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ABSTRACT

A sufficient condition for absolute stability in the bounded-input -

bounded-output sense for a class of nonlinear sampled-data systems is

obtained. The stability theorem yields a Popov-type frequency domain

test on the linear plant. The obtained criterion is identical to the cri

terion that establishes absolute stability for the same class of autonomous

nonlinear sampled-data systems.
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On Bounded-Input - Bounded-Output Stability of
a Certain Class of Nonlinear Sampled-Data Systems

I. Introduction

The stability of nonlinear sampled-data feedback systems has

been the object of intensive research in the past few years. However,

1, 2
the main concern has been for autonomous systems. Tsypkin, Jury

O Ji C £. £. ^1 ^ O

and Lee, ' ' Gibson, Pearson, ' Szegb^ ' and others obtained

criteria for absolute stability of certain classes of nonlinear sampled-

data feedback systems.

Another important and very practical type of stability is absolute

stability in the bounded-input - bounded-output sense (b. i. b. o.). The

object of this paper is to prove that stability tests for a class of

autonomous nonlinear sampled-data systems also establish absolute

9
stability in the b. i. b. o. sense. Recently, Sandberg, and Bergen,

Iwens and Rault proved similar results for continuous nonlinear

feedback systems.

The notation and terminology in this paper follow essentially

those used by Jury, ' Jury and Lee, ' and Aizerman and Gantmacher.

Notation. For convenience, denote in general:



z(t)

r(t) Ir^cr (t)
o N

u(t) V u(nT^ hi, c(t)

Fig. 1. System S .



f(n) = f(nT) the value of f(t) at the nth sampling instant, for a

sampler with a sampling rate of 1/T .

Vf(n) = f(n) -f(n-l), the backward difference.

jw a jcoT sT
e = e , for values of z = e on the unit circle.

All functions of discrete variables appearing in this paper are identically

zero for negative arguments.

II. Description of System

Consider the single input, single output,sampled-data feedback

system S shown in Fig. 1. The nonlinear gain element N is memory-

less, the linear plant G is nonanticipative, time-invariant and com

pletely controllable and observable.

Assumption 1. The nonlinear element N is characterized by a piecewise

continuous, integrable function <p{') defined on (-00, +00) satisfying

0<^<k<w, \/^0 (1)

<P(0) = 0 (2)

and

°<i£<* O)
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Inequality (3) is equivalent to saying that <p{(r) is a monotone nonlinear ity.

For ease of notation, let <p{(r(t)) = u(t).

Assumption 2. The linear plant is characterized by its transfer function

G(s), which has no poles in the right half s -plane. Hold circuits and

any continuous or discrete compensation networks may be thought of

as being included in G(s). However, G(s) must have a z-transform,

Z[G(s)] = G (z), which is a rational fraction in z whose numerator

polynomial is at most of the same degree as the denominator. Further-

more, G (z) has poles only inside the unit circle (principal cases), or

has some poles on the unit circle (particular cases), but is analytic

everywhere outside the unit circle.

z(t) is the zero input response of the linear plant.

Assumption 3. The input signal, r(t), to the system S is bounded for

all t > 0.

III. Main Results

Theorem 1. For the system S satisfying the previous assumptions to

be absolutely b. i. b. o. stable in the sector [0,k] for the principal case

and in the sector [e,k] for the particular cases (e > 0 arbitrarily

small), it is sufficient that there exist a finite nonnegative real number

q such that for all | z | = 1 the following inequality is satisfied.

Re 1 + q (?) G*(z) I +^ > 6 > 0 (P)
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In addition, for particular cases, the conditions for stability-in-the-

limit must be satisfied.

It is noted that Theorem 1 is identical to the result obtained

4
by Jury and Lee for stability of the autonomous system S .

Remarks. Without loss of generality Theorem 1 need only be proved

for

(i) principal cases of G (z)

(ii) the nonlinearity <p{v) in the reduced sector [e, k- € ], i. e. ,

€ < ——'- <k-€, V o- ^ 0, where € > 0 is arbitrarily

small.

These remarks will be justified in a similar manner as Aizerman and

13
Gantmacher justified them for the stability of autonomous, continuous,

nonlinear feedback systems.

To justify (i), assume that G (z) is a particular case satisfying

all the conditions of Theorem 1. Make the change of variable

<p(<r) = £((r) + €0- (4)

which transforms the system S into an equivalent system S shown in

These conditions require that the system S of Fig. 1 be asymptotically

stable for a linear gain <p(<r) = €o-, e > 0, arbitrarily small. This is a
11 12

linear problem which has been extensively treated by Jury * and others.

For instance, root locus techniques could be used to check whether the

conditions for stability-in-the-limit are satisfied.
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Fig. 2. Note that the quantity cr(t) remains unchanged under this trans-

formation and that if <p(<r) is contained in the sector [«,k], then <p(<r)

is contained in [0, k-€ ]. Also, the conditions of Theorem 1 imply that
a.

~ * G ^(z)Z[G(s)] = G (z) = x ' has all its poles inside the unit circle and
1+eG (z)

therefore is a principal case. This in turn implies that r (t) (see Fig.

2) is bounded for all t > 0. Consider for all z on the unit circle, i. e. ,

•jc5
z = e , -ir<co<ir,

Re 1 + q {*?)

*i21+ eG |

- * 1
G (z) +

k-€

Re 1 + q (¥i

+ eq (1 - cos to)
1 + eG

* 1
G (.) + -

+
k€

k- e

G +

1 + eG

It is clear from (5) that satisfaction of (P) in Theorem 1 implies that

there exists 6 > 0 such that

(5)

Re l+q(£fi) G*(z)| +̂ TT >6>0, \/ \A =1 (6)

If Theorem 1 has been proved for principal cases, then (6) establishes

th on the* t _ Vi _ s . of (%} at oi =o)
* * J~ 0 -

If G (z) has a pole at z = e , then the r.h. s. of (5) at w = w

becomes (1 - cos c3 )q/e + k/ [e(k -e)] > 0, -ir < co < ir.
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stability of the transformed system S in the sector [0, k -€ ]. The

original system is then stable in the sector [e,k], which was to be

shown •

To justify (ii) assume that G (z) is a principal case and make

the transformation

<P{<?) ~ <P6(°") - «°" (?)

The nonlinearity N of the transformed system S is characterized

* G (z)by <p (<r) in the sector [€,k +€],and Z[G (s)] = G (z) = v '

Re »*(*?)

1 - eG*(z)
For a sufficiently small e > 0, G (z) will be a principal case. It can

be shown, by using (5) with a negative €, that satisfaction of (P) in

Theorem 1 implies that there exists a 6 , 0 < 6 < 6 , such that the

inequality

G*<z) +rr^r > &= > o> V \A = i (8)

is satisfied for a sufficiently small e > 0. Hence, if Theorem 1 has

*

been proved for principal cases of G (z) with the nonlinearity in a

reduced sector [*, k- e ], then (8) establishes stability of S in the

sector [€, k+ € ]. The original system S is then stable in the sector

[0,k], which was to be shown.

Auxiliary Lemmas. The proof of Theorem 1 uses two lemmas, one

of which is closely related to a well-known lemma from the frequency
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13
domain analysis in the V. M. Popov Theorem. The other is the

main contribution of this paper.

Lemma 1. If the three real functions of the discrete variable n,
—————^——• i

f.(n), f2(n), f~(n) tend to zero for n -*• oo not slower than an exponential

and if their z-transforms are related by

F*(z) = H*(z)F*(z) +F*(z)

where

Re H*(z) >P > 0, \/ lzl = 1

then

oo oo

-^fl(„)f3(n)<^ J[f2(n)]2
n=0 n=0

Main Lemma. If the system S satisfies all the conditions of Theorem 1

then the following inequality holds for sufficiently small a > 0

n \ 1/2 / n \ 1/2

^e2aJu2(j)J <I\ ^e2aj[r(j)-z(j)+q(Vr(j)- Vz(j))]2
'j=0 / \ 6 j=0

V n > 0 (L)

Proof of Theorem 1. Referring to the remarks, we need only prove

Theorem 1 for principal cases of G (z). It may also be assumed that

-7-



<p{er) in [0,k] is contained in the reduced sector [e,k-e]. Denote

g(n) as the inverse z-transform of G (z). At the nth sampling instant

the system S yields the relationship

n

o-(n) = r(n) - z(n) - \ g(n-j)u(j) (9)
j=0

or equivalently,

n

o-(n) = r(n) - z(n) - S ea(n"j) g(n-j) e^(n"j)u(j) (10)
j =0

Using the triangle inequality and the Schwarz inequality, we obtain

Coo 1/2 n 1/2

£e2*Vmj eW^e2"Ju2(j)J (11)
i^o S=o

Using inequality (L) of the Main Lemma yields

oo % 1/2

|cr(n)| <|r(n)-z(n)| +( £
i=0

Zai 2
e g (i)

n 1/2

• \[ ^e"2Qr(n"j)[r(j)-z(j) +q(Vr(j) - Vz(j))]2) (12)

-8-



Since G (z) is a principal case, there exist positive constants K , K ,

"K2n wsuch that Jg(n) | < rC e , V n > 0• Therefore there exists an a,

oo 2ot& 2
0 < a < K , such that 2 e g (i) < A < oo. The second sum is

bounded for all n > 0 since it is the discrete convolution of a strictly

stable linear sampled-data system with a bounded input. (Note that

z(n) is bounded for principal cases). Thus, the right-hand side of

inequality (12) is bounded for all n > 0 . Therefore.

|cr(n)| < B < oo \/n>°

which implies that the output c(n) is bounded. This completes the proof

of Theorem 1.

Proof of Lemma 1. Because of the restrictions imposed on f^n) and
3

f (n) the Liapunov - Parseval Theorem may be applied.

oo

£ ^(njf^n) =~r J F^e^) F*(ejU)dC3 (13)
n=0

* jwSubstituting for F (eJ ) and noting that the r.h.s. must be real, we obtain

oo
.it

^£j(n)f3(n) =^ j" {ReH*|F3|2+ \ [F2*F* +F*F3*]}dS! (14)
-1T

n=0

where the arguments have been dropped for ease of notation. The

bar indicates the complex conjugate. Completing the square under the

-9-



integral sign, we find that

00 ir F*
Yf (n)f (n) =j- f |̂ JRiH* F* + — |2dw
n=0

i r |F2' ^
J TeH*dw <15>

Hence,

00
»TT

8tt
-IT

-Xfl(n)f3<n)life J |F2%JS)|2<1= d6)
n=0

or applying again the Liapunov-Parseval Theorem,

oo oo

- ^f^njf^n) <± £ [f2(n)]2 (17)
n=0 n=0

which completes the proof of Lemma 1.

Proof of Main Lemma. From Eq. (9), one obtains

n

Vo-(n) = Vr(n) - Vz(n) - V Vg(n-j)u(j) (18)
j=0

The functions r(n), z(n), Vr(n), Vz(n) and u(n) will be truncated at

n=N and then denoted by rN(n), zN(n), (Vr)N(n), (Vz)N(n) and u^n).
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By truncation we mean that the functions are identically zero for n > N.

Then define ^(n) and (VcO-Jn) by the following equations.

n

<rN(n) =rN(n) - zN(n) - Yg(n -jju^j) (19)
j=0

n

(Vo-)N(n) =(Vr)N(n) -(v*)N(n) - ^ Vg(n -j) uN(j) (20)
j=0

Clearly, <rN(n) = cr(n) for 0 < n < N and (W) (n) = Vcr(n) for

0 < n < N. Note that ^(n) and (V^l^n) are not identically zero for

n > N but satisfy the following inequalities

and

- K n

|o-N(n)| <K3e 2 , \/n >N

"K2n \J|(W)N(n) I <K4 e , V n >N

where K_, K are positive constants and K was defined in |g(n)| < K e

Equations (19) and (20) yield

- <rN(n) - q(Vcr)N(n) = - [rN(n) - zN(n) +q((Vr)N(n) - (Vz)N(n))]

n

+^ [g(n-j) +qVg(n-j)]uN(j) (21)
j=0

-11-
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Adding ( —- y)*Yr(n) on both sides and multiplying by e , 0< a < K ,

one obtains

cm
e {-<rN(n) -q(W)N(n) +(I . v) ^(n)}

an
= - e |rN(n) -zN(n) +q((Vr)N(n) -(Vz)N(n))]

n

+£ jeQ'(n"J)[g(n-j)+qVg(n-j)]eajuN(j:

+ (^ -v) e"\(n) (22)

Identify

fx(n) =ean {-crN(n)-q(V(r)N(n)+ (±-Y) uN(n)}

f2(n) = -e {rN(n) "ZN(n) +q((Vr)N(n) -(Vz)N(n))J

Then (22) is rewritten as

n

fx(n) =f2(n) +^{eaM[g(n-j)+qVg(n-j)] ^V^}
j=0

+ (e-y) *"%<*) (23)

-12-



Because of the truncation at N one can take the z-transform of (23) and

be assured that all the transforms are analytic on and outside of the unit

. , 11,12
circle.

Fx(z) = F2(z) +
-c*T

e z - 1

-orT
e z

*, -orT . 1
G (e z) + - - Y> UN<e z)

If Re< 1 + q

1 + q

-orT
e z - 1

-orT
e z

* -<*T
G (e z) +£ > 6 > 0, \/ |z| =1

and if 0 < y < 5» ^en Eq. (24) satisfies the conditions of Lemma 1

with (3 = 6 - v. It is proved in Appendix I that for sufficiently small

a > 0 , satisfaction of (P) implies (P1). Then

oo oo

- ^fl(n)uN(n)e-< j^y £ [f2(n)]
n=0 n=0

(24)

(P<)

(25)

Substituting for iAn) and f~(n) into (25) and using the fact that certain

functions were truncated, we obtain

N N

£.*-(„«-sfeijuw, £ 2cm) + q y e u(n) Vc(n) +

n=0n=0

N

2cm

+ Y 2e
n=0

N

u2(n) <4(g } Y e2an [r(n) - z(n) +q( Vr(n) -Vz(n))]'
(26)

n=0

-13-



The right hand side of the inequality will be denoted by C(N) . It is

shown in Appendix II that

N

2cm
e u(n) Vo"(n) >

n=0

1 la- jqk(e -1)

N

2cm 2, ,
e o- (n)

n=0

Remember that u(n) = <p(<r(n)) and note that

('-&) *'>>T':

(27)

(28)

since it may be assumed that <p{cr) lies in the reduced sector [e,k -€ ],

€ > 0 arbitrarily small. Substituting (27) and (28) into (26), we find

that inequality (26) is strengthened.

N

2cm

n=0

r 2 i i

T"2qk(e "1}

N
r 2

Denote S, =•I
2 cm

n=0

N

cr (n) + y Y e2Qrnu2(n) < C(N)
n=0

1 2aj qk(e^-l) o"2(n)

(29)

2

If for a > 0, — - - q k(e a - 1) > 0, then S > 0 and may be deleted

from the left hand side of inequality (29). For any e>0, q<oo, k<oo

one can always find an a > 0, sufficiently small, such that

0<(e2Q,-l) < ^ .
qk2

-14



Setting Y = 2* » since y i-8 arbitrary as long as 0 < y < 6 , inequality

(29) becomes

n=0

1/2 / N N 1/2

e2cmu2(n) ) < [ \ y e2cm [r(n) - z(n) +q( Vr(n) - Vz(n))]2
\ n=0

V N > 0 (30)

which completes the proof of the Main Lemma.

IV. Extensions

Note 1. The case where <p{(r) satisfies the inequality a < < b can
— 0" —

be treated by making the change of variables (p(<r) - ^(o-) + a <r. Then

<p{cr) is contained in the sector [0,b -a] and Theorem 1 may be applied.

For principal cases of G (z) the parameter a may also assume negative

values. If in (P), q = 0, this test reduces to the circle criterion which

2is familiar as a stability test for autonomous systems.

Note 2. Using the proof of Theorem 1 it can be easily shown that with

q = 0 Theorem 1 proves b. i. b. o. stability when N in the system S is a

time-varying nonlinearity described by u(t) = <p[(r(t),t] . The function

<p(<r, t) satisfies

0 < 2(£vt) ^ k < o0) v<r 4 0j yt>0 (31)

and

-15-



<?(0,t) = 0, V * > ° (32)

Note that there are no further restrictions imposed on •—. or -i.. This
do* dt

result seems important enough to be stated as a separate theorem.

Theorem 2. Let the system S satisfy the previously stated assumptions

on the linear plant G(s) and let the nonlinear element N satisfy conditions

(31) and (32). For the system S to be absolutely b. i. b. o. stable in the

sector [0,k] for the principal case and in the sector [*,k] for the

particular cases (e > 0 arbitrarily small), it is sufficient that for all

Iz I =1 the following inequality be satisfied

* 1
Re G (z) + - > 6 > 0

k —

In addition, for particular cases, the conditions for stability-in-the-

limit must be satisfied.

Note 3. The proof given in this paper also establishes absolute stability

of the null solution of the autonomous system S . Just set r(n) = 0 in

(12) and note that for principal cases z(n) -*• 0 exponentially as n -*• oo.

-16-



CONCLUSIONS

The absolute stability in the b. i. b. o. sense of two classes of

nonlinear sampled-data systems was investigated. Theorem 1 establishes

b. i. b. o. stability for systems with a monotone nonlinear gain contained

in a sector, Theorem 2 establishes b. i. b. o. stability for systems with

a time-varying nonlinear gain contained in a sector. Theorem 2 is

more general, but the stability criterion imposes a stronger condition

on the linear plant than the condition of Theorem 1. No examples of the

stability theorems were given since the developed stability criteria are

identical to the ones for the same class of autonomous systems and

12 3 4 7
several examples already exist in the literature.
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APPENDIX I

Proof That Satisfaction of Inequality (P) Implies (P1).

i

In the expression of (P ) replace 6 by 6 . It will be shown that

this has no consequences and that if there exists a 6 > 0 satisfying (P),

then there also exists a 6 , 0 < 6 < 6 , satisfying (P ) and | 6 —6 | -*• 0
t

as a becomes arbitrarily small. Rewrite (P ) as

Re {[l +q(^H] gV«Tz)} ♦ i >6a >0, Vl»l -I (P)

Given any principal case G (z), there exists a sufficiently small a > 0

* i i -aT
such that G (z) is analytic in the domain |z| > e . It follows that

fe z-l\ * -aT fz-l\ ~*i \
-orT

e z

i * -aT * I
and JG (e z) - G (z) |

approach zero uniformly V lzl =1 as a > 0 becomes arbitrarily small.
i

Then, there exists 6 satisfying (P ) such that 0 < 6 < 8 and

16 - 6 | •* 0.

APPENDIX II

It is shown that the following inequality holds.

N

q \ e u(n) Vo*(n) > - j qk(e a- 1)
n=0

-18-
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2cm 2. .
e o- (n)

n=0

(33)



Proof. First note that because <p{cr) is a monotone nonlinearity,

p°-(n)
u(n) Vo-(n) = ^(cr(n)) V<r(n) > \ <p{<r)d<r

J(r(n-1)

Therefore,

N N

V 2cm V 2cm p°"tn'
q > e u(n) V<r(n) > q > e \ <p(cr)do-

^rt n Jo-(n-l
n=0 n=0

(34)

Denote

p<r(n)
Vv(n) = I ^(o-)do- (35)

Jo-(n-l)

Then

A p<r(j) po-(n)
v(n) = y \ <p{a-)d<r = \ <p(<r)d(r

Using (35) and (36), the right hand side of (34) is summed by parts.

Then (34) becomes

V 2cm . . _ , . _ 2c*N f0"^ , ,q y e u(n) Vcr(n) > q e \ <p(o-)dcr

n=0 °

N / IX_2„ ^ ,_ ^(n-1)
- q(1 - e ) ^ e

n=l

y e \ ^(o-)do-

-19-
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which yields, because of (1) and (2),

N N

V 2cm . . „ , . . 1 , /n ->-2a V^ 2cm 2q y e u(n) Vo-(n) > - r qk(l- e ) > e o- (n-1)
n=0 n=l

N N

V^ 2cm . . . . 1 . 2a . ST* 2cm 2. .q y e u(n) V(n) > - j qk(e - 1) y e o- (n)
n=0 n=0

which was to be shown.
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