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1. INTRODUCTION

The theory of optimal control has received a new impetus

through the papers of Gamkrelidze [1] and Neustadt {2]. It seems

clear now that the optimal control problem should be studied as an

extremal problem in a Banach space or a locally convex space. The

motivation for this generality is derived from the study of optimal con

trol problems with trajectory constraints. This author has arrived at

the problem formulated in Section 3 through the study of nonlinear pro

gramming in general spaces [3]. The results obtained are similar to

those of Neustadt, but the method of proof and the motivation appears

to be different. It is hoped that this paper serves as a common frame

work for both optimal control and nonlinear programming problems.



2. NOTATION, DEFINITIONS AND A PRELIMINARY RESULT

Throughout this paper, X and Y will denote arbitrary real

Banach spaces. All undefined terms can be found in Dunford and

Schwartz [ 4].

pef. 2.1. A function f: X -+ Y is differentiable (Frechet-differentiable)

at a point x if there is a continuous linear function, f'(x), mapping X

into Y such that

llm f<X *7> - f<*> =<f(x), z> £f(x)(z)
w-*z

f(x +h) -f(x) -<f»(x), h\
lim — ' = o
h-0 | h |

In addition to a linear approximation of a function at a point we shall

need a 'linear' approximation of a set at a point.

Def. 2.2. Let A be an arbitrary subset of X and let x € A. For each

neighborhood N of x let C(AflN, x) denote the smallest closed cone,

with vertex 0, containing the set AON -x = {z-x|z€ AHn} . Let

Ho be the neighborhood system at x. Then the set

LC(A, x) = n{C(AHN, x) |Nete}

is called the local cone of A at x.

Def. 2.3a. Let A be an arbitrary subset of X and x € A. The set
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LP(A, x) =1x* €X" |<[ x*, z^> <0 for all z€LC(A, x)

in X is called the local polar of A at x.

Def. 2.3b. If K is a cone then P(K) = LP(K, 0).

Remark 2.1a. The local cone is a nonempty (it always contain 0) closed

cone and the local polar is a nonempty closed convex cone. b. A useful

alternative characterization of the local cone is given by the next fact.

Fact 2.1. The following statements are equivalent, a. z € LC(A, x).

b. There exist sequences {x } C A, {\ }, \ > 0 such that, x -*x and
— n — n n n

\ (x - x) -*>z. c_. There exist sequences {z } C X, {e } , e > 0, such

that € ->0, z -*z and (x + e z ) e A.
n n n n'

Proof. Trivially b. and £. are equivalent. The equivalence of a.

and b. follows directly from Def. 2.2 using a standard Cantor diagonal

argument. Q.E.D.

The justification of the two linear approximations is provided by

the following elementary but extremely useful result.

Theorem 2.1. Let f be a real-valued function of x and A an arbitrary

subset of X. Let x in A be a solution (2.1)

(2.1) Max{f(x) |x € A}

JJ „*
X denotes the space of all real-valued, continuous linear functions
on X.
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Then, if f is differentiable (see Def. 2.1) at x we must have

(2.2) f»(x) c LP(A, x)

Proof. Let z €LC(A, x). We have to show that <^f'(x), z^> < 0.

By Fact 2.1c there are sequences z -»• z, € -» 0 + such that

xn =(x +en zn) c A. Since x solves (2.1), f(x ) - f(x) ^ 0. Hence,

f(x + € z ) - f(x)
n n/ l ; < 0

n

Taking the limit as n-*-co, we get (2.2) from Def. 2.1.
Q.E.D.

Remark 2.2. The definitions of derivative, local cone and local polar

make sense for arbitrary linear topological spaces. Fact 2.1 is valid

if we replace 'sequence' by 'generalized sequence' or 'net'. Theorem

2.1 still remains true.

3. STATEMENT OF THE MAIN THEOREM AND SOME COMMENTS

Theorem 3.1. Let X and Y be real Banach spaces. Let f be a real-

valued differentiable function of x, and g, a continuously Frechet-

differentiable function from X to Y. Let A be a subset of X and suppose

that x solves (3.1)

(3.1) Max{f(x) | g(x) = 0, x € A}
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Let G = g'(x) be the derivative of g at x. Let K be any closed

convex cone contained in LC(A, x). Then if G and K, satisfy as sump-

tions Al and A2 there exists a number |i 5: 0 and a y^ in Y^ not both

zero such that

(3.2) <[|jLf'(x), 6x^> +<Cy*» G(Sx)/> S o for all 6xin^.

Al. Suppose G(K,) = Y and let z € K., z ^ 0. Then we shall assume

that there is a closed convex cone K, depending on z and contained in

K, which satisfies the following conditions: 1. G(K) = Y. 2. There

exists a closed linear subspace Z of X containing K such that K has

a nonempty interior K relative to Z and z eK . 3^ Finally if z(e)

for € > 0 is an arc in K such that z(«)-*0 and z is differentiable from

the right at € = 0 with z'(0) = z, then there is a sequence € -*0 such

that (x + z(e )) is in A for each n.
— n

A2. L If G(K.) = Y, then we assume that G(K) = Y. 2. Let

N = {x | G(x) =0} . We will assume that LP(N) +LP(Kj) is closed.

Comments. The assumptions A2 are of a technical nature and in

most problems they are satisfied. In most applications of discrete and

continuous optimal control the range space Y is finite-dimensional. In

this case, it can be easily shown that these assumptions are automati

cally satisfied.

The assumptions Al are far more serious, and can be considered

as compatibility requirements at the optimal point, between the function
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g, the set A and their 'linear' approximations G and K. As is shown

in section 5 these requirements are satisfied by most optimal control

problems. See also [1, 2, 3].

The requirement of the strong differentiability of g can be

replaced by the weaker notion of differentiability if Y is finite-

dimensional. The only place the stronger notion is employed is in

Lemma 2 of the Appendix. It is probable, although the author is unable

to prove it, that this result is valid with only the weaker notion of

differentiability.

4. PROOF OF THE MAIN THEOREM

The proof is divided into two parts; the first case takes care of

the degeneracies which may arise, the second case is the important

one.

Case 1. Let Q = G(K,). Suppose Q i Y. Then Q is a proper

closed convex cone in Y so that there is a y^ in Y", yn ^ 0 such

that

<C y » 6v^ - ° for a11 dy in Q

•'• <C Y »G(6x)^> ^ 0 for all 6x in 1^.

Hence Equation (3.2) is satisfied with jj. = 0 and y r ^ 0.

Case 2. Suppose Q = G(K,) = Y. Then by assumption A2,
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(4.1) G(KX) =Y

Let A = {x | g(x) = 0} and let N = {x | G(x) = 0} . We will now prove
©

the important fact that

(4.2) LC(A n A, x) Z)K 0 N
g —. —. i

Let z e K, f\N and suppose z 4 0. By assumption Al, there exists a

closed convex cone K C ^i which satisfies the following conditions:

1. G(K)= Y. 2. There is a closed linear subspace Z of X containing

K such that K has a nonempty interior Kfi relative to Z and z is in

Kn. By the corollary to Lemma 2 of the Appendix there exists an arc

z(€), e > 0, contained in Kn such that it is differentiable from the right

at € = 0 and such that

and

lim z(€) = 0, z'(0) = z
e-*0

(4.3) g(x + z(c)) = 0 for each €

But then by assumption Al, there is a sequence € -*•() such that,

(x + z(e )) is in A for each n. Because of (4.3) we see that

(4.4) (x + z(e )) e {A H A} for each n.
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But by Fact 2.1c Equation (4.3) implies that

z € LC(A D A, x)
6

which proves the assertion (4.2). Directly from the definition of the

local polar (4. 2) implies that,

(4.5) LP(A fl A, x)C P^HN).

Since x is a solution of the problem (3.1), Theorem 2.1 says that

(4.6) f»(x) e LP(A fl A, x)C P(K H N).
6 1

It is straightforward to show [3, p. 12], using the strong separation

theorem [4, p. 417] that

(4.7) P^flN) = P(K^) +P(N)

By assumption A2 P(K ) + P(N) is closed, so that (4.6) and (4.7) give,

(4.8) f'(x) e P(K:) + P(N)

By ([!]* P« 487), using Equation (4.1) and Def. 2.3b we obtain,

(4.9) P(N) ={Y* - G} ={y* • G| y* eY*}

where y • G is the element in X given by <Q y • Gx ^> =<jr , Gx^>

From (4.8) and (4.9) we see that there is a yn in Y such that

(f'(x) +y* • G) €Ftty

Hence (3.2) is again satisfied with jx = 1, and the proof is completed.
Q.E.D.
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5. APPLICATION OF THEOREM 4.1

A. Discrete Optimal Control

Consider a difference equation,

x(k + 1) = x(k) + f (x(k), u(k)) k = 0, 1, . . .

where x € X is the state vector, u € U is the control vector and

f :X XU-*X is a continuously Fre'chet-differentiable function. X and

U are arbitrary B-spaces. Let n be a fixed integer representing the

duration of the process. Let A0 and A be subsets of X representing

the initial and target set respectively. Let &C U be the set of available

controls. The gain function g is a real-valued differentiable function

on X X U . We are required to

(5.1) Max{g(x(0), . . ., x(N); u(0), . . ., u(n -1)}

subject to

(5.2) h(x(k + 1), x(k), u(k)) = x(k + 1) - x(k) - f(x(k), u(k)) = 0

for 0 2 k S n - 1

and

(5.3) x(0) € AQ, x(n) € An, u(k) eft for 0 S k £ n - 1

Let {u(0), . . ., u(n - 1)} be the optimal control and {x(0), . . ., x(n)}

be the optimal trajectory. Let Kfi, K be closed convex cases contained

in LC(A0, x(0)) and LC(A , x(n)) respectively. Let Q. be a closed
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convex cone contained in LC(ft, u(i)) for 0 ^ i ^ n - 1. Now we form

the function,

$(M-; x(0), . . ., x(n); u(0) u(n-l); ^(1), . . ., ^(n))
n-1

= M-gn(x(0), . . ., x(n); u(0) u(n -1) +\
k=0

<^(k +l), h(x(k +l), x(k), u(k))^>

Hi

where the i|i(k) belong to X .

Suppose the cones defined above, the function h and the constraint

sets satisfy the assumptions of Theorem 4.1. Then there exists

ji = jx > 0, ip(k) = iji(k) not all zero such that

<axW ' 6x> - ° for 6x€Ko«

axW = ° for ° <k5n"1-

<al(nTJ 6x> "° for 6x€Kn'

< auW • 6x> " ° for 6u€ Qk> ° - k " n"l-

where the derivatives are evaluated at jjl = ji, x(k) = x(k), u(k) = u(k)

and i|j(k) = ^(k). Now if we expand the above equations we obtain the

usual necessary conditions for discrete optimal control.
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Remarks. 1. The conditions given in [5] are a special case of the

above equations. 2. The fact that we allow our state variables to be

infinite-dimensional will also enable us to consider discrete stochastic

optimal control problems. See [3] for an elementary example.

B. Continuous-Time Optimal Control

Let aJ be the linear space whose elements f(x, t) are n-

dimensional real vector-valued functions for x in R and t in a fixed

finite closed interval I = [tfi, t,]. The functions f satisfy certain

smoothness conditions in x and some integrability conditions in t. Let

F be a quasi-convex subset of <& . For the precise conditions and defi

nition the reader is referred to Gamkrelidze [l] and Neustadt [2], The

relevance of the various assumptions made in the sequel to optimal

control problems is also discussed in these references.

Now for any f in F, let x(t), t in I be any absolutely continuous

solution of the differential equation

(5.4) x(t) = f(x(t), t), t in I

We shall regard such a function x as an element of the Banach space

X of all continuous functions from the compact interval I into R . We

also define A to be the set consisting of those elements x in X which

are solutions of (5.4) for some f in F. Now let h be a real-valued

differentiable function of x in X and let g : X -*-R be continuouly dif

ferentiable function. We wish to solve the following problem:
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(5.5) Max{h(x) | g(x) = 0, x e A}

Let x be a solution of (5.5) and suppose that

(5.6) x(t) = _f(x(t), t), t in I

for some f in F. Let [F] denote the convex hull of F, and consider

the linear variational equation of (5.6),

(5.7) 6x(t) =|1 (x(t), t) 6x(t) + Af(x(t), t)

for t in I. Here Af is any arbitrary element of the set {[F] - f} and

6x(tn) = £ is any arbitrary n-vector. Let <p(t) be a non-singular matrix

solution of the homogeneous matrix differential equation

*(t) =H (x-(t)*t} ^(t)

with ^>(tn) = 1, the identity matrix. Then the solution of (5.7) is

(V.
Jt„

(5.8) 6x(t) = <p(t)^£ + \ <p (t) Af(x(t), t) dt

:0

Let KCX be the collection of all 6x which satisfy (5.8) for some £ in

R and some function Af in {[F] - £} . Clearly K is convex and let

K, be the closed convex cone generated by K. Using the definition of

quasi-convexity and the (generalized) Gronwall's lemma [ 6 ] it is easy

to show that KC LC(A, x). We therefore have
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Lemma 5.1. F is quasi-convex =#> K, C LC(A, x).

In order to apply Theorem 3.1 we have to verify that assumptions Al

and A2 are satisfied. First of all since the range of g is finite-

dimensional, A2 is automatically satisfied. Let G be the derivative of

g at the optimal point x, and suppose that G(K,) = R . Let z € K,,

z ^ 0 and G(z) = 0. Let S be a simplex in R , generated by the

points, y0, . . ., y containing 0 in its interior. Let k_, . . ., k

be in K. such that G(k.) = y. for 0 ^ i ^ m. Let K be the polyhedral

cone generated by k~, . . •, k . Using the definition of quasi-convexity

and the (generalized) Gronwall's lemma it can be shown that K satisfies

assumption Al. Then by Theorem 3.1 there exists numbers [x £ 0,

V.. .... \ not all zero such that,
1' ' m '

(5.9) |i<^f'(x), 6x^> + <^ X, G(6x)/> < 0 for all 6x in Ky

where X = (\,, . . ., \ ). Following Neustadt [2] we can obtain the

maximum principle, from Equation (5.9).

Remarks. Theorem 3.1 deals with a problem which may have infinitely

many constraints (since X and Y are arbitrary Banach spaces). How

ever in the above application we have only considered finitely many-

constraints since Y = R . It appears to the author that the notion of

quasi-convexity is too weak in that, generally, assumption Al will not

be satisfied for any arbitrary Banach space Y. If F is convex instead

of quasi-convex, these conditions usually hold.
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APPENDIX: PROOF OF LEMMA 2

We shall prove two results which are of independent interest

and which are also required to complete the proof of Theorem 3.1.

Lemma 1. Let X and Y be real B-spaces and let G be a continuous

linear mapping from X into Y. Let K be a closed convex cone in X

such that G(K) = Y.

For each p > 0, let K = {6x 16x | < p, 6x € K} . Then there
r

is a number m > 0, independent of p, such that

G(K ) D S

where S is the closed sphere in Y of center 0 and radius mp,
mp r r

Proof. This result is a generalization of the Interior Mapping

Principle. Although the proof is long, it is a straightforward modifica

tion of that given by Dunford and Schwartz'". Hence the proof is omitted.

Q.E.D.

Lemma 2. Let K be a closed convex cone in X, and g, a continuously

Frechet-differentiable function from X to Y such that g(0) = 0. Let

G = g'(0) and suppose that there is a number m > 0 such that for

p > 0, G(K )I)S . Let z €K, |z| = 1, and G(z) = 0. Then there

exists a number e^ > 0, and a function o(e) such that for all 0 < e < c ,

the set g(e z + K . .) is a neighborhood of 0 in Y.

Dunford and Schwartz, Linear Operators Part I, pp. 55-56.
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Proof. Let v:X-*Y be the function defined by v(x) = g(x) - G(x).

Then,

Iv(e z +x^ - v(e z +x2) |

= | g(€ z +xx) - g(« z +x2) - G(X]L - x2) |

= |<g'(€2 +XX), XX -X2> + 01(|x1 -X2|) - G^ -X2)|

Therefore,

|v(ez +xx) - v(cz +x2)| o-dx-.x-l)-L-- 5- , !«•(..+^,.g| +Y1
lxl x2' lxl-x2l

Also,

|v(€z +xx)| = |g(ez +x) - G(€z +x)| = o2(|€z +x|)

Pick a number € > 0 such that for 0 < € < c

|v(€z +x]) - V(€z +x2)|

lxl " x2
< ™- for |x.| < € i = l, 2,

and

o2(|ez +x|)= o(€) < ™- for|x|<e.
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Fix 0 < € < € and let y € Y with |y | < o(e).

Let x e K such that G(xQ) =y and |xQ| <— |y| <— o(e).

Let x, € K such that G(x, - xQ) = -v(c z + xQ) and

lxl"xol K75 lv<€Z+xol <So(e)-

For nil, let x ,, € D with G(x ,, - x ) = -v(« z + x ) + vU z + x ,)
' n+1 * n+1 n7 * n7 * n-1'

and lxn+l-xnl <S-°<6>-

We first show that for n 2: 0, |x | < € so that the above inequalities

are valid. Firstly,

|xn| < — o(c) < rr€ and |x, - xn I < — o(c) < -r e
1 0 ' m w 4 '1 0' mw 4

- Ixxl - lx0l + lxi "X0I K 2€ "

By induction on n,

|x ., -x I <Mn k -xJ <(if lxl - x0
1 n+1 n' \ m / '1 0' 14/

•'• lxn+p "xn IK(l f ~T7 K"x0 IK(? «) S °<€ >'
In particular, |x ,, - x, | <-j so that |x ,, | < — o(c) <€. Also x

i i 4
converges. Let lim x = x. Then x < — o(c) and x € K. Now,o n i i m
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G(x0) = y

G(xx) - G(xQ) = -v(e z +xQ)

G(x2) - G(xx) = -v(ez +x:) + v(ez + XQ)

G(xn+1) - G(xn) =-v(e z +xn) +v(€ z +xn_1).

Adding both sides we get,

G(xn+1) =y - v(€ z +xn) for n > 0

y =G(xn+l> -v(€z+xn)

Also |y - g(€ z +xn) | = |y - G(xn) - v(e z +xn) |

= |y - G(xn) +G(xn+1) - G(xn+1) - v(c z +xJ |

= |G(xn+1 - xn)| <||G|| |xn+1 - xn| - 0 as n-co.

_4
m

Therefore,

But xn-*»x so that g(c z +x) =y. Also x e D and |x | < — o(c).

8(<Z +Ko((pS(m/4)o(<] Q'E-D-

Corollary. Let g:X-*Y be a continuously Frechet-differentiable

function with g(x) = 0. Let G = g!(x). Let K be a closed convex cone
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in X with G(K) = Y, and let Z be a closed linear subspace of X such

that K has nonempty interior Kfi relative to Z. Let z € K_ with

G(z) = 0. Then there exists an arc z(c), €> 0 in KQ such that

1) z(e) -*» 0 as €-*0

2) z(€) is differentiable from the right at e = 0 with z'(0) = z

and

3) g(x + z(c)) = 0 for all € .

Proof. By Lemmas 1 and 2 there exists a function o(e) such that

g(x + €z + K . .) is a neighborhood of 0 in Y.

Then for € > 0 there exists a vector x(e) in K with |x(e) | < o(e)

such that g(x + € z + x(e)) = 0. Define z(e) = ez + x(€). The rest

follows- Q.E.D.
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