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ABSTRACT

The location of an internally stable set with a maximum number

of elements is closely related to the solution of several important prob

lems in the theory of graphs. In this paper, a number of strong suffi

cient conditions are developed to test whether a given internally stable

set is maximum. The sufficient conditions depend purely on the

topological properties of the graph. Furthermore, an algorithm to

obtain a maximum internally stable set is proposed. It is shown that

in many cases the algorithm always terminates in a maximum set.

However, a completely general proof is not yet available.
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INTRODUCTION

The concept of an internally stable set is of fundamental interest

in the theory of graphs [1] [ 2] . Applications range from game theory

[ 1] [3] to information theory [4] . Basically, an internally stable

set of a graph is a collection of vertices such that no two vertices in

the collection are adjacent. A set S of vertices is a maximum inter

nally stable set if no other internally stable set of the graph contains

more elements.

The importance of maximum internally stable sets is illustrated

by the following two problems.

(1) Shannon's Problem [4] : Given a set of q symbols to be

transmitted through a communication channel. Because of noise in

the channel, some of the symbols may be confused with others at the

receiver. If word is composed of n symbols, find a maximum set of

words which can be transmitted through the channel without confusion.

The solution of this problem can be shown to correspond to a maximum

internally stable set of an appropriately defined graph (for example,

see Fig. 8).

(2) Vulnerability of a Communication Network [5] [6] :A set of

communication stations are interconnected by various data links. An

enemy would like to disrupt communications by bombing "enough"

stations to completely isolate each station.. Naturally, the enemy

would like to perform this act in some "optimal" fashion. One definition

of optimal is that a minimum number of stations are bombed. It is

easily shown that the complement of such an optimal set of stations is



a maximum internally stable set of a graph whose vertices are the

communication stations and whose branches are the data links.

To find a maximum internally stable set, one could consider

all possible subsets of vertices of the graph. Naturally, such a pro

cedure is highly impractical for a large graph. Maghout [ 7] proposed

an algorithm, based on Boolian functions, to generate all possible in

ternally stable sets. The main difficulty with this algorithm is that

it is extremely inefficient and computations become time consuming

for even relatively small graphs. A more promising approach could be

based on linear integer programming [ 9] . Again, the computational

requirements for such a procedure rapidly become impractical. Further

more, since both of the above methods are analytical in nature, they

yield no direct relationships between topological structure and the

maximum internally stable sets.

Berge [1] , has shown that in some cases finding a maximum

internally stable set of a graph is equivalent to finding a maximum

matching of the graph. However, in most cases, there is no clear pro

cedure to obtain a maximum internally stable set from a maximum

matching. Other partial results have been obtaine d by Matthys [10] [11] .

Also, some interesting results on discrete optimization theory

have been obtained recently by Reiter and Sherman [12] .

In this paper, a number of sufficient conditions are developed

to determine if a given internally stable set is maximum. It will be

Later generalized by Hakimi [ 8] , to generate all matchings,all
factors and all possible subgraphs with given degrees.
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seen that these conditions can be applied to relatively large classes of

graphs. The conditions presented here suggest an efficient algorithm

to find a maximum set. Unfortunately, although the authors believe the

algorithm will always result in a maximum set, they were unable to

prove this optimality for all cases.

PRELIMINARY CONSIDERATIONS2

A graph G = (X, r) is a pair consisting of a set X and a relation

r onX. In the discussion to follow, the set X may be represented by

points (vertices) in the plane and the relation between elements of X

by continuous directed lines (branches), such that if y € Tx, the points

x and y are joined by a directed branch from x to y. The graph G is

said to be non-directed (symmetric) if and only if y e Tx implies x € Ty

for all x in X. Let A be a set and let lA j denote the number of elements

in A. The graph G = (X, F) is said to be finite if |x| < oa Only finite,

non-directed graphs will be considered in the sequel.

A set SCX is said to be internally stable if no two vertices in S

are adjacent; that is, if

|rsns| = 0

Let<*l (G) denote the family of internally stable sets. Then the Coefficient

of internal stability of G is defined to be

2
The notation employed here is standard and may be found in [1]
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ar(G) = max I S j

S€<£(G)

A set S is said to be a maximum internally stable set if S is inter -
o ' o

nally stable and \s | = a(G).

Let G = (X, r) be a graph. G. = (X , r) is a subgraph of G

if X.CTX and V x = 13*0 X. of all x e X1 (we will adopt the notation that

r1 =T ). G£ =(X, T2) is apartial graph if T2xC Tx. G3 =(X3, T3)
is apartial subgraph of Gif Xpx and r3xCrxf!x G=(X, T)
is connected if for any two vertices x and y of G, and for some integer

r there exist vertices x. , x. ,. . . , x. c X such that x. e Fx. for i =
1/ 1- i 1. 1. , J1 2 r j j-1

2, 3, . . ., r and x. € Tx, y € Tx. In this paper, only connected graphs
ll

will be considered. For graphs that are not connected, obvious modif

ications of our statements are possible.

If G = (X, T) is connected, a tree T = (X^T ) is a minimally

3
connected partial graph of G. A pendant vertex x € X is a vertex

such that Tx =1. A chain is a sequence x. x. . . . x. of distinct
I p' ^ 1, 1, 1

r 1 2 r

vertices such that x. € Tx. j = 2. . . , r, r an integer. An isolated,
l- Vi-

vertex x is a vertex such that
o

rx =0.
o

In the sequel, we will call vertices in a given internally stable

sets dark vertices, and vertices not in S light vertices. An internally

stable set thus defines a coloring of the vertices of G such that dark

vertices are not adjacent. A chain x. x. . . . x. is said to be alternating
ll l2 lr

(with respect to an internally stable sets) if every light vertex is only

adjacent to dark vertices. Finally, if G = (X, F), the graph

3
In contrast to usual procedure, we will allow an isolated vertex to be

called a partial tree of a graph (i. e., a tree of partial subgraph containing
only one vertex).
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G = (X - (x.), r) is the graph obtained from G by deleting the vertex

x. and its incident branches (i.e. , Tx = rxO(X - [x. })).

Some Basic Lemmas and Sufficient Conditions

Lemma 1. (Berge) Let G be any partial graph of a graph G. Then,
ir

a{G) < or(G ).
- P

Lemma 2. Let G = (X , T) be a graph such that
n n or

X I = n. Let G ,
n n-1

(X ., T1) where X =X _(j {x } and for all x e X ., TXx =Tx - fx )
n-1 ' n n-1 oJ n-1 c oJ

Hrx. 4 Then

a(G ,)<a(G ) < a(G .) + l
n-1— n — n-1

Proof: The graph (X , T ) where for all x € X ., T x = rx and

2
r x

o
= 0 has coefficient of internal stability a(G ) + 1 and is a

n-1

partial graph of G . By Lemma 1, a (G ) < (G ,) + 1. Furthermore,

if x, y € X such that y e T x, then by definition of T , y / Fx.

Hence, a(G ) > a(G ,).
n — n-l

Definition 1. Let S be an internally stable set of G = (X, T). T (S) =
a

(X r ) is an improper alternating partial tree of G (with respect to S)

7
if T (S) is a tree of some partial subgraph (X , F ) such that

a 1

(a) x € X - sOx implies T xC^S (all chains in tree are

alternating).

(b) For any x and y € X. - Sf)X , y k Tx (no pair of light

vertices in tree are adjacent in G).

(c) For any x€X^ - sHx , l[y cS- S-^X such that y€Tx (no
light vertex in tree is adjacent to a dark vertex not in tree).

If A and B are two sets, by A - Bf|A, we mean Ap\B(lA.
5

In the sequel, often called an improper tree.
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A A *
(d) T (S) contains at least one connected subgraph T = (X, r )

such that T satisfies (a), (b) and (c) and |SflX| < |x -SOX|.

An example of the above definition is shown in Fig. 1.

Lemma 3. Let S be an internally stable set of G = (X, T). Let T (S)
a

= (X^ r ) be an improper alternating partial tree of G (if one exists).

Then the set S' = (S - SOX^U^ - SflX ) is an internally stable set of
G such that

tree.

S' j> !si + *» and Ta(S') is a ProPer alternating partial

Proof: Since T (S) is an improper tree, clearly lx, - SHX,:> !SOx •+ 1
a I X x— I " 1.

Hence, JS' |> IS |+1. Vertices of S- sHx are not adjacent by assumption.
Any two vertices of X, - sOxi are not adjacent by condition (b) of

Definition 1. No vertex of X - sHx is adjacent to a vertex of S - SHX

by condition (c) of Definition 1. Consequently S1 is internally stable.

Definition 2. Let S be an internally stable set of G = (X, T). T (S) =
2 6(x2» F ) is a proper alternating partial tree of G if

(1) conditions (a), (b) and (c) of Definition 1 are satisfied.

(2) !s0xj>
2j"

X ~^2 - ' 2\ and Ta(S) does not contain any sub

graph which is an improper alternating partial tree.
Theorem 1. Let S be an internally stable set of G = (X, F). Let T (S)

a
2

= (X2, r ) be a proper alternating partial tree of G. Then S' = Sf)X is

a maximum internally stable set of T (S).

Proof: We will use induction of X '. If jxJ =1or 2, the theorem is

trivially true since a(T (S) = 1. Assume the theorem is true for all
a

proper T (S) such that !x_ < i. Consider *T (S) such that X
a Z a ' 2 '= i.

Hereafter often called a proper tree.
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Fig. 1. An improper alternating partial
tree.
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From Definition 2, it is easily seen that there exists an x e S;X_
J p c

such that

(x )0f2x;
p

F2x =1. Let t'' (S) = (X. - {x },T3) where T3 x = T2x -
a 2 p

Case I; T1 (S) is a proper tree. Since X2" txp} j< if by the
induction assumption, sHx2-,(xp}| =a(T'a(s)).
By Lemma 2, a(T (S)) < a(T' (S)) + 1 = lsP>Xj< a(T (S)).

a — a | 2i— a

Hence, <x(T (S)) = IsOX I.
3- I 2 j

Case II: T1 (S) is an improper tree. Since T (S) is proper,
^•— a a

then Ix, - SHxJ =ISHX.. Let S" =(S - S"lX_)(J(X_ -
SIX.). T1 (Su) is a proper alternating tree as is T

£ a a

(Sn). Hence, we now have a Case I situation and

or(T (S»)) =
a

the theorem.

SMnX,i. But SMOX, SHX . Hence,

Corollary 1. Let S be an internally stable set of the graph G = (X, T).

"^ 2Suppose T (S) = (X, F ) is a proper alternating tree. Then S is a
a

maximum internally stable set of G. Furthermore, if T (S) is an im-

proper alternating tree of G, then X - S is a maximum internally stable

set of G.

Proof: By Theorem 1, if T (S) is a proper alternating tree, S i= a{T
a

(S)). Lemma 1 implies that a(G) < a(T (S)). Hence, the first part of
a

,~/

the corollary follows. If T (S) is improper interchanging the vertex
a

colors results in a proper alternating tree. The above argument then

holds.

Corollary 2. Let S be an internally stable set of G = (X, T). Let

oT(S) = {T (S), i = 1, . . . , q} such that the *T (S) = (X., T1) are proper
a. a. l
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alternating partial trees and IJX. = X. Then S is a maximum internally

stable set of G.

Proof: Similar to proof of Corollary 1.

Remark 1. Corollaries 1 and 2 give sufficient conditions for an inter

nally stable set to be maximum. If G can be decomposed into a forest

of proper alternating partial trees, then S is maximum. Furthermore,

if G can be decomposed into a forest of proper trees and/or improper

trees, then interchanging the colors of the vertices in the improper

trees will result in a maximum internally stable set. As an example

of these conditions, consider the following variation of Gauss' Problem

of the Queens; find the maximum number of knights that may be placed

on a chess board so that no knight may capture any other knight. The

solution is shown in Fig. 2.

A MORE GENERAL SUFFICIENT CONDITION

Definition 3. Let S be an internally stable set of G =(X, T). A con

nected subgraph G (S) = (X .r^ is said to be strongly structured if

(1) G (S) contains no improper alternating partial trees.

(2) GQ(S) = (X1UX2, r°) such that
(a) 1x^X^1= o; SCXX

! -I j -j
(b) (X , r ) where T x = F x - T xHx is a proper alter

nating tree.

(c) For all x.CX , any partial subgraph (XAj{x. ),T ), such that

r x. = ye S and for all x ± x., x 4- y, T x = T >OX-,» is an

improper alternating tree with respect to the graph (X(J{;xn),.r ).

Each element of X is called an excess vertex. The definition is illus

trated in Fig. 3.
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(b)

Fig. 2. (a) The graph for the movement of a knight
on a chessboard, (b) An internally
stable set with 24 elements and an

improper alternating partial tree.
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(c)

(d)

Fig. 2. (c) An internally stable set with 26 elements
and an improper partial tree, (d) An
internally stable set with 32 elements. It is
easily seen that the graph contains a proper
tree, hence a(G) = 32.
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S=1XI'X3'X4'X6'X8'XII J

M

x5 x6 X7 x8

b2 XSi

Fig. 3. A strongly structured graph G(S).
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Note: Often, in what follows, it is not necessary to consider branches
between excess vertices cr branches between elements of X_ and X_
which may be deleted from the graph without destroying the strongly
structured property of the graph. Thus, the branches labeled b. and b_
may be deleted from the graph shown in Fig. 3.

Remark 2. Let G(S) = (X, T) be a strongly structured graph with respect

to the internally stable set S. Let X = X (Jx where X is the set of

excess vertices of G. Then, if G is the graph obtained from G by

deleting all elements of X., a(G) < S + or(G ). Furthermore, let
1 — s

A.. . . , A be the family of internally stable sets of G . Let G. be the

graph obtained from G by deleting all elements of X - A.. Then,
2 J

a(G) =max ((G^ . . . ar(Gr». a(G) =max {a(G ),..., a (G^)}.

Lemma 5. Let G(S) be a strongly structured graph with internally stable

set S. Let G and G. be the graphs defined in Remark 2. Furthermore,

let G . be the graph obtained from G. by deleting the vertex x.. Then,
j j

if there exists an element x in A. such that a(GfM =
si J J

that a(G.)

, it follows

Proof: Let A. = (x . . . ,x }. We will use induction on q. If q = 1,
J Sl Sq

by Corollary 1 of Theorem 1, the strongly structured graph satisfies the

Sl
hypothesis; namely, a(G.) =

stable set of G.. Clearly, if x / S', then
J sl .

Then, there exist at least two vertices x € S and x g X, - S that are
p. v 1

adjacent to x (it is only necessary to consider the case where there are
Sl

exactly two such vertices). Since xg € S', x and x cannot be in S1.

Let us delete x and x from G.. This results in a graph G^' which

is a forest of alternating trees and the isolated vertex x . By Corollary
Sl

Sj. Let S' be a maximum internally

2 of Theorem 1, a{G^y v* S1) = s - fx }
J J ix}

-13-
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(S - [x })U(x } is a maximum set of internally stable vertices of G
(J. s.

which does not contain x and x . Consequently, = S - 1 + 1 •14
and the theorem is true for q = 1. Figure 4 illustrates this situation.

Assume that the theorem is true for q = m - 1 and let q = m.

We know that there exists an excess vertex x (in fact, any excess

Si Si
vertex) such that <x(G. ) =

J
. Suppose the theorem is not true. Then,

there exists an S' such that + 1 and x € S1. All excess
s.

l

vertices x ,. . . ,x are in S1; if not, we can delete all of the x

1 m Sk Sk "knot in S1 to obtain the graph G. ]/•*•' v with the same coefficient

of internal stability as G.. Now, if we delete x , we find that
. . . , s. s.

k i
s.

afG.Y
J

v ) = |S| (since a(G.l) =
sk/...,sk

excess vertices of G. 1
J

S I). But, since the number of

v is less than m, this implies that this

which is a contradiction.graph has coefficient of internal stability

In the last paragraph, we have shown that if the theorem is true

for q = m - 1 but not true for q = m, a maximum set S' must contain all

of the excess vertices of G.. We will now show that given an internally

stable set S', such that ACS', we can always find an internally stable

set S" such that S" = S' and there is at least one excess vertex x

not in SM. This contradicts the conclusion reached above and implies

that the theorem is true for q = m.

If not, we can delete any x to obtain a stable set with m - 1 vertices,
s- j- S*»8lr

, we can delete another vertex, say xs, ; if a(G. l )£

we can continue deleting vertices until or(G.
s.,.. . s J

by our induction assumption, a{G. r) =

If a(G.1)/ JS

-14-
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Fig. 4. Graph used in proof of Lemma 5.
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-4---0-«•--.}>- -q -o X,

*LL *Z ^V

(a)

(b)

(c)

Fig. 5. Graphs used in proof of Lemma 5.
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G. is strongly structured. Hence, there must be a vertex

x € X - S which is either pendant or connected to only excess vertices.

Let x ... x ,x be an alternating chain of vertices of X. such that
p v-1 v ° 1

x is in X, - S and is adjacent to some excess vertex x (such that x
v 1 sk P

is in the improper partial tree of condition (c) of Def. 3). Let there be

no vertex on the chain x . . ,x .adjacent to any excess vertex. Let
p v-1 J 3

x . . ,x x .. . .xfcx be an alternating chain such that x e S, x e T xp v v+1 § u ° ji a sk
and no vertex in S on the chain x .. . . xf is adjacent to x . Suppose

5 k
that x is the only vertex adjacent to vertices on the chain x . . . xt .

sk P §
Then an internally stable set S" can be obtained from S' such that

S" = S'j. This is done by letting x ,x and x> be' in S"
P v b

and making the chain alternate (since the number of vertices on the chains

x • •#xv_i» anc* xv+i» x£ *s even)« Hence, we arrive at the contra

diction noted above.

Consider the case where there are vertices other than x ad-

jacent to vertices on the chain x . . . xt . The cases of interest are
P 5-

shown in Fig. 6. Case (a) is not possible since this implies that x

is not excess. Case (b) is not possible, since then the graph contains
A

an improper tree. Case (c) is possible, but the graph G. obtained by

deleting the branch between x and x must remain strongly
'So /\ S„ ,

structured. Furthermore, a(G. p ) = a(G. p ) = S and consequently,
J J I I

a(G.) = a(G.). If we consider G. we now arrive at the same contra-
j j j

diction as above.

Definition 4. Let S be an internally stable set of G = (X, T). A con

nected subgraph Gq(S) = (X , F°) is said to be weakly structured if

x / S" and
V

-17-
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Fig. 6. (a) A weakly structured graph G(S).
(b) Strongly structured partial graph
G(S) of G(S).
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(1) G (S) contains no improper alternating partial trees.

(2) Gq(S)= (X]UX2UX3,r0) such that
(a) X..,X?, and X, are pairwise disjoint and SCX1#

(b) (X., r Y ) is a proper alternating tree.
1

(c) The partial subgraphs (XJUX-,r ), such that for all

x.CX, T*x.CS,
i 3 i

Oil ^F x Uz where z € X 3r z = x., is a proper alternating

tree of the graph G(S), where G(S) is obtained from

G(S) by deleting the connections from elements of X_ to

elements of X - X fl S.

(d) Any element of X2 is an excess vertex of G(S).

Definition 4 is illustrated in Fig. 6.

Remark 3. It is easy to show that Lemma 5 applies to weakly structured

graphs, if elements of X- are called excess vertices. To do this, it
A

is only necessary to consider the graph G(S) defined above.

Theorem 2. Let S be an internally stable set of the graph G = (X, T).

Let Gq(S) = (Xq, r ) be a weakly structured subgraph of G. Then,

S' = SflX is a maximum internally stable set of G .
o o

Proof: Let Xq = XUXUX where the X. are given in Definition 4.

Obtain the graph G from G by deleting the branches between elements

of X and X - X HS. G is strongly structured with respect to the

stable set SI (X . Let G. be the graph obtained from G by deleting

all excess vertices not in the set A. (see Remark 2). From Lemma 5,

a(G ) =
J

F x.
i

= 1, and for all x. € X,. r x. =
J 1 J

.*

if there exists an elements x of A such that a(G. ) =
•i j j

However, there must exist such an element. If not, we can form the

£skr ••• skt' sk
graph G v such that or(G. ! Kl)t

s, .. . , s.

and a(G. 1
J

s s

. Then, by Lemma 5, a(G.kl" "" kt) =
-19-
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Consequently, a(G.) = and furthermore, since A. is an arbitrary

^ I » ^
S' and

(since S1

internally stable set of G , max a{G.) = iS' . Thus, a(G ) =
s j J I o

A ' I
since by Lemma 1, <*(G ) < a(G ), we have that <x(Gq) = S'

is an internally stable set of G ).

Remark 4. Theorem 2 gives a strong sufficient condition for an in

ternally stable set to be maximum. Given a graph G, and an internally

stable set S, if the graph can be decomposed into a collection of weakly

structured partial subgraphs such that any vertex of G is included in

some subgraph, then the set S is amximum. Remark 4 is illustrated

in Figs. 7 and 8. Figure 7(a) is an example taken from Berge [1] , in

which the maximum internally stable set S cannot be obtained directly

from a maximum matching. However, if S = {x-, x , x,, x-}^ we im

mediately find that G(S) is a strongly structured graph (Fig. 7b).

Figure 8 is an example of Shannon's problem, for the case where 4

symbols are to be transmitted through a noisy communication channel,

and each word is of length 2.

FURTHER RESULTS, A CONJECTURE, AND AN ALGORITHM

Assertion. Let S be an internally stable set of the grq? h G = (X, T).

If G has no improper alternating partial trees, then G can be decom

posed into a set of vertex disjoint, weakly structured partial subgraphs,

and a subgraph G = (X , T ) such that X Hs is empty.
6 6 6

Proof. G can be decomposed into a set of proper alternating partial

trees such that any element of S is in one such tree. A subset of the

vertices not in any of these partial trees may be judiciously affixed to

-20-



Fig. 7. Example to illustrate Remark 4.
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output

(a)

(b)

communication channel

Confusion graph for symbols a, b, c, d.

={ab,ad,cd,cb}

Confusion graph for words of length 2 with
internally stable set S.

(c)

Decomposition into two weakly structured sub
graphs proving S is a maximum internally
stable set.

Fig. 8.
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to the partial trees to form weakly structured partial subgraphs. Any

vertex not in a weakly structured partial subgraph is assigned to X .

Assertion. Let S be an internally stable set of the graph G = (X, T).

Let G have no improper alternating partial trees. Then, if G can be

decomposed into a set of vertex disjoint weakly structured partial sub-

e /—i
graphs, and a subgraph G = (X , T ) such that <x{ G )<!» then S is

a maximum internally stable set of G.

Proof: If a(G ) = 0, the Assertion trivially follows from Remark 4.

If a(G ) = 1, the Assertion may be proven by resorting to essentially

"brute force" methods; i.e. , enumerating the various possible topo

logical structures of G and showing its validity for each case. An

example of this Assertion is given in Fig. 9.

Conjecture 1. A necessary and sufficient condition for an internally

stable set of a graph G to be maximum is that G contain no improper

alternating partial tree.

The necessity of the condition follows from Lemma 3. We have

shown above that in a large number of cases the condition is also suf

ficient. The authors were not able to obtain a general proof of the

above conjecture. However, it is possible to show that if the following

weaker conjecture is true, then Conjecture 1 is also true.

Conjecture 2. Let S be a maximum internally stable set of a graph

G = (X, T). Let x_ and x be elements of X - S such that x, e Tx..

Then, if G, the graph obtained from G by deleting the branch between

x- and x_, contains no improper alternating partial tree, it follows

that a{&) = S .
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G

(a)

Fig. 9. (a) A graph G and internally stable set S, decomposed
into two strongly structured subgraphs and a vertex xe .
(b) Interchanging the colors of the vertices of G£ pro
duces a single strongly structured subgraph with xe an
excess vertex. Hence, a(G) = |S|.
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Algorithm for finding maximum internally stable set (based on

Conjecture 1)

I. Construct a feasible internally stable set S on G = (X, T)

by selecting non-adjacent vertices until any vertex in X is

in S or adjacent to an element of S .
o o

II. Select a vertex x. in X - S and search for an improper

alternating partial tree.

III. If an improper alternating tree exists, interchange the colors

of the vertices on the tree and form the stable set S,. Return

to step II.

IV. If an improper alternating tree cannot be found which contains

x. , select a vertex x. not in the stable set and return to
ll l2

step II.

V. If S. is an internally stable set obtained after j iterations

of step III (j = 0,1,2. . . ) such that G(S.) contains no im

proper alternating trees, then a(G) = 'S. [.
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