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In a recent paper H. C. Chen and D. K. Cheng proved a

reciprocity relation for electromagnetic fields in a compressible

plasma with high frequency sources. It was shown that the Lorentz

reciprocity relation holds if V J = 0. From the well-known decompo

sition of the fields in a compressible plasma into electromagnetic and

plasma modes, it is easy to see that such restriction on J* results
e

m no plasma mode, thus the fields are purely electromagnetic.

Therefore, the plasma only affects the dielectric constant in the Max

well equations, the reciprocity relation of which is well known.

In this communication we wish to show that Lorentz reciprocity

relation of electromagnetic fields holds in a compressible plasma in

a much more general condition, namely,

(a) y Je i 0,

(b) the ion motion is not negligible,

provided both the electromagnetic and plasma modes of the fields

satisfy either the radiation condition at infinity or homogeneous boundary

conditions on a closed surface.

The linearized hydrodynamic equation of motion and the equation

of continuity for plasma are given by

icoM N V = N e^" + VP , (1 )
e o e o e x '

iwM.N V. = -N eE + VP. (2)
i o i o i »*•'



KTN V< V = iwP , (3)
o e e

KTN V» V. = iwP., (4)
oil' x '

KT = M.U.2 =M U 2,
11 e e

where the subscripts e and i denote the association of the fields with

electrons and ions, respectively.

Maxwell equations are given by

VxE*= icou^H -Tm, (5)

V xH = -io>€ E +N efv\ - V ) + J (6)
o o l e e l '

From (1) and (3), and (2) and (4), we obtain

!T=iw—iV -.SIvV'T, (7)
e e icoe e v '

E = -iw—-V. +.iliLvV«V.. (8)
e l iwe i v '

The reciprocity relations can be derived by considering two

sets of sources J,, J . and T -,"7 _. Through two sets of curl

equations similar to (5) and (6) we have the following:
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jj s(El XH2 "E2 XHl> ' ndS =jjjv^l ' Jm2 "H2 ' Jml +E2' Jel "El'

Je2,dv +Noejjj '(BT2 •Vel -^ •Ye2 -E2 •Vu +̂ .T.2)dv. (9)

Let R be the second integral on the right hand side of (9). Substituting

(7) or (8) into R., we can transform it into a surface integral.

iKTN

R, =
O » . IT?

I oco
(v., v. v , - v , v. vfc1 + y„ v. yJjs(Vel e2 e2 v el il i2

- V.2 V .Vu).nd8, (10)

For the unbounded plasma, we decompose the fields into E-M

4
mode and plasma mode with

E = E + E ,
o p*

V = V + V ,
e oe pe

H = HQ,

V. = V . + V .
i oi pi

and satisfy the following sets of equations.

E-M mode:

VxH = - ito€ eE + J ,
o o o e

V x E = icou. H - T ,
o ^o o m

iwM V = eE ,
e oe o
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2 2
CO CO

= 1 _ j>e . Pi

CO CO

(11)

(12)

(13)



icoM.V . = - €
l Ol

(14)

Plasma mode:

[V] = Pe

V .

LplJ

ito All A12 i
A21A22 ^ •

Ll_i

i .,.,,/T,, ,.,, A Wfnl
KTN

o
1 KTN A VLPJ

o

where

2 2
CO - CO . -

A = El u2
11 f 4 U e'

CO g

co2 .U 2
A = A = - Pl e
A12 A21 ~I

CO €

(co2 - co2 ) U.2
A Pe' i
A22 4

CO € *

E =-^-i [co2 VP - co2 . VP. 1 ,
P co2€N e Pe e P1 l

o

, iU2 N eV-J
A^[p] +[p] =- e °"1

CO € C
O

IK/m}

(15)

(16)

(17)

Take the divergence of (15) and combine with (17) to eliminate the

Laplacian term. Since T is confined in a finite region, we obtain at

infinity,

V'[V] =-&» Av2[p] =^[P]
KTN KTN

(18)
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Equation (17) is a coupled wave equation of P and P. through a

real symmetrical matrix A, which can be diagonalized by an ortho -

normal matrix T composed of the eigen vectors of A

-1-1 k 1 °T LA iT = ( l 2 ),
° * 2

-1where k. and k2 are the eigen values of A .

We define a new vector [ p] by

[P] =T[p] =T[ *].

Thus, (17) can be written in the following form:

-1

.2 — ~-
7 ii lU N e V • J ,,1J[<p] +T"1A-1T[p] = |-° ^T-V1 ;-M /M

co € € L. r
o

Therefore,

-v2pb+k22Pb-

_ iU2 N eV .7 , , ~ 1
" «2 1 T^A"1 -M /M

co36 « L e/MH

(19)

(20)

(21)

Equation (21) gives the uncoupled equations for P and P, with
a b

excitation sources of the form V#7 on the right. If V »7 = 0,
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_cl'. bus c£ h$ .wv^.e^^rpy'̂ t'W'Sv/'-^alqwvit; & el {•?&} iir^fcsi^pSl.

y ' '

r ':•

.0 "•- L*

/. a! Ji.-i .. U «

0 ... J.l

O'
\ - T •1>'u""-l

lO.ejDOii/v n-ivu.-- •? K.' -V 7.D.2VW

I'q] -ro^o^v v.: -, oV/

♦ I 'V 3T = i^3'r c l'-ii .

Ti-voi £/i;v;o.i.io'i or[/-;<f-.«.••; j-f.: "i••.-,'• r*d fiso (V!.; ,«f<n

i.. " V ;"
.i-.,.

,:-x-T.
. \/' .:• T»'C r- 1

;!' f

L_r '• c- -: 'r • ..' l v J



P and P, are identically zero. It follows from (20), (15), and (16)
a b

that no plasma mode is excited. The E and H fields are completely

described by (11) and (12). Reciprocity relations of the form (32) is

then obvious.

If V* J ^0, we have the following restrictions on P and P :

lim r P —* finite, lim r P,—>finite, (22)
ci D

r—»oo r-^oo

lim r[^ -iklPaJ^° lim r\^T -ik2Pb]^°- <23>
r —ioo r —ioo

The V»V . terms can be shown by (18) and (22) to behave as — at

infinity. Also, (16) shows that E is longitudal at infinity. This im-

plies that the transversal components diminish at infinity faster than

— and can be neglected in the surface integral on the left hand side of

(9). We have then

\( (E. xH_ - E. xH.)- nds = \\ (E . xH _- E , xH.).
JJ s -»oo 12 2 1 JJ s-*oo ol o2 o2 ol'

nds = 0 (24)

From (11) we get V»E = V e . Take the divergence of (13)
ico € €

o

and (14) and notice that the source is confined in a finite region, we have

at infinity

v.v = V.V . = 0.
oe oi
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Equation (10) can then be rewritten as

iKTN __ _ __ __ __ _
R, = ° H [ (V , + V ,)V«V , - (V , + V ->)V.V ,1 co JJ s L x oel pel' pe2 x oe2 pe2' pel

+ (V ., + V .J V. V ._ - (V . +V ._) Vr V .. l.nds. (25)
* oil pil' pi2 oi2 pi2' pil J

The E field is transversal at infinity which implies that n»E
o o

diminishes faster than —. As a consequence of (13) and (14), we conclude

that n »V and n «V . also behave in the same way at infinity.
oe oi J J

\
The product of n» v with V* v then diminishes faster than —_ ,

r o p c.
r r

hence its surface integral vanishes as r-^oa Then R. reduces to the

following form:

iKTN

Rt M\ (V ,V.V , - V ,V.V .+V..V.V.-1 co JJ s pel pe2 pe2 pel pil pi2 -

V ._V«V .. )nds. (26)pi2 pil * '

The integrand in (26) can be written in matrix form

rin =<W)v(v^) -<V2Wv(y£)B
Vlt V'V2 " V2tv'Vl ' (27)

Substituting (15) and (18) into (27), we have •

In terms of [ p ] , RT1VJ can be expressed as

RIN =-(kTJt) 2[Vt^l'̂ ATt^] -Vtp^VtpJ ].
(28)
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t -1 -1 (kl2° ,Notice that T = T and T AT =1 a , -Zl. We obtain

RIN= ^T? (kl"2p2aW1.-kl'Zpi»VP2a+ki2p2bWlb-

k22pibVP2b • <29)

Substituting (29) back into (26), we have

R - iw it (k-2p 3Pla -2 ?P2a,.-2 *PlbKl KTNo Jj s <*l p2a an" kl Pla ^n~ +k2 P2b"an— "

k22pib^>ds- (30)

Relations (22) and (23) imply

HP ,

9IT =iklPa + 0(TT^)> «>0' (3D
r

P diminishes as — at infinity.

Substitute (31) into (30). The integration involving a part then become!

JI s^a^ -Pla^ >ds =JJ s<p2a 0(~tW )"Pla°
1

T
r
<-r-b>ds-

7 1
This integration is zero because S is of the order r , but P 0( )

a \ 1 + or
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is of the order —, , . It follows that the integration of the b part
r

vanishes likewise. The reciprocity relation

fljv ^1' Je2 "E2 Jel>dv =jlJv<H2* Jml ' Hl' Jm2 >dv <32>

holds.

If the volume is bounded by a nonpenetrable perfect conductor

with homogeneous boundary conditions n« "V = n-V. = 0 and~n x E" = 0

at the surface, it is easy to show through (9) and (10) that (32) is valid.
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