The resultant:

[« 9 “ P -gy,  Oy5tEley,rCy5) EM(rCysoeyy) ]
i o | . Con a5t plenyTeys) CMreysgy,)
. S, - WO .- .. .
~&y), ~C,), “E3), % €)+EC, -C) 0
~(Cosmepey)  ~(By5-€Cry) B35 E ~Cy €s °
'Eu(glh'”cls) -EM(Cthr%s) -&M(g3h—-r335)i 0 0 eME(E,,u-ch)
\ ’ /

Remarks:
1. r condition gives single M for g and C parts.

2. r condition gives T with a job of original network.
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