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ABSTRACT

A scheme of pulse frequency modulation is considered, based

on Blair's theory of neural excitation. Its application in control

systems is studied and the results ( sampling theorem and stabili

ty) show that this scheme of P. F. M. has certain advantages over

some of the conventional systems.
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I. INTRODUCTION

Although many types of discrete systems have been studied

quite extensively, the use of pulse frequency modulation has been

given relatively little attention.

However, pulse frequency modulation is the basic way of
2

transmission of information through neurons. Therefore, it

is a tempting problem to try to apply this physiological pattern
3 4 +to control systems. C. C. Li and A. U. Meyer considered a

class of such systems, i. e., integral pulse frequency modulated

systems. However, their pattern presents little resemblance to

the actual biological way of pulse frequency modulation. A bet

ter model for the physiological systems has been proposed by Blair

(p. 379). An even more general form of frequency modulation

could be described as follows: let S(t) be a stimulus applied at

time t=0. Then an "exciter" p(t) is generated according to the

equation

.D1p(t)=.D2S(t)

where D., D? are operators of any analytic form, e. g. ,

d2 a
Dl = a2 -T + altat+ao

dt

t

D2=bo + b-l ^ dt
0

Meyer considered also some more general schemes (see footnote

of p. 2);

++ 5
The same is true with the so-called delta modulation, which has been

developed for telecommunication practice purposes. In this case

pulses are transmitted in time intervals which are integer multiples

of a basic time interval. This restriction is undesirable for the sta

bility of a closed loop system* as will become evident from the

development of Sees. VIII and IX.
„1-



We always assume p(0) = 0. As soon as | p(t) | reaches a cri
tical value r, then a pulse is emitted of standard height and duration

and the "exciter" returns to the zero value. The sign of the pulse is

the same as p(t) at the time of the emission.

In this report we will consider the case of

D. =-^- +c and D0 =1
1 dt 2

The resulting pattern of P. F. M. will be called neural pulse

frequency modulation (N. P. F. M. ) because it is the same as the one

proposed by Blair for neurons. A basic difference, however, will

be that we are going to consider double-signed (D. S. ) pulses, while
3

neurons generally carry only single-signed (S. S. ) pulses. C, C. Li

considered both cases; however, the case of S. S. pulses results in

more complicated systems. This is one instance in which it seems

that engineering is able to design a more flexible system than nature.

The basic properties of N. P. F. M. control systems, such as

transient response, stability, sampling theorem and elementary sta

tistical analysis, will be studied. Due to the existence of a "strength-

duration" law, this class of systems appears to have good filtering

and stabilizing properties which may lead to useful applications.

II. DESCRIPTION OF THE MODULATOR

We proceed now to consider the modulator, which is described

by the equation:

This is also the same pattern as that called "Relaxation P. F. M. "

by Meyer (Ref. 4, pp. 13-17, 76-80). However, the name "neural"

is preferred, to show the importance of borrowing ideas from biol

ogy. Meyer did not actually study the system, but indicated that

it can be studied as an I. P. F. M. system with minor loops. How

ever, such an approach is very complicated.
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*P**> +cp(t) =S(t) (2.1)

where c is a constant of the system.

Whenever | p(t)| reaches a critical value r, a pulse of
height h and duration t, is emitted. Its sign is the sign of p(t).

Thereafter the emission of the pulse p(t) equals zero and the whole

process is repeated. Electronic implementations of such a modu

lator are discussed in Appendix A.

The solution of (2.1) for different simple inputs is shown in

Table I. For a step input S , the firing time (i.e., when a pulse

is emitted) is given by

+* i a IsqI „ ,x
*f c*ni—i— <2-2>

S -RI 0I

where R = c r. Obviously, a necessary condition for firing is

|SQ| > R (2.3)

So we are justified in calling R the threshold of the system.

Condition (2. 3) is sufficient for a step input but not for a

pulse of duration t (Table I, No. 4) where we have the additional

condition:

>i** 0 (2.4)
Isc| -*

This shows that inputs of "too short" duration are not sensed,

and therefore the impulse response of the modulator is not really

meaningful.

The relation

i Is |
T ° 7 in 16 11-r <2-5>
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is defined as the strength-duration curve, in analogy with the phys

iological findings (Ref. 2, pp. 39-40) (see Fig. 2.1 for plot of 2. 5;

Fig. 2. 1

"Strength-duration" curve

-4-
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in. RESPONSE TO PULSE TRAINS

In Table 1 the resporise to a pulse of height S and duration

t has been found to be

Pl(t) =-£ (1 - e-CT) e"^^)

for t > t and t < — In
S -R

o

Sol<
1-e

-CT

or

(3.1)

(3.2)

Suppose that we have a train of one-signed pulses with period T

(Fig. 3. 1). Then the response to n of them (assuming that they do

S(t) j

i

S
o

—• t h- 1 1

! • i '- T J
1

I ! i
p(t)

•

s
O

c
s

Fig. 3. 1

Pulse train response of modulator.
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not cause firing) is

P(t,n)= J Pk(t)« •J-^-U -e-M')-*,Ct*-T-(k'I)T] (3-3)
k=l k=l

or

n

P(t, n) . -£ (1 - e"CT) e-C(t-T> J ^'^ <3. 4)

th
The maximum value of P(t, n) occurs at the end of the n

pulse, i. e. , for t = (n-l)T + t. Therefore,

_, . o M -ct. -c(n-l)T e -1 ,* C\max P(n) =— (1 - e )e v ' —-^= (3.5)
e -1

or

S , -cnT

max P(n)=-^(1 - e"CT) " e ^ (3.6)
1 - e

S . -CT

lim max P(n) = — — (3. 7)
n—^oo 1-e

From (3. 7) it is obvious that in order that the train of pulses

cause firing it is necessary that

I S | >RX°e „ (3.8)
1 O1 - -CT

1-e

If (3. 8) holds then the minimum number of pulses required

for firing can be found from (3. 6) as

! I S0|

|s | -kIz!—
° l-e"CT

-6-



« j. -cT , -ct ., . 1-e
By expanding e and e we can see that ——

-cT

1-e
T7~ T

So there is an apparent increase in threshold by approximately T/t.
If the pulses are not all of the same sign then the "apparent threshold

increase" is obviously even higher.

This fact indicates that the proposed modulator will have good

filtering properties in certain cases. A more systematic discussion

of this will follow later.

IV. RESPONSE TO SINUSOIDAL INPUT

From Table I (No. 5) we see that for an input S sin oat

(S > o) the response is

p(t) = o>S
-ct

e sin(cot-ip)
""z-z + ~
c +co

VC 4-(60) Vc +0)

(4.1)

-1
where *\> = tan co/c.

p(t) is a periodic function and we may expect that for high fre

quencies no firing will occur. To establish conditions for firing we

proceed by computing the maximum of p(t):

dp(t) _
coS

_/~Z 2
vc + co

-ct
—ce—2 j + cos (wt-i|i)
c + CO

-ct
for e cosiji = cos (cot-vjj). (4. 2)

This equation cannot be solved algebraically with respect to

t. Assume, however, that it is satsified for t = t . Then

$ $ $
-ct cos(cot-vp) */2 2 cos(cot-i|/)

cos \\> c

and substituting in (4. 1) we obtain

-7-



or

p(t ) = coS
cos(cot -v|j) sin(o)t -i(j)

•^— T ——•—————

Vco +c
-,/T~ 2

co Vco +c

p(t ) = — sin cot

The condition for firing is

o '
sin cot

(4.3)

(4.4)

Relation (4. 4) is equivalent to the sampling theorem after sub-

stituting t from Eq. (4. 2) (excluding, of course, the trivial

solution t = 0). In this way we can plot a family of curves (for

different values of c) of co as function of S /r.
o

For c = 0, Eq. (4.1). reduces to

S
p(t) = — (1 - cos cot)

and it reaches its maximum for cos cot = -1, hence

2S^
max p(t) =

co

Therefore, we have as a condition

2S

(Compare results in Ref. 3.)

Note that (4. 2) can be written as

cote

c
cos i|i = cos (cot - i|j )

= 8-

(4.5)



and by defining — = y and co t = z

e"yz cos ^ = cos (z - 4*) (.4. 2')

In the same way (4. 4) is written as

x sin z > i (4. 41)

by defining x = S /R.

So the sampling theorem is expressed by plotting y as a func

tion of x (compare Eq. 6.15 ).

A solution of (4. 2) by analog computer is described in Appen

dix B. However in Sec^V we are going to show that this is not quite

necessary because the "sampling theorem" curves can be plotted by

using'pulses for a; test signal instead of sinusoidal waves. The sam

pling theorem derived there is in good agreement with (4. 2) and

(4. 4).

V. MODULATOR FOLLOWED BY INTEGRATOR-EQUIVALENT GAIN

Suppose a modulator is firing pulses h * t, at instants,

t , t_, ... . ,t The integral of its output is given.as

y(t)= (k-l)hTft + h(t-tk) (5.1a)

for t. < t <_ t. + t. and
k k h

y(t) = khTh (5.1b)

for t, + t, < ^ri- By approximating the output pulse to an im
pulse of area 6 = hi, we have

y(t) = k6 (5.2)

f°r V^k+l-

-9-



If the input of the modulator is constant S then from (2. 2)

we have

Vi" *k"7*a r=K tfora11 kl (5.3)

by combining (5. 2) and (5. 3) we found the equation of the envelop

of the staircase response as:

Y(t) = 6t

cin S^R
o

(5. 4)

(see Fig. 5. 1). We define as equivalent gain of the modulator, K
m

y(t)

/

/
/

>

yS /
yS /

y^ /j^^ <

y/ /
, ..

' n
^^ /

yT /
\S_ f

h V Vz

Fig. 5. 1. Response of integrator to constant input and its envelop.

the slope, of Y(t). divided by S . By simple manipulations we ob

tain:

K = -
m r

K = 0
m

xin
x-1

if x >1

(5.5)

if x< 0

-10-



where x = S /R.
o

It can be easily verified that lim x in —T = 1.
7 „ x-1

x—)co

Because of the existence of the "strength-duration" curve, the

use of the equivalent gain is rather limited in any analysis of a sys

tem using this modulator. Its only value seems to be in comparison

of a N. P. F. M. system with other forms. For this purpose we will

use the lim K = 6/r, which we. will denote by the term "equiv-
x—)co

alent DC gain." A plot of the function represented by (5.5) is shown

in Fig^ 5. 2.

K
m

r

Fig. 5. 2

Equivalent gain of modulator for constant input S =

•11-
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If we assume finite duration of pulses t, , then the modulator

reaches saturation when

S \ ^S (5.6)
O -CT, S * '

Obviously, this relation holds only for constant input. However,

for characterization we define Ss as the saturation level of the modu

lator.

The output of the integrator will be then

Y(t) = ht (5. 7)

We call saturation frequency, fs (under a certain input) the

inverse 1/t, of the pulse duration. This quantity is obviously

meaningful under all circumstances.

VI. DERIVATION OF A SAMPLING THEOREM

THROUGH WALSH FUNCTIONS

In Sec. II we found the response of the modulator to a pulse.

We will consider now the case of a doublet (a positive pulse fol

lowed by a negative), with duration of each half t. Suppose that

firing occurs in the first half at time t. < t defined by

S -ct

P1(t1) =-^ (1- e 1)=r (6.1)

The response in the second half will be:

p2w--^(i---e(t-TV^(i
or

p2(t). -f2 (i -."*->)+5» (.-Ct-r). .-C«-Tl>) (6.2)
The second term is always positive because e~ ' ) >,e° \ ° !*•

S0 /,..-C(t.Tj\. So/_e-C(T-Tl\-C(t-T)

•12-



therefore, no firing will occur at t = t + t..

Consider, however, the moment 2t . Then we have

S S / „ -c(2t-t.)\
P2(2t)=- —(1-e )+— e - e

or

P2(2t)=--£
-c(2t-t,)'

l-2e-CT+e l

The term in brackets is positive; therefore,

S / „ -c(2t-t.)>
|p2(2T)| «-£ l-2e-CT +e l

Equation (6. 5) can be written as

P2(2t>I =TT
-CT

1 - e 1(2e'-c(t-t.) -2c(t-t.)

")- e

(6.3)

(6.4)

(6.5)

(6.6)

-a - 2aBut 2e - e" is less than 1 for any a ^ 0, therefore, the term
•• C T i

in brackets is larger than (1-e 1) and from (6.1) we have

|p2<2t)| >r (6. 7)

(The case a = 0 corresponds to t = t. and this is the case when

firing occurs at the end of both half periods). Hence, whenever firing

occurs at the first half, it also occurs at the second, although with

some delay. Obviously, whenever firing does not occur at the first

half, it does not occur at the second. This discussion shows that

the square wave of amplitude S input "passes" through the modu

lator if and only if its half period is larger than

1 P- °c *nS-^R
o

or the critical frequency which causes response is:

ire
to =

c 3"7F
J?n-^°_

- c

-13.
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where w = 0 for S /r < c. For c = 0 we find that
.c o .

lim IU—sLl. . *

and therefore

irS
0) =

o

>/r-<

(6.9)

To compare with (4. 5) we must note that the mean half-wave value

of a sinusoidal wave of peak S is (2/ir)S ; therefore (4. 5) becomes

irS

w<—^L (4.5')

which is in absolute agreement with (6. 9). This shows that for

c = 0, a doublet and a sinusoidal wave "obey" the same sampling

theorem. This is not surprising because a doublet is a special

case of Walsh functions. The Walsh functions constitute a com-
7

plete set of orthogonal functions and therefore can be used as a

test signal instead of sinusoidal waves. These functions are de

fined on an interval 0, T as follows:

4 (0, 0;x) =

4>(i*i;x) =

4> <2.i;.x) =

0 < x < T

r i o<x<
1

x< Tt-1 4<

-l

T

0 <x<"?

T ^ ^ T

-14-
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4,(2, 2;x)

1 0 < x ^

i T ' 3T
-1 "i ^ x T~

<j)(n, k; 2x)

I <-Dk+1
<j>(n+l;2k-l;x) =

(n» k; 2x-l)

4>(ns k; 2x)

<|> (n+1, 2k;x) =

I (-d] *4>(n, k; 2x-l)

3T

T

1

T

"2

< x < T

T

<x <~2

< x < T

T
<x <1

< x < T

/

(6.10)

J

n —1
where n = 1, 2, . .. and k = 1, 2,. .., 2

These functions consist of nonsymmetric doublets, as one can

easily see (or see Fig. 1 in Ref. 7); therefore, in order that a Walsh

function may pass "undistorted" through the modulator, firing must

occur during its shortest pulse. The duration T, of this is, as one

can see from (6.10),

Td = T for <j>(0, 0)

Td ="Z for <M1'1* and (M2'2)

Td =̂ for <i>(2,l) and <J>(3,4)

Td =-g for <|)(3,1), <|>(3,2), <J>(3, 3) , etc.

(6.11)

Therefore, we may associate any Walsh function with a doub

let frequency ir/T ,.

Therefore, a necessary and sufficient condition that a Walsh

function may pass through the modulator undistorted (i. e., with firing

-15-



occurring at least once for each one of its pulses) is that its associ-

ated frequency is less than the one given by (6.8). Equation (6. 8)

is plotted in Fig. 6.1 with c as a parameter. We see that for

S/r=c, xo =0 and moreover, we can find the asymptote of each
curve as follows:

w

Slope = lim -g^ = lim * =it (6.12)
S /r-»co o x-*oo x£n-X-T

o x-1

Ordinate at the origin'= lim to - it — = ire lim
S /r-»co I— -1 x-»a

ire

= " 2
S/r

(x i -?— ).
c

Therefore, a simplified relation can be written as

S

a) = 0 for — < c
c r —

S „ S
/ o c . - o

(o = tt (—~ - -=• ) for N c
c % r 2 ' r y

x-»co \n—s
x-1

(6.13)

(6.14)

This is shown by dotted lines in Fig. 6.1. It holds with good approx

imation for S /r > 2c.
o

Equation (6, 8) can be also plotted in a simpler form by de

fining y = w/ire and x = S /re ; then we have

x-1

and the plot is shown in Fig. 6.2.
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0 0.5 1

Fig. 6.1

Sampling theorem curves.
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(0

y=™

re

Fig. 6. 2
Sampling theorem curve.

This curve can be referred to as the sampling curve and Eq.

(6. 8) as the sampling theorem for N. P. F. M. systems.

It is interesting to verify that these results are in agreement

with the sampling theorem derived for sinusoidal inputs:

Numerical Example

For x = 2 y = to/irc = 1.44 (from (6.15) ) or co/c = 4. 52. To apply

(4. 4) we take S /R = ir/2 »x = 3.14. Therefore, sinxot = l/3.14

and tot = 161. 5° = 2. 819. *\> = tan"1 4. 52 = 77:8° , cos vjj = 0. 212,
cos (cot - vli) = 0.110. ct =^4- = 0- 624 and e"ct = 0, 535. Therefore,
-ct w/c

e cos i|/ = 0.113 and (4. 2) is satisfied. (Difference 0. 003 due

to the use of slide rule .) The result depends only on the ratios to/c

and S /R, as it should,
o

-18-



This agreement was expected because the sinusoidal wave is

expandable on Walsh functions.

VII. QUASI-DESCRIBING FUNCTION

Since Walsh functions constitute a complete basis, one may

try to approximate a function by their "fundamental", i. e., <|>(1,1),

which actually is a square wave (6.10). If a function has odd-

symmetry [i. e., f(t + T/2) = -f(t)], then obviously it has no DC

component. The coefficient of the expansion corresponding to

4>(1,1) can be found as

T T/2 T

jy(t), 4»(lfl,t)dt j y(t)dt -J y(t) dt
o o T/2

or

al = T T

J 4>(i, l, t) <j>(i, l, t)dt J l•dt
o

T/2

al= 2/T J y(t)dt {7'l)

Therefore, the amplitude of the square wave will be equal to

the average value of the function over a half period. For example,

if y(t) is a sine wave with unit peak, a = 2/ir . Or, if y(t) is a tri

angular wave with unit peak, a = 1/2.

We proceed now to study the response of the modulator to a

square wave of amplitude S (S > R). The firing rate will be given

by

1 Stf =~ In °R (from Table I, No. 1).
o

-19-



TThe number n of pulses per half period -4 -will satisfy the fol
lowing inequality (co = 2ir/T).

cir 1

CO

in
s

,0i

S -
o

&
o

We consider two extreme cases.

(a)
cir 1

co S

inS"TK
o

Then, if the modulator is followed by an integrator, the response at the

end of a half wave will be

y (t)
7mx '

= n 6 =
cir 6

CO

1

in o

£i -R
o

(7.3)

On the other hand, the unmodulated response would have been

ST S ir

andthe equivalent gain of the modulator is (in analogy with Sec. 5)

ym(t) c x 6 !
Km=:-y(tr:=S ~~S =7S S /R (?* 5)

• 0 6 O O /) o

^nS^R ITinS /R-l
o o

We see that this equals exactly the expression given by (5. 5).

<b> »=̂ —lT~ -1
O

-20-



In this case the equivalent gain will be

cir 6

co 5~"
in ^2,

- 6

K'
m

=

o
- = K -

m

co6

S IT
o

S IT
o

CO

e that

co6

S IT
o

=

6

r

CO

S
o

6 co

r S
o

ire
TT

ire
re

(7.6)

(7.7)

By defining x= S /R ,Eqs. (7.5), (7.6), and (7.7) can be com-
o v

bined to give the following inequality for K .

iln
x-1

co

xirc
<K <i

m — r
(7.8)

x£n
x-1

As an extension of the describing function we define as quasi

describing function the mean value of the limits of the inequality

(7. 8), i. e.,

K(x, co) = -
d n

2 xirc
(7.9)

This can be used in anapproximate analysis of N. P. F. M. sys

tems.

Note that any memoryless nonlinearity following the modulator

appears as linear gain because of the constant amplitude of the

pulses. Also, with square wave as test signal, nonlinearities be

fore the modulator can be treated in a very simple way.

Attention also must be paid to the fact that in (7. 9) an integrator

-21-



has been already included and the linear plant transfer function

must be modified in accordance. Another fact which must be noted

is that K(*, co) includes a half-period lag plus a quantity which we

proceed to compute. If

cir 1
n =

5
0„ o
XnsTE:

o

then p(T/2) = 0 and the firing time for the first negative impulse

Half of it corresponds to thewill be tf =1/c •In [~ Sq/(So-rJ
extra lag, as one can see from a simple sketch of the response.

Therefore, a lag

1 9* xt— J>n ——s
2c x-1

is introduced and in the phase angle this total lag corresponds to

If

cir 1 ,
n = — 1

co S

in
S-R

o

it can be easily seen that the extra lag is about the same. There

fore, we finally have

«Mx. o.) = I +•£ in ^ (7.11}

The complex-valued quasi-describing function is given by

Kc=K(X,o>)e-^{K'u) (7.12)

-22-



with K(x,co) from (7.9) and <j>(x,co) from (7.11) (for x < 1, K = 0).

VIII. CLOSED LOOP SYSTEM —STABILITY

We are going to consider for a while the more general system,

i.e., where the "exciter" p(t) is related to the "stimulus" S(t)

by the relation:

sfiT " Gi(s) (8.1)

where G.(s) is any rational function.

Again, whenever p(t) reaches r we have the emission of a

pulse of the same sign as p(t) and then the initial conditions, i. e.,

P(°)» Pf(°)» PM(°)> etc., are set to zero.

Such a system is shown in Fig. 8.1.

e(t) = S(t)

G^s) P(t) G2(s)"^ Pulse

Emitter

c(t)

J
1

P(s) c(s)

E(s) = ,5(s)

Fig. 8. 1
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The impulse response of such a system is not very meaning

ful for reasons explained in Sec.II. So we assume as testing signal

a pulse emitted by the modulator.

We define a system as stable if the response p(t) to an im

pulse emitted by the modulator takes a subthreshold value in finite

time and stays there. (It is understood that the system has been in

equilibrium before.) This definition corresponds to the case of asymp-
Q

totic stability. .

For simplification we approximate the pulses by impulses of

the same area, 6. Then the response of the "plant" after n pulses

will be:

n

c(t) =K6^€ig2(t"ti) "(t-V (8- Z)
i=l

where

6i =1 u ?i-i>r

«. = 0 if Pi-1 <r <8- 3>

ei ="lif Pi-l^1

or taking the Laplace transform

n .
Z-st.

€. e * (8. 4)

i=l

for zero input:

S(s) = E(s) = -C(s) (8. 5)

Therefore,
n

^—- -st.
P(s) =KG^s) G2(s) 2ji e * (8. 6)

i±l
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c

Normalizing P(s) with respect to r and noting that — is the equiv

alent gain of the modulator K we have
m

n .
Z-st.

€.e x (8.7)

i=l

We want p (t) < 1 for all t. This can be obtained by choosing low

enough gain if the linear system G.(s) G2(s) is stable. Note that

this is too strict a requirement because the quantity

n .
c— -St.

i=l

may be possibly equal to zero. However, this cannot be checked

unless the transient response of the system is studied in detail (see

next paragraph). So we conclude that the system of Fig. 8. 1 is

structurally stable (i. e. , can be made stable by choosing low enough

gam K ) whenever G«(s)G2(s) is stable.
We consider now different special cases.

(a.) Integral Pulse Frequency Modulation.

Here, G-(s) = l/s; hence

G2(s)

must be stable. If G2(s) =l/s, then we have a double pole at the
origin. In this case the response of the system is simply bounded

but presents sustained oscillations. This checks with earlier re

sults (Ref. 3, p. 82), that whenever the linear plant is stable, the

I. P. F. M. system has bounded response.
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(b) Neural Pulse Frequency Modulation.

Here

o(s) =-i-
lx ' s+c

Therefore, G2(s) must be stable, so whenever the linear plant is
stable the N, P. F. M. system is structurally stable.

This general stability criterion does not give much informa

tion about the design parameters of the system, so in the next few

paragraphs we are going to examine in more detail certain low order

systems.

IX. STABILITY OF LOW ORDER SYSTEMS

A. Consider an impulse of area 6 emitted in the system of Fig. 9.1

e(t)= s(t)

~^ 1

s+c

p(t) Pulse

Emitter G(s)

c(t)

J
1

P(s)
C(S)

Fig. 9. 1
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with G(s) = K/s. The output of the system will be

If

c(t) = K6 (9.1)

P(t) =— (1 - e°tc) (9. 2)

M<r
c

no other impulse will be emitted. This condition of "quietness"

is described by:

KK <c (9.3)
m * '

If K6 > r, then after some time t , a negative impulse will be

emitted and the output will be zero.

/ 2
B. Consider the system of Fig. 9.1 with G(s) = K/S . Then after

the emission of a pulse we have

cQ(t) = K6t (9.4)

P0(t)=-^t +£§(l-e-ct) (9.5)
c

After a certain time t a negative impulse is emitted and

cx(t) = K6t - K6(t - t ) =KS^ (9. 6)

k6^ .. x
Px(t) * - -j-i (1 - e°C(t"V ) (9. 7)

k6t
It is simple to check that > r (see Fig. 9. 2). Thus,

another negative impulse will be emitted after a certain time t?t
and then

c2(t) = KS^ - K6(t - t2)

-27,-



n <tl - K8tl a e"C<t"t2\ . K5 ,t t . K8 „ -C<t-t2>P2(t) =—— (1-e ) +— (t - t£) - —j- (1 - e )
c

(9.8)

or

p2w-[¥ v^1-6-c(t-t2)'
+iT (t_t2} (9*9)

We compute the maximum of p7(t)

dP2(t)- Kfirt +1^"C(t"t2>+K6 -o"at K6(t1+-)e +— =0

-c(tvt2)
for e = y——— or

1 + ct.

t - t2 =lin(l+ ctx)

Substituting these values into (7. 9) we obtain

K61, Kfi
p2 max ==—£-i +^ in (1 +ct^

c

But from (7. 5) we see that

K5tl K6„ -Ctl^_3_ =-z(l =e )+r
c

Therefore,

p2 max =iS| - (1 - e l) +in(l +ct^ - r (9.10)
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But (1 - e~° 1) <in(l + ct ) ;hence the term in brackets is
always positive and p? max > -r. Hence no firing of negative im
pulse occurs.

However, a firing of a positive impulse occurs at time t.,.

From Fig. 9. 2 (or Eq. 9.9: ) we easily see that c(t) <R and

therefore the system settles down with subthreshold response.

Therefore, it is always asymptotically stable.

The fact that a system with only a double pole at the origin is

asymptotically stable shows the advantage of the N. P. F. M. The

conditions derived in Sec.VIII are too restrictive. Indeed, in (8. 7)

€. = 0 for i > 4, €. = 1» €2 = -1, €3 = -1» €4 = + 1. Therefore,

s (s+c) L. -J

-St ~St? -St..

lim sp (s) = K K i lim l"e " e + e
n ' m c s

s-> o s-» o
m

1-1+st +[s2]=l+st->+[s2]+l-st,+ [s2]
= K K - lim l L 5

m c s
s-» o

1 7 7
= K K —(t, + t- - t0) ([s 1 = terms with factor s )

m c x 1 2 3' XL J '

Therefore, the final value of p(t) is finite and coincides with

=i [K6tx - K6(t- t2)+ K6(t-t3)]=i K4 (tl +t2 " t3)
c3(t)
re

+ n —XJLn( l + x) = l-e =0, for x = 0. Taking the derivative we see

that dinx1+x) =̂ >0 for x>0 and ^ (1 - e"X) =e"x >0 for
x > 0. But -j—— > e hence Xn(l + x) increases faster than 1- e" .
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In a similar way the stability of any first or second order sys

tem can be checked.

We proceed furthermore to prove that the system with open

loop transfer function K/s is asymptotically stable in the large.

The response to a step input is shown in Fig. 9. 3. Assume

yk =yk+1 >r (9. u)

Then

yk - yk-i+ *t*k - W <9-12)

yk+2 = yk+i-6(tk - Vi) • <9a3>

Therefore,

yk+2 • yk-i +«K*k - *k-i» - (tk+z - *fcfi>i <9-14>

Obviously t.^-t . > t -t •• . because y(t) is increasing
3 n+2 n+1 n n-1 7X ' e

in its value in the first case and decreasing in the second. There

fore,

yk+2<yk-i <9-15>

With a similar argument we can generally see that

yk+m+i <yk.m <9-16>

Assume now that y, < r (first impulse as shown in Fig. 9. 3).

Then the last impulse will occur at most at y, . Therefore,
'k+m

the system emits k - (k-m) = m impulses before "leveling" and

(k + m) - (k + 1) = m - 1 after. Therefore, the slope after each
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maximum (or minimum) is decreased by one and the oscillations

eventually will stop. Hence, the system is asymptotically stable

in the large.

X. RAMP INPUT RESPONSE

Consider the system of Fig. 9.1 with G(s) = K/s and a
th

input S t. Assume the n imp

Then the input to the modulator will be

th
ramp input S t. Assume the n impulse is emitted at time t .

St- nK6 =S(t-t)+St - nK6 (10.1)
o ox n' o n x '

After a pulse is emitted at time t the input will be

S (t - t Ll) + S t l1 - (n + 1) K6 (10. 2)
o n+1 o n+1 * ' * '

The system obviously will reach a constant rate of firing when

or

St „-(n+l)K6 = St - nK6 (10. 3)
o n+1 x ' on x '

So<*.»l - *n> = K 6 <10-4>

The slope of the envelope of the output' in this will be

$=w§- =so <10-5>
o

Therefore, the system follows exaxtly the input. This is a verifi

cation that the system reproduces time-varying inputs.

The time between two firings is, from. (10.4),

At =#- =KKm^ <10'6>
o o
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The time for the first firing is found from Table I, No* 2,

to be approximately

1^-' (10.7)
o

«x=JF
In a similar way the response to various inputs of a given system can

be found.

XI. ELEMENTARY ANALYSIS OF FILTERING PROPERTIES

In any P. F. M. system one may consider the injection of
3

noise before or after the modulator. C. C. Li (pp. 134-193) studied

the second case in an I. P. F. M. and found that the system is rela

tively immune to noise. This is not a surprising result, and can be
4

generalized to any pulse-frequency-modulated system, or even to

any system transmitting information in discrete form. Of course,

this advantage is offset by the reduction in the bandwidth of the sys

tem. Therefore, we will not consider this case further. The more

interesting (and more difficult to solve) problem is the injection of

noise at the input of the modulator.

For the purpose of elementary analysis (for the sake of com

paring various systems), we proceed with the following assumptions:

(a) both signal and noise are in the form of pulses (this is a

reasonable assumption in view of the discussions of Sees. VI and

VII);

(b) both are stationary processes and their distributions are

such that the expectations of both the time duration T and the abso

lute value of amplitude H at the signal are much greater than those

of the noise (Fig. 11.1). (This is not a very good assumption, because

in any case such a distribution does not present a difficult filtering

problem. )

We define as first filtering figure of merit of a system the
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0 Absolute value of ampli
tude or time duration

Fig. 11. 1

Probability density distributions of signal (S) and Noise (N)

equivalent gain "^"for a pulse input, as defined in Sec.VII (extension

•to other types of systems is obvious). Under the assumption (b) a

system has good filtering properties whenever ^ » 0 if either

H > 0 or T > 0. This is a rather rough estimation and we are

going to define later a more accurate distinction based on the se

cond filtering figure of merit. However, we proceed to compute

first the value of ^ for various systems (in discrete systems we

will always assume an integrator following).

(1) Continuous system: Obviously, ^= 1.

(2) Continuous system with dead zone - D :
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^=1 if H > D

*= 0 if H < D

(3) Continuous system with Saturation S :

*= 1 if H < S

*= ^ if H>S

(4) Pulse amplitude modulation (Classical Sampled-Data System)

(Assumption of unit gain). For pulse duration t > T (sampling

rate) orw < to /2 = tt/T we have \&= ..f(w).. If to > w /2, then
r * ' r

N&= 0 (or if t <T| probability of response = t/T. Values of gain are

1 or 0, therefore E(^ = t/T). If t > T then there will be n

outcoming impulses where n is given as

•Jr - 1 <n <4
T T

^ nHT T
*= -—— = n —

Ht t

Therefore,

and

max t T

•$ . =Z (JE - i).- i -Z
mm c x T ' t

and equivalent gain (the average)

^= l - ^L for t >T
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(5) Pulse-width modulation: The output pulse width is given by

At=J2.TifH<H
Ho

o

At = T if H > H
— o

This is true provided t > At. The integral will be (if h height of

pulses) hAt at t

are emitted then

pulses) hAt at the end of the pulse, or H/H • T • h. If n pulses

n JL Th
*/ o i T

tH " H n t
o

Again,

Y - 1 < n < y

Therefore, *= 1 - T/2t for t > T and H < H . If H > H , then
nTV. — o o

tf= iiiii and tf = H /H ' * . = H /H - H /H • T/t of *= H /H-
Ht max o min o o o

•(l-T/2r)for t>T and H>H.
' — o

The condition t > T can be essentially substituted by t >At.

If t < t we have only one pulse as output of area H At = H T

and hence

HT _ T .
Ht" t

(6) Integral P. F. Mt For threshold r and output area 6 the sys

tem fires whenever Ht > r. The number of pulses n is given by

Ht w , Ht
- 1 < n <

r — r

*= st— , therefore * = —- —=— = — = 1. By proper choice of 6 and r
Ht max r Ht r ' r r
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vmin r J Ht r Ht Ht.

We define the equivalent gain

4 = 1 -
r

for Ht > r
2Ht

*. = 0 for Ht < r

Neural P. F. M.: In Sec,. VII we found

-+
1 1

c

for H > R

c
in

H

R

/ H
/nH-R 2

RT<
4

H-R

+ = 0 if H <R or
c

Jin H

H-R

(iji has been normalized by putting 6/r = 1. )

These results plotted in each case are shown in Figs. 11. 2

and 11. 3. From them we see that the N. P. F. M. system has the

better filtering properties based on the first filtering figure of

merit. As second filtering figure of merit we may define the ratio

of the average value of the equivalent gain over the range where the

signal lies with probability P with respect to the corresponding

magnitude for the noise.

This becomes a useful design criterion for the appropriate

choice of parameters of the system. (The value of P can be chosen,

for example, at 50%. ) We are not going to proceed in further exam

ination of this method in this report because this would require a

more accurate notion of the distributions of the noise and the signal.

However, from Figs. 11. 2 and 11. 3 it is clear that the P. F. M.

offers more possibilities than the other schemes.
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Fig. 11. 2

Equivalent gain for different systems under pulse inputs.

(for large t)

Egi^fgH (i)

T- r - l « HT-H~c nH^

o o (i)

X x (ii)

(iii)

(iv)

(v)

(vi)

(vii)

(for la^fce H)

Fig. 11. 3
Equivalent gain for different systems under pulse inputs.
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APPENDIX A

Electronic Implementation of Proposed Pulse Frequency Modulator

In Fig. A. 1 is shown a possible implementation by using neon

R
o m/w

4= 0

Fig. A. 1

Summation and

Amplification

tubes (N. and N2). The constant c = l/RC. It is easy to see
that this implementation adds an additional gain (pre-modulator) of

value l/RC and this should be taken ihto consideration in any ana

log computer simulation of a given system.

A variation is shown in Fig. A. 2. The contacts a1, b1 close

R
o—ww-

x \ \

Fig. A. 2

40-
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after the constants a, b. This form has the advantage that we can

actually control the duration of the pulse, while this is not so easy

with the circuit of Fig. A. 1.

APPENDIX B

Solution of a Transcendental Equation on the Analog Computer

We will solve Eq. (4. 2) with respect to t, namely

-ct +
e cos ijj = cos (cot - ijj) (B. 1)

Define the function

= ect cosJcat-4)
x ' cos \\t x '

Then the solution of (B. 1) coincides with time t, when x(t) = 1.

However, (B. 2) is the solution of the differential equation

2
d x - dx , . 2 2. _ ._ 0.
—«- - 2c — + (c + to ) x = 0 (B. 3)
dt at

with initial conditions

x<0) =1 4£ S-±*L.
dt t=o

This can be verified very easily. Therefore, using the circuit of

Fig. B. 1 we obtain as output x(t). The diode D is used to deter

mine the exact position of x(t) = 1. Moreover, special attention must

be paid during the measurements because the system is unstable (c>0).

Obviously, t = 0 is a solution, but trivial.
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