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ABSTRACT

It is proved that the V. M. Popov theorem also estab

lishes absolute stability in the bounded-input - bounded-

output sense, i. e. , if the Popov theorem establishes

absolute stability of the autonomous system S, (r(t) = 0),

then the system is also absolutely b. i. b. o. stable.
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I. Introduction

The stability of nonlinear deterministic systems has been the

object of intensive research in the past few years. However, the main

1 2
concern has been for autonomous systems. Popov, Jury and Lee,

3
Desoer, and others obtained frequency domain criteria for absolute

4
stability. Sandberg gave some very general results for L - stability.

Another important and very practical type of stability is absolute

stability in the bounded-input-bounded-output sense (b. i. b. o). The

object of this paper is to prove that the V. M. Popov theorem also

establishes absolute stability in the b. i. b. o. sense for the system S

5
given in Fig. 1. Recently, Sandberg proved a similar result. However,

the model he considered is different from the one in Fig. 1. The proof

presented in this paper is also simpler than Sandberg1 s and is closely

connected to the proof of the autonomous case.

The notation and terminology in this paper follow those used by

Aizerman and Gantmacher in Ref. 6.



II. Description of System

The system S under consideration is the single input - single output

unity feedback system shown in Fig. 1. The nonlinear element is memory-

less and time-invariant, the linear plant is nonanticipative time-invariant,

and completely controllable and observable.

Assumption 1. The nonlinear element N is characterized by a piecewise

<p( 0")
continuous function <p{>) defined on (-oo, +oo) such that 0 < < k < oo

V <r 4 0 and <p(0) = 0. For ease of notation, let <p{cr(t)) = u(t).

Assumption 2. The linear plant is characterized by its transfer function

W(s). W(s) is a rational fraction in s with its numerator polynomial of

lower degree than the denominator. W(s) has poles only in the left half

s -plane (principal case), or has some poles on the jco axis (particular

cases). z(t) is the zero input response of the linear plant.

Assumption 3. The input signal to the system is such that r(t) and r(t)

are bounded for all t > 0.



III. Main Results

Theorem. For the system S satisfying the previous assumptions to be

absolutely b. i. b. o stable in the sector [0,k] for the principal case and

in the sector [«,k] for the particular cases (€ > 0 arbitrarily small), it

is sufficient that there exist a real number q such that for all o> > 0 the

following inequality is satisfied

Re | (1+jo)q)W(jo)) I +1 >6>0 (P)

In addition, for particular cases, the conditions for stability-in-the-

limit must be satisfied.

Remarks: without loss of generality the Theorem need only be proved

for

(i) principal cases of W(s)

(ii) 0 < q < oo ,

(iii) the nonlinearity <p{&) in the reduced sector [€,k-e ], i. e. ,

€ < ?Lll < k_e V o-^ 0
— (T —

where € > 0 is arbitrarily small.

These remarks are justified in Ref. 6 for the zero-input stability of

system S. However, the same arguments that Aizerman and Gantmacher
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use in Ref. 6, can be applied for the non-zero input case.

Auxiliary Lemmas

The proof of the Theorem uses two lemmas. One of them is a

well-known lemma concerning the frequency domain analysis in the

V. M. Popov Theorem. The second one is the main contribution of

this paper.

Lemma 1

If the three real functions f.(t), f~(t), f-(t) belong to L (0,oo),

and if their Fourier transforms are related by the equation

F (jw) = H(jco)F (jw) + F2(jco) where Re H(jco) >P>0 V co > 0, then

poo poo 2
- \ £^(t)f3(t)dt < Jg" •) &2^0 dt* (For proof see Ref. 6.)

Main Lemma

If the system S satisfies all the conditions of the Theorem, then

the following inequality holds for sufficiently small a > 0

f e2aTu2(T)dT| < -L J e2QfT[r(T)-z(T)+q(r(T) -z(T))]2dr
6 ^0

1/2

2q r°"(0)+ -f- I <p(o-)dcr
6 J0
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Proof of Theorem

Referring to the remarks, the Theorem need only be proved for

principal cases of W(s) and 0 < q < oo . It may also be assumed that

<p{<r) in the sector [0, k] satisfies the reduced sector condition

€ < ™—I < k-€ V cr 4 0, <p[0) = 0 where € > 0 is arbitrarily small.
— (T —

Let w(t) be the impulse response corresponding to W(s). System S is

described by

o-(t) = r(t) - z(t) - 1 w(t-T)u(T)dT

or equivalently

cr(t) =r(t) - z(t) - f ea{t'T) w(t-r) e"a(t"T)u(T)dT

By the triangle inequality and the Schwarz inequality

|<r(t)| <|r(t) -z(t)| +MV^ w2(x) dx j ^e^ jjV^W

(1)

1/2

(2)

Using inequality (L) of the Main Lemma yields
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,00 \ 1/2
(r(t)| < |r(t) -z(t)| + I I e w (x)dx

/ 1 f* -2<*(t-r) • ... . 2, , 2q -2*t f0"^I — J e [r(T) - z(t) +q(r(T) - z(t))J dr + -£*• e \ ?(<r
o-(O) \ 1/2

)dcr

(3)

Since W(s) is a principal case, there exist positive constants K , K_,
-K2t l Z

such that |w(t)| < K. e . Therefore there exists an a, 0 <a < K^

r°°2ax 2
such that \ e w (x) dx < A < oo. The second integral is bounded

J0

since it is a convolution of a strictly stable linear system with a bounded

input. (Note that z(t) and z(t) for principal cases are bounded). Thus,

the right hand side of inequality (3) is bounded for all t > 0. Therefore

|or(t)|< B < oo V t > 0 (4)

which implies that the output c(t) is bounded. This completes the proof

of the Theorem.

Proof of Main Lemma

From system equation (1), one obtains

S-(t) = [r(t) - z(t)] - f w(t-T)u(T)dT - w( 0)u(t) (5)

The variables r(t), z(t), r(t), z(t) and u(t) will be truncated at T and
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then denoted rT(t), z (t), rT(t), zT(t) and uT(t) . By truncation, it is

meant that the function is identically zero for t > T. Then, define cr_(t)

and or (t) by the following equations.

<rT(t) =rT(t) - zT(t) - |w(t-T)uT(T)dT

5-T(t) =rT(t) - zT(t) - ^ w(t-T)uT(T)dT - w(0)uT(t)

(6)

(7)

Note that cr_(t) and <r (t) are not identically zero for t > T but satisfy

the following inequalities

-K t -K t

|<rT(t) | < K3 e ,Vt>T, |orT(t)|<K4e ,Vt>T

where K and K. are positive constants and K_ was defined in

-K2t
|w(t)| < IC e . Equations (6) and (7) yield

-<rT(t) - qi-T(t) = - [rT(t) - zT(t) +q(rT(t) - zT(t))]

+ j [w(t-T) +qw(t-r)] uT(T)dT +qw(0)uT(t) (8)

Adding ( r- - y J u,_(t) to both sides and multiplying by e , 0 <a < K ,

yields
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- cr_(t) - q <r-(t) + hr " Y ^^(t)
at

> e

=-e** IrT(t) - zT(t) +q(rT(t) - zT(t))

jV^ [ qttw(t-T) +qw(t-T)] e uT(T)dT

+qw(0) e^u^t) + - Y e uT(t) (9)

Identify

fx(t) = <! - <rT(t) - q crT(t) +
k "Y uT(t) ^ eat

atf2(t) = - e rT(t) - zT(t) +q(rT(t) - zT(t))

Then (9) is rewritten as

f (t) = f2(t) + J ea(t-T)[w(t-T) +qw(t-T)] eQrTuT(r) dT

+qw(0) e^u^t) + - Y
ate uT(t) (10)

Since all terms in (10) belong to L (0,oo) because of the truncation at

T, one can take the Fourier transform of (10).

F (jw) = F2(jw) + < [1+ q(jco -a)] W(jco - a) + - - y J>UT(jco-o) (11)
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Equation (11) satisfies the condition of Lemma 1 if

Re <[1+ q(jo> -a)]W(jco-Q?) i +--y>_b-y>0 (P')

is satisfied. It is proved in the Appendix that satisfaction of (P) implies

(P'). Then

»°o , /-»00- J fx(t)uT(t) eatdt <^-^ J [f2(t)]2dt (12)

Substituting for f (t) and f (t) into (12) and using the fact that the functions

were truncated, yields

I (<r(t) -ir) u(t) e2<rtdt +qf^(t)u(t) e20*dt

T TJ eZat u2(t)dt <4|6_y) J e2Qrt [r(t) -z(t) +q(r(t) -z(t))]2dt

The right hand side of the inequality will be denoted C(T). Note that

rT. 2<* r^u(t) = <p((r(t)), integrate \ (r(t)u(t) e dt by parts, and add q \ <p((r)dcr

to both sides.
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d rt*)\ , , 2«t, 2aT r°"(T)J V " k/ ^cr) e dt+qe <p((r)dcr

o-(t)
<p{cr) dcr- 2qa I e \

J0 J0
dt

rT2at 2, r°"(°)
+ Y \ e u (t)dt < C(T) + q \ <p(o-)d<r

J0 J0
(13)

Since <p{cr) lies in a reduced sector [€,k-e], € > 0 arbitrarily small,

it is noted that

r*^ k 2(a) 9>(cr)do- < 7 cr (t)
Jo L

(b) -T- 0- < Cr - <P(0 <p(<r)

Inequality (13) may then be strengthened by using (a) and (b) and deleting

the positive quantity q e
2<*T

o-(T)
\ <p{(r) do- on the left hand side.

U
lot

— - kqa o-2(t)dt

+ \ e2Qftu2(t)dt < lI - 4Y(6-y) I-> r(t)-z(t) + q(r(t) -z(t))] dt

+ J I <p((r)dcr
Y J0
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c ° 6* v = 2" ' since y is arbitrary as long as 0<y<5. Y= T minimizes

the right hand side as far as the choice of y is concerned. Then

2 CT 2at\ e2 ,-^e [T-kq« 2, v -,0- (t)dt

T T

J e2Q* u2(t) dt <i- J e2Qft [r(t) -z(t) +q(r(t) -z(t))]2dt+ ^ e
0 6 ^0

Denote

2a r°"(0)+"f- J ^(o-)d(T

\-I
2ort €

e I — - kqa cr2(t)dt

(15)

If for a > 0, — - kqa > 0 then I > 0 and it may be deleted from the

left hand side of inequality (15). For any €>0, q<co, k<oo one can

always find an a small enough such that

2

0 < a < -2-=
qk

Hence inequality (15) becomes

(T \ 1/2 r Tre2atu2(t)dt] < \ J e2Qrt[r(t)-z(t)+q(r(t)-z(t))]2dt

2q r<r(°)+ -£*• \ <p{v) dcr
6 J0

1/2

V T > 0

which completes the proof of the Main Lemma.
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IV. Extensions

Note 1

The case where <p(cr) satisfies the inequality a < ——- < b can

be treated by making the change of variables ^(or) = <p{<r) + a<r. Then

<p{<r) is contained in the sector [0, b -a] and the Theorem can be applied.

For principal cases of W(s) the parameter a may also assume negative

values. For the case q = 0 this reduces to the familiar circle criterion

for autonomous systems.

Note 2

It can easily be shown that with q = 0 the Theorem proves b. i. b. o.

stability when N in the system S is a time-varying nonlinearity described

by u(t) = <p[o-(t),t] . The function <p(cr,t) satisfies

0<^^ <k <oo, Vo-^0, Vt>0

and

<p(0,t) = 0 Vt > 0

Note 3

The results of the Theorem also apply when the linear plant is
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f\

not described by a rational transfer function in s, provided that

(a) for arbitrarily small a > 0 the impulse response w(t) satisfies

C°° Zat Z, %„
\ e . w (t) dt < A < oo, A some positive number.
0

(b) the zero input response z(t) and its derivative z(t) are

bounded for all t > 0 by decaying exponentials.

r°° -st(c) W(s) = \ w(t) e dt is analytic in the domain Re s > - a.
J0
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APPENDIX

Proof That Satisfaction of Inequality (P) Implies (P1).

In the expression of (P') replace 6 by 6 . It will be shown that

this has no consequences and that if there exists a 6 > 0 satisfying (P),

then there also exists a 6 , 0 < 6 < 6, satisfying (P1).

(P') is rewritten as

Re | [l +q(jco-a)]W(joo -a) [ +£ - Y>5 - Y>0 (P1)

Given any principal case W(s), there exists an arbitrarily small a > 0

such that W(s) is analytic in the domain Re s > -a. It follows that

IW(jco - a) - W(jw)|and |(jco - <*)W(jco - a) - jco W(ja>)| approach zero

as a becomes arbitrarily small. Then, there exists 6 such that

0 < 6 < 6 and (6-6 ) -* 0.
a a
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