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INTRODUCTION

The entire approach to constrained minimization problems in

v t finite dimensional spaces, as found in the field of optimal control, is

substantially different from the approach to these problems found in

mathematical programming. Furthermore, within each of these fields,

one finds a diversity of methods and points of view. The purpose of

this paper is to exhibit a unified approach to constrained minimization

problems in finite dimensional spaces and to show that most of the

known necessary conditions for optimality are straightforward conse

quences of a fairly simple, but all-encompassing theorem.

The first part of this paper is devoted to formulating the_ Basic

Problem, i. e., the form into which most of the known, finite dimen-

sional, constrained minimization problems can be transcribed. A nec-

v* essary condition for the optimality of a solution to this Basic Problem

is then derived by a geometric method, first used by McShane [1] in the

Calculus of Variations and subsequently greatly popularized by Pontryagin

et all [2] in their derivation of the Maximum Principle. The necessary

condition for the Basic Problem is stated as an inequality which must

hold for all the elements in a cone which is a suitable linearization of

the constraint set. The wide range of applicability of this theorem is

substantially due to the fact that one has a great deal of freedom in

choosing this linearization cone.

The second part of the paper is devoted to transcribing a wide

• & variety of minimization problems into the form of the Basic Problem,

to re-deriving many classical necessary conditions, and to obtaining
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several new ones. In particular, it is shown that classical Lagrange

multiplier theory, the results of Fritz John [3], Kuhn and Tucker [4],

and Mangasarian and Fromovitz [5], in nonlinear programming theory,

and the results of Jordan and Polak [6], Halkin [7], and Holtzman [8],

in discrete optimal control theory, can all be obtained from the neces

sary condition for the Basic Problem. In addition, several new results

are obtained for bounded state space, discrete optimal control problems.

Presently known necessary conditions for certain bounded state space

problems, such as those obtained by Rosen [9], can be seen to be

special cases of the more general results presented in this paper.

It is the authors1 hope that the unified approach to constrained

minimization problems in E , presented in this paper, will facilitate

the mastery of the subject and will lead to a deeper and more fruitful

understanding of minimization problems in general.
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I. THE BASIC PROBLEM

Statement of the Basic Problem

Let f : E -*• E and r : E -*• E be continuously differentiable

functions, and let ft C E be a subset of E . The Basic Problem can

be stated as follows:

A "Tl

Find a vector z e E such that

(i) z € ft, r(z) = 0,

(ii) for all z € ft with r (z) = 0, f(z) < f (z).

We shall call a vector z satisfying (i) and (ii) an optimal solution to the

Basic Problem.

Necessary Condition for Optimality

The necessary condition to be derived will be stated in the form

of an inequality which is valid for all 6z = (6z,, dz^, . . ., 6zn) in a

convex cone "approximation" or "linearization" of the set ft. We shall

make use of two kinds of "linearizations" of the set ft at a point z. The

first one will be defined now; the second one will be defined after the

proof of Theorem 1, to obtain an extension.
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Definition. A convex cone ' C(z, ft) C E will be called a

linearization of the first kind of the constraint set ft at z if for any

finite collection { 6z , 6z , . . ., 6z } of linearly independent vectors

1 2in C(z, ft) there exists an e > 0, possibly depending on z, 6z , 6z ,

. . ., 6z , such that co{z, z + €6z,...,z+e6z} C^«

If the cone C (z, ft) is a linearization of the first kind, then for

every 6z € C (z, ft) there exists an e. > 0 such that z + € 6z € ft for

all e such that 0 ^ € - ^. The largest cone having this property is

given a special name.

Definition. The radial cone to the set ft at a point z € ft will be

denoted by RC (z, ft) and is defined by

RC (z, ft) = {6z : z + € 6z € ft for all € such that

0 i= €< €l(z, 6z) > 0}

V A set C is a cone with vertex x0 if for every x 6 C, x 4 xQ,
x0 + \(x - x0) e C for all X > 0. Since the vertex xQ of the cone
C will normally be obvious, we shall omit mentioning it.

+ 1 k 1• co{z, z + c 6z , . . ., z + e 6z } is the convex hull of z, z + € 6z ,
. . ., z + e 6z , i. e., the set of all points, y, of the form

y =M-0 z +Hi (z +€6zl) +• • • +[J-k (z +€6z ^), where
k

S |i. = 1, |i. 0 for all i.
i=0 X X
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Whenever the radial cone RC (z, ft) is a linearization of the

first kind, it contains all the other linearizations of the first kind of the

set ft at z. Consequently, in the various theorems to follow, the

radial cone RC (z, ft) should always be used if possible, since this will

result in stronger necessary conditions.

Next, we define the C^ map F:En - Em+1

F(z) = (f(z), r(z)) .

We shall number the components of E from 0 to m, i.e., y € E

is given by y = (y,y,«..,y )• The Jacobian matrix of the map

„. . / OF^zA .,, , , . , , 9F(z)
E (z), I *—' , will be denoted by —£-L *

\ 3zJ / dz

For the Basic Problem stated above, the following theorem

gives a necessary condition for optimality.

Theorem 1. If z is an optimal solution to the Basic Problem, and

C (z, ft) is a linearization of the first kind of ft at z, then there exists

a nonzero vector ijj = (ip , ip , . . ., ip )eE , with ip ^ 0, such

that for all 6z € C( z, ft) (the closure of C(z, ft) in En)

(1) <*. ^^6z>,0.
3z

Proof. Let K(z) C Em+1 be the cone defined by

(2) K(z) =^i C(£. ft)

-5-
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K (z) is convex because C (z, ft) is convex and —r} ' is a linear map.

Let y = F(z). We shall now show that the cone {y} + K (z) must be

separated from the ray

(3) R = {y:y = y + p(-l, 0, . . ., 0) , p > 0} ,

i. e. that there must exist a nonzero vector ip € E such that

(4) (i) <^ 4>, y - y ^> - 0 for every y €{y} +K(z)

(ii) <f 4i, y - y^> - 0 for every y € R.

Suppose that the cone {y} + K(z) and the ray R are not

separated. Then the cone K (z) must be of dimension m+1 and R must

be an interior ray of {y} + K (z) (i.e., all points of R except y are

interior points of {y} + K(z)).

Let us now construct in the cone {y} + K (z) a simplex 2 with

vertices y, y + 6y , y + 6y , . . ., y + 6y such that

(i) there exists a point y on R (which we shall write as

y =y +8y°, 6y° =\(-l, 0, . . ., 0) with v > 0), dif

ferent from y, which lies in the inteior of 2 ,

(ii) there exists a set of vectors 6z € C (z, ft) satisfying

-6-



Gfl(x) =fr +2Ui.ZY-1(«6y6+x) - (£ +a6y°)

(8) + oiZY^iaby0 + x))

where o(- ) is a continuous function such that lim —"Li!! = 0. By
11 y ii —0 "7"

definition, . ^Z' Z = Y, and hence (8) simplifies to

(9) G (x) = x + o(ZY"1(0'6yO + x) .

Now, for x € 8(S - {y + a y°} ) (the boundary of the sphere) iixii = ar

and we may write x = ap,t where up-jil = r. Hence, for x € a(S^ -

{y + a by } )

(10) G^ap^ = aPl + °(<*ZY" (6Y° + Pi))

* *
Consequently, there exists an a , 0 < ot £ 1, such that for all

p. €Em , with np^i = r,

(11) ||o(a* SY'Vy0 + P])) \\ < cT r

We now conclude from Brouwner's Fixed Point Theorem (see Appendix 1)

that there exists a x €S „. - {y + a 6y°} such that
a

(12) G *(£) = 0,
a

-8-



l. e.

(13) F(z +ZY"X(Qr* 6y° +x)) = y + a* 6y°

Now y + oT by = col(f(z) - a v, 0, 0, . . ., 0), where v > 0. Thus,

expanding (13),

(14) r(z + ZY'1^* 6y° +x)) = 0

and

(15) f(z + ZY"1 (<** 6y° +x)) = f (z) - a* v < f (z)

Furthermore, because of (6) and the fact that for any 6y in the simplex

2 - {y} , the vector z = z + ZY" 6y belongs to co{z, z + 6z , . . .,

a m+1-*
z + oz > ,

(16) z +ZY"1 (or* 6y° +x) eft

Hence z is not optimal, which is a contradiction. We therefore con

clude that the cone {y} +K(z) and the ray R must be separated, i.e.,

m*f*l
there must exist a nonzero vector ip € E such that

(17) (i) <^ ip, (y - y)^> ^ 0 for every y €{y} +K(z)
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and

(18) (ii) <^ip, (y - y)^> > 0 for every y €R

Substituting (2) in (17), we have

(19) <^ ip, 9^Z) 6z^> <0 for every 6z €C(z, ft)

Clearly, (19) must also hold for every 6z e C (z, ft) .

Substituting for y from (3) in (18), we have

(20) < v|i, (-1, 0, . . ., 0)> = -ip° ^ 0 .

This completes the proof.

It has been pointed out by Neustadt [10] that Theorem 4 remains

valid under the relaxed assumption that C(z, ft) is a linearization of the

second kind of ft at z, defined as follows.

Definition. A convex cone C(z, ft) C En will be called a linearization

of the second kind of the constraint set ft at z, if, for any finite collec

tion {6z\ 6z2, . . ., 6zk} of linearly independent vectors in C(z, ft),
1 k

there exists an € > 0, possibly depending on z, 6z , . . ., 6z , and a

continuous map £ from co{ z, z + e 6z , . . ., z + € 6z } into ft, such

that L(z +6z) = z +6z +o(6z), where lim "°[ z|H = 0.
6z -0 ll6zll
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Remark. We observe that if C (z, ft) is a linearization of the first kind

of ft at z, then it is also a linearization of the second kind of ft at z,

with the map £ being the identity. Thus, unless we have specific cause

to indicate whether a cone C(z, ft) is a linearization of the first or second

kind, we shall refer to it simply as a linearization of ft at z. We now

restate Theorem 1 in this form.

Theorem 1'. If z is an optimal solution to the basic problem and

C (z, ft) is a linearization of ft at z, then there exists a nonzero vector

ip = (ip°, ip , . • •, ip ) €E with v|j —0, such that for all 6z €C(z, ft),

(the closure of C(z, ft) in En), <^ q,, 83^z) 6z ^> < 0.

The reader may easily modify the proof of Theorem 1 so as to apply to

Theorem 1'. Finally, it should be pointed out that all conditions such

as continuity differentiability, etc., imposed on the various functions

need only hold in a neighborhood of the optimal point.

II. APPLICATIONS

We shall now show how a number of classical optimization prob

lems can be cast in the form of the Basic Problem, and we shall then

apply Theorem 1 or Theorem 1' to rederive severa classical conditions

for optimality, as well as to obtain some new ones.
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1. Classical Theory of Lagrange Multipliers

The classical constrained minimization problem admits equality

constraints only. Thus, it is the Basic Problem with ft = En, the entire

space. Clearly, E is a linearization of the first kind for E at any

point z € E .

Thus, we conclude from Theorem 1 that if z* is an optimal

solution of the Basic Problem, with ft = E , then there exists a nonzero

vector ip € E such that

(21) <^ ip, dF(z) 6z^> s 0 for all 6z cEn

This may be rewritten as

(22) / 8F(z)T ip, 6zN ^ 0 for all 6z eEn
^ dz

Since for any 6z e E , -6z is also in E , we conclude from (22) that

(33, ^ ♦ - 0

T

Now, 9F^Z) is a nx(m+l) matrix with columns Vf (z), Vr (z), .
„m#A% . ™,^ ^8f(z) MilA rv1^! - (3rl(z)Vr (z), where Vf (z) = I —^ , . . ., -gj— 1, Vr (z) - I Q ,

i.A \ V 1 n / x 1
85 ^z) J . We may therefore expand (23) into the form
9z /

n /

-12-
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(24) i|i° Vf(z) +^ ^Vl"i(z) =°
i=l

We have thus reproved the following classical result.

Theorem 2. Let f, r,r,...,r be real valued, continuously

differentiable functions on E . If z € E minimizes f(z) subject to the

constraints r (z) = 0, 1, 2, . . ., m, then there exist scalar multi

pliers, ip , ip , . . ., ip , not all zero, such that the function H on En

which they define by

m

(25) H(z) =ip°f(z) +2 ^ rX(z)
i=l

has a stationary point at z = z, i.e., (24) is satisfied.

It is usual to assume that the gradient vectors Vr (z), i = 1,

2, . . ., m, are linearly independent for all z such that r(z) = 0. This
m

precludes / ip1 VrX(z) = 0 and hence in (24) ip° 4 0. Multiplying (24)
i=l

by l/ip° and letting \ . =ipVip0, i =1, 2, . . . , m, we now deduce the

more commonly seen condition.

Theorem 2'. If z minimizes f(z) subject to r(z) = 0, and the gradients

Vr-(z), i = 1, 2, . . ., m, are linearly independent, then there exists

a vector \ € Em such that the Lagrangian L on E X E , defined by

-13-



m

(26) L(z, \) =f(z) +Y \l ra(z)

has a stationary point at (z, \).

We note that by (24) 9Ljz» X) = 0 and that 8LJf' X) =r(z) =0,
dz o\

by assumption.

2. Nonlinear Programming

T , - ,_n _1 _n -r^m , __n __k ,
Let f:E -*E, r:E -^E , and q: E -* E be continuously

differentiable functions. The standard Nonlinear Programming Problem

is that of minimizing f (z) subject to the constrains that r(z) = 0 and

q(z) < 0.

This corresponds to the special case of the Basic Problem, with

ft = {z : q(z) ^ 0} . We shall now show how Theorem 1 can be used to

obtain various commonly known necessary conditions for z to be

optimal. The presentation is divided into two parts. It should be noted

that the necessary conditions obtained in Part I are stronger than those

obtained in Part II.

Given a particular point z e ft, we shall often have occasion to

divide the components of the inequality constraints functions, q ,

i = 1, . . ., k, into two sets; those for which q (z) = 0 and those for

which q (z) < 0. To simplify notation we introduce the following

definition.

-14-



Definition. For z e ft, let the index set I(z) be defined by

(27) I(z) = {i:ql(z) = 0}
«

The constraints q , i e I(z) will be called the active constraints at z,

We shall denote by I(z) the complsment of I(z) in {l, . . ., k} .

Part I. The set ft = {z : q(z) ^ 0} introduced above is assumed to

satisfy the following condition:

Assumption (Al). ' Let z € ft be an optimal solution of the nonlinear

Programming Problem. Then, there exists a vector h € E such that

<C VqX(z), h^> < 0 for all i eI(z)

A sufficient condition for (Al) to be satisfied is that the vectors Vq (z),

i e I(z) be linearly independent (see Corollary to Lemma 3).

Definition: For any z € ft, the internal cone of ft at z, denoted by

IC(z, ft), is defined by

IC(z, ft) = {6z :<^ VzX(z), 6z^> < 0 for all i eI(z)}

' When some of the functions q*, i € I(z), are linear, it suffices to
require that there exist a vector h e En such that <CVqi(z), h y ^ 0
for these functions and ^" VqMz), h^7 < 0 for the remaining functions
qi, i € I(z).

-15-



By assumption (Al), the convex cone IC(z, ft) is nonempty. It is a

simple exercise in the use of Taylor's Theorem to prove the following

lemma.

Lemma 1. If IC(z, ft) t 0, the empty set, then

(i) IC(z, ft) is a linearization of the first kind of ft at z,

(ii) . IC(z, ft) ={6z :<^ VqX(z), 6z^> < 0 for all i e I(z)}

When specialized to the Nonlinear Programming Problem, Theorem 1

assumes the following form.

Theorem 3. If z is an optimal solution to the Nonlinear Programming
TVI 1 1

Problem, with (Al) satisfied, then there exists a nonzero vector ip € E ,

with ip° ^ 0, such that for all 6z eIC(z, ft) = {6z: < VqX(z), 6z> < 0

for all i e I(z)} ,

<^i,6z>S0
m

where H(z) = ip°f(z) +^ ^ rX(z) .
i=l

Using Theorem 3 and Farkas Lemma (see Appendix 2) we obtain the

following necessary condition for optimality, whihch is in a form more

familiar to specialists in mathematical programming.
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Theorem 4. If z is an optimal solution to the Nonlinear Programming

Problem, with (Al) satisfied, then there exist a nonzero vector

\\t e E , with ip - 0, and a vector [i e E , with p. ^ 0, such that

m k

(i) v|i° Vf(z) +^ ^ Vr^z) +Y, VVq4(2) =0
i=l i=l

and

(ii) ^ jjl* q^z) =0
i=l

Proof. From Theorem 3,

< ^. -> * o

for all 6z such that <^ Vq^z), 6z^> £ 0, i eI(z).

By Farkas Lemma, there exist scalars n ^ 0, i € I(z) such that

iel(z)

Let (jl1 = 0 for i € I(z). This completes the proof.

Most of the other well-known necessary conditions for Non

linear Programming Problems can be obtained from Theorem 4 by

making additional assumptions on the functions r and q. For example,

the following corollaries to Theorem 4 are immediate consequences of

that theorem.

-17-



Corollary 1. If assumption (Al) is satisfied and the vectors Vr (z),

i = 1, . . ., m, are linearly independent, then there exist vectors

ip e E , jjl € E which satisfy the conditions of Theorem 4 and such

that (ip°, \i) 4- 0.

Corollary 2. If Vr (z), i = 1, . . ., m, together with Vq (z),

i € I(z), are linearly independent vectors, there exists a vector

ip e E satisfying the conditions of Theorem 4 with ip < 0.

The assumption in Corollary 2 is a well-known [11] sufficient

condition for the Kuhn-Tucker constraint qualification to be satisfied.

When it is added to Theorem 4 we obtain a slightly restricted form'

of the Kuhn-Tucker Theorem [4].

Corollary 3. If there exists a vector h €E such that \Vq (z), h ^> <0

for all i e I(z), \ Vr1(z), h^> = 0 for i =1, . . ., m, and the vectors

Vr (z), i = 1 , . . ., m, are linearly independent, then there exists a

vector ip €Em satisfying the conditions of Theorem 4 with ip < 0.

The assumption in this corollary is a sufficient condition for

the weakened constraint qualification [13] to be satisfied. Augmented

tby this assumption, Theorem 4 becomes a slightly restricted form' of

the Kuhn-Tucker Theorem with the weakened constraint qualification.

* In practice, the Kuhn-Tucker constraint conditions can rarely be
shown to be satisfied unless the restrictions imposed in Corollaries
2 and 3 hold.
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Part II. We shall now derive a necessary condition for the Nonlinear

Programming Problem which is not based on assumption (Al) and hence

is weaker than the necessary condition stated in Theorem 4. This con

dition was first proved by Mangasarian and Fromovitz [5] using the

implicit function theorem and a lemma by Motzkin [12].

Whenever the assumption (Al) is not satisfied, it is possible to

show that the vectors Vq (z), i € I(z) can be summed to zero with non-

positive scalars. This is established in the following two lemmas.

Lemma 2. Let KC E be a nonempty closed convex cone such that

for every nonzero vector d c k, - d i K. Then there exists a vector

h € E such that

<^ h, k^> < 0 for all nonzero k €K

The proof of this lemma is a straightforward but somewhat tedious

exercise, and is therefore omitted.

Lemma 3. Suppose that assumption (Al) is not satisfied for the set

ft = {z : q(z) ^ 0} . Then there exists a nonzero vector jjl € E , with

fx ^ 0, such that

K.

£ K-1 Vq1! A ,(i) £ K- Vq (z) = 0
i=l
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(ii) ^ (j1 qX(z) =0.
i=l

Proof. Consider the closed convex cone

K ={v | v =2 <*i Vq'(z), <*. >0}
i€l(z)

Since there does not exist an h e E such that <^" h, Vq^z)*^ < 0

for every iel(z), we conclude from Lemma 2 that there exists a nonzero

vector d € K such that -d e K. Thus

d = \ p1 Vq\z), (31 > 0, not all (31 =0,
i€l(z)

and

-d = y y1 VqX(z), y1 >0, not all y1 =0,
iel(z)

Let |jl = -(P + v ) for iel(z), and let jjl = 0 for iel(z).

1 k
Then |i = (|x , . . ., \x ) is the desired vector.

Corollary. A sufficient condition for the assumption (Al) to be

satisfied is that the vectors Vq (z), iel(z), be linearly independent.

-20-



Lemma 3 may be combined with Theorem 4 to give a necessary

condition for optimality which does not require that (Al) be satisfied for

this, the most general case of the Nonlinear Programming Problem, we

obtain the following necessary condition for optimality.

Theorem 5. If z is an optimal solution to the nonlinear programming

m+1 kproblem, then there exists a vector ip € E and a vector jj. € E ,

with ip ^ 0 and |i £ 0, ip and \i not both zero, such that

m k

(i) ip° Vf(z) + ^ ^ Vr^z) + Yj^ Vql(z) =°

and

i=l i=l

A,(ii) ^ >i q (z) = 0.
i=l

Proof. If (Al) is satisfied, the theorem is a slightly weaker statement

of Theorem 4. If (Al) is not satisfied, let \x be the vector specified

in Lemma 3, and let ip = 0.

Finally, we note that if we let r = 0, Theorem 5 becomes the

well-known Fritz John necessary condition for optimality [3 ].

We have thus shown that most of the known necessaryconditions

for nonlinear programming problems, previously derived by diverse and

often unrelated techniques, can now be obtained simply by applying

Thereom 1 and Farkas1 Lemma.
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3. Optimal Control

In the field of optimal control of discrete time systems, neces

sary conditions for optimality have been developed by Jordan and Polak

[6], Halkin [7], Holtzman [8], and Rosen [9]. By recasting the opti

mal control problem in the form of the Basic Problem, it is possible to

obtain from Theorems 1 and l1 essentially all of the above mentioned

results in a unified manner. Furthermore, the derivation given in this

paper is significantly simpler in most cases. In addition, Theorem 1

and l' together with Farkas' Lemma yield necessary conditions for

optimality for a class of bounded state space problems; a result which

is new with this paper.

The general Optimal Control Problem that we will consider

takes the following form:

Given a system described by the difference equation

(28) x.+1 - x. = f.(x., u.), x. eEn, u. €Em, i =0, . . ., k-1

Find a control sequence (uQ, u,, . . . , u, _,) and a correspond-

g trajectory (x , x-,, • • •, x, ) such that

(i) u. € U. C Em for i = 0, . . ., k-1 (Control Constraints)

n.

(ii) x. €ft. = {x. : q.(x.) < 0} , q. :En - E \ i = 0 k

(State Space Constraints)

and, in addition, the initial and terminal s tates, xQ and x^ satisfy

-22-



,n ^ 0(29) (iii) g0(xQ) = 0, gQ : E -* E (Initial Manifold Constraint)

n k
(iv) §ir(xv) = ^» Sv : ^ "*" ^ (Terminal Manifold Constraint)

and such that

k-1

/ f. (x., u.) is minimized.
Li i v i r
i=0

We make the following assumptions on the various sets and functions

appearing above.

Assumptions

(a) f. :En XEm -»» En is a C^ function for i =0, . . ., k-1,

(b) For every u. e U., and for all i = 0, . . . , k-1, the

radial cone RC(u., U.) is a linearization of the first kind

for U. at u.,
i l

(30) (c) gn and g, are C* ' functions whose Jacobian matrices

have maximum rank,

(d) For all x. € ft, i = 0, . . ., k, the gradients of the active

constraints, Vq|(x.), j eI(xi) [see (27)], are linearly

independent vectors,

(e) f? :En XEm -* E1 is a C^ function for i = 0, . . ., k-1.
* ' l
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This problem may be reformulated in the form of the Basic Problem,

i. e., {min f(z) : r(z) = 0, z e ft} , by making the following identifications,

i „(k+l)n+km , , ^ xLet z = (xQ, x^ . . ., xk, uQ, . . ., uk_1) e Ex , and let f,

r, and ft be defined by

k-1

(i) f(z) =^ f°(x., u.)

(31) (ii) r(z)

i=0

xi " xo • fo(xo' V

xk " xk-l ' fk-l(xk-r uk-l}

g0(xo)

8k<xk>

(iii) ft = ft Xftx X. . . Xftj^. XUQ XUl X. . . XU^

Clearly f and r have the required differentiability properties. The

cone

(32) C(z, ft) =IC(x0, ft) X. . . XIC(xk, ft^ XRC(uQ, UQ)

x. . . xRC(Yr uk-1),

where IC(x., ft.) and RC(u., U.) were defined earlier, is obviously a
% i i' i i

linearization of the first kind for ft at z since assumption (d) and
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Lemma 3 guarantee that IC(x., ft.) is nonempty for every i = 0, . . .,

k-1, and by Lemma 1 it is a linearization of the first kind for ft. at x„

while RC(u., U.), for i = 0, . . ., k-1, is a linearization of the first

kind by assumption (b). Therefore, we may apply Theorem 1, from

which we conclude that if z is an optimal solution to the Optimal Control

Problem, then there exists a nonzero vector ip = (p , tt), with p ^ 0,

and it =(- pr . . ., -pk, M-q, \^)t where ^ eEn, |iQ eE , ^ €E ,
such that

(33) p'$M<^fc>«.

for all 6z € C(z, ft). Substituting for f and r in (33) and expanding,

we get

(34)

k-1 r,rO .A A k-1 r,fO.A A
Y 9fj fry "j) . , Y 8fi'xi- V c„

p L —§s: 6xi + L SZl— 8ui
i=0 1 i=0

V-1 afi<V \) 9fi<xi' ty \
+ I < -Pi+i- 6xi+l " 6xi " 8x1 6xi ""UxT 6ui^

i=0

9en#n> \ ^ a8k(xk) \

for every 6x = (6xQ, . . ., 6xk, 6uQ, . . ., 6uk_i) € c(z» n)-
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The usual form of the necessary conditions in terms of a

Hamiltonian, adjoint equation, transversality conditions, etc. are

obtained by considering special forms of 6z. The conditions obtainable

by this procedure are summarized in Theorem 6 below.

Theorem 6. If z = (x_, x,, . . ., x,, un, . . ., u, ,) is an otpimal

solution to the Optimal Control Problem, then there exist vectors pn,

pr " • •* pk in ^ xo* *i» • • •» \> \ €E x» with \ " °» ^o €E
k o

}jl e E , and a scalar p ^ 0, such that

(i) Not all of the quantities p , pn, p,, . . ., p., |jl0, jj_

are zero

(ii) Pi - Pi+1 =[—557 J Pt
af?(x., u.)

ix i i7

8x.
l

-i T

+1

r8qi(4i,iT+1 ]x \ for i =0, 1, 2, . . .,

pso<xonT
(iv) p M-r

(v) < X., qi(Xi)> = 0 for i = 0, . . ., k

-26-
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(vi) <

_T

8f.(x., ut)
an

f

o , [QiA> Vi
> +L—arr-J

for all 6u. 6 RC(u., U.).
1 x i r

Pi+l>'6ui "°

To prove all of the above conditions would be somewhat

laborious, therefore, we will only derive condition (vi) to demonstrate

how one proceeds.

Let 6z = (0, . . ., 0, 6u., 0, . . ., 0) with 6u. e RC(u., U. ),

Clearly 6z e C(£, ), and the inequality (34) reduces to

9f°(x., u.) . 8f.(x., u.) ^
O 1 * 1* l7 c , S 1 1 1 c > <r nP 5 6u. +\p.,„ g 6u. S - 0.

r 3u. l ^ ri+l* 9u. i
i l

Simple rearrangement yields (vi).

It should be remarked at this point that the derivation of con

ditions (ii), (iii), and (v) require the use of Farkas1 Lemma (see

Appendix 2), while condition (iv) is simply a definition.

To the authors' knowledge the above, quite general, necessary

condition has not been obtained previously, although Rosen [9] did

obtain a similar result under substantially more restrictive assumptions

on the sets U..

In the special case when there are no state space constraints,

i.e., q. = 0 for i = 0, . . ., k, Theorem 6 reduces to the following.
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Corollary. If the functions q. = 0 for i = 0, . . ., k, and z is an

optimal solution to the Optimal Control Problem, then there exist vectors

Pfy • • • > Pt_ in E , fip.eE , |jl e E , and a scalar p ^ 0, such

that

(i) not all of the quantities p , pn, . . ., p, are zero,

faf.(x., u.nT rdf?(St.t u.nT
(") Pi =Pi+1 = I —fz Pi+1 + g^

*— 1 —J «— 1 _

i = 0, . . ., k-1

nT

(iii) Pi, =
agk(xk)

dx
k -I

^

ag0(x0nT
(iv) PQ =

8x
0 J

(v)
3f. (x., u.)

1 x i v

-iT

3u.
l -J

r8f.(x., u.nT
O , J 1V l' I7

Pi+1- 6ui> " °

for all 6u. e RC(u., U.).
l v l l

This is the condition derived by Jordan and Polak [6].

A Maximum Principle. Halkin [7] and Holtzman [ 8] have shown that

by making some additional assumptions, condition (v) in the above

corollary may be replaced by a stronger condition, which is usually
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called a Maximum Principle. Both Halkin's and Holtzman's results

can be obtained from Theorem l1, but, for simplicity, we shall only

show how Halkin's results are obtained.

The optimal control problem considered by Halkin differs from

the Optimal Control Problem stated at the beginning of this section in

the following way.

(i) There are no state space constraints other than the

initial and terminal manifold constraints, i.e., q. = 0

for i = 0, 1, . . ., k. .

(ii) Assumptions (a) and (e) for the Optimal Control Problem

are replaced by the following:

(a1) For every u. € U., the functions f.(#, u.),

i = 0, . . ., k-1, are continuously differentiate

on E .

* ' (e1) For every u. € U., the functions f. (•, u.),

are continuously differ entiable functions on E .

(iii) Assumption (b) is replaced by the following:

(b') For every x € E and every i = 0, 1, . . ., k-1,

the sets f .(x, U.) are convex, where
—ix ' i7 '

_f. =EnXEm- En+1 is defined by _f .(x, u)
= [f°(x, u), f.(x, u)]

The reformulation of the Halkin Problem as a Basic Problem

differs only slightly from that used for the Optimal Control Problem.

29-



First, we introduce new variables v. = (v. , v.) e E with

v. = (v., v. , . . .. v. ) e E where i = 0, . . ., k-1. Then we let
1 v i* i' ' l' '

. . „(k+l)n+k(n+l) , . e.z = (x0, x,, . . ., x,, vQ, . , ., v, ,) «E^ ' ', and we define

the functions f and r and the set ft by

k-1

(i) f(z) =]T v° ,
i=0

(36) (ii) r(z) =

xl " x0 " V0

xk " xk-l " vk-l

«0(x0)

%(xk)

(iii) ft ={z =(xQ, . . ., xk, vQ, . . ., vkl):v. *_f.(x., U.)} .

For the linearization of the set ft at z we take the cone

(37) C(z, ft) =j 6z :6z =(6xQ, . . .,6xk, 6Vq, . . ., 6v_k) and

raf.(x.,u\) 1 a a 1iv{^8x7^6xi] +RC(vi,f.(^ui))j .

Clearly C(z,ft) is a convex cone. We shall now show that C(z,ft) is a

linearization of the second of ft at z.
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1 r
Let 6z , ... , 6z be any finite collection of linearly independent

vectors in C(z,ft), with 6z = (Sx^, ..., 6x, , 6y_n, ..., 6v. .). For

each i = 1, .. . , r , and for each j = 0, ... , k-1, there exists an € j > 0
3f.(x.,u.)

T. T_ ill l /\

such that v. + € j(6 v. ~-^—^- 6x.) e f .(x., U.). As a consequence,
-J -J 9x j7 -j* y y

i
there exists an € > 0 and vectors u. 6 U. such that

J J

9f.(x.,u.)
(38) v. + €6v* = € J- J J 6x* + f .(x^u1).v ' -J -J 9*j J -y J J

Let C. = co(z,z + € 6z , ..., z + € 6z }

Let ze Cn be arbitrary, and let 6z = z - z . Then we may write

or

A J-

6z = \ (i € 6 z where ji > 0, > jjl < li
i=l i=l

6z = Z

1 2 r iwhere Z = (e6z , e6z , .. . , e 6z ) is a matrix with columns €8z , and

1 Tp. = (|i , .. . , |i ) is an r-vector. For every z €CQ, tne vector M- is

uniquely determined by the expression

H = Y6z

where Y is a matrix whose rows, y^ i =l, .. . , r, satisfy<yi} e6z > =6..,

the Kronecker delta, for i, j =1, . . . , r.

The map £ : CQ -»• ft is defined as follows. For every

z = (x , . . . , xk, vQ, . . . , vkl)6 CQ, and corresponding
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6z =(8x0, ... , 6xk, 6y_0, ... , bv_^_x) =z -z, let £(z) =(yQ, .. . , yfc, wQ, . .. ,wkl)
with

(39) (i) y. = z., j = 0, ..., k

(ii) w. = f .(x.,
J -J J

r

i=l L -1

for j = 0, .. . , k -1

where

|jl(6z) = {l±l{bz), . .. , p.r(6z)) = Y6z, and

u., i = 1, .. . , rf j = 0, .. . , k-1 were defined in (38).

The range of £(z) is contained in ft because of the convexity of ft .

Since it is clear that 4(z) is continuously differ entiable, the reader

may verify that £(z) is the identity map plus a small term, as required

in the definition of a linearization of the second kind, by expanding £(z)

about z.

Theorem 1! may now be applied to this problem to obtain the

usual separation results, i.e., if z = (x_,x,,.. . , x, , un, u,, . . . , u .)
U i k u i k-i

is an optimal solution to the Halkin Problem, then there exists a nonzero

vector ip = (p , it) in the p € 0 and it = ( - p , . .. , -pk, [i , jl ),
n fL o J?kwhere p. € E , |a € E , \i,s E , such that

k~* k-1 3e (x )

p° 1 bv°i+ 1 <-pi+i' 6xi+i" 6vi> +<*°' ^T 6Xq>
i=0 i=0

aSlc(xk7 v.(40) +< |ak, -^— 6xk > < 0
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for all 6z = (6xQ, .. . , 6xk> 6v Q, .. . , 6v_k) € C(z,ft),

where p < 0, and the vector (p°, -p^ ..., -pk» H-q, P-k) t 0. By taking
appropriate perturbations we can obtain Halkin's necessary condition

[7]-

Theorem 7. If ({L, u., . . ., u, ,) is an optimal control sequence

and (xn, x,, . . ., x, ) is a corresponding optimal trajectory for the

io,nHalkin Problem, then there exist vectors p_, . . ., p, e E , jjl. € E

i!k o
u, e E , and a scalar p - 0, such that

(i) not all of the quantities p , pfi, . . . , p,, n_, fi, are zero,

n T

(ii) Pi - Pi+1 =
9f.(x.,u.)

lx 1 v

8x.
i —j

(iii) Pi, =

(iv) p0 =

8gk<xk>
L 9xk J

9g0(x0)

^

-,T

3x
0 J

H-r

'i+1

(v) pVa-.fy +<pi+1.£.(ii.fli)>

rvfO/A A .—J T
8fi (xi' ui> o . n

U- 1 —I

<p0f0(xi)«L.)+<Pi+1, fi(fti.a1)>

for all u. e U. .
i i

.. , k-1

The reader can obtain most of the results by straightforward

substitution of appropriate perturbations, 6z, in (40). We shall prove

only condition (v).
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Let 6z = (0, .. . , bv^, .. . , 0), with 6y. €RC(v., _f .(x., U.).

This is certainly an admissible perturbation, and, for this 6z, (40)

reduces to

(41) p 6v.+ p.+1, 6v. < 0 for all 6v.c RC(v ^.(x., U.)

Since _f .(x.,U.) is a convex set, the vectors _f .(x.,u.) -_f .(x.,u.) belong

to RC(v.,_f ^x., Up) for all u. e U. . Therefore, from (41), we get

p0[f°(^,u.) -f°<x.,k.)] +< p.+1, f.fx.,^) -f.^) ><0

for all u. e U. . Condition (v) follows immediately.
ii x ' 7

Holtzmann obtains exactly the same result as Halkin, (i. e. ,

Theorem 7), under the less restrictive assumption that the sets, f.(x.,U.)>

are only directionally convex (see Holtzmann [8]). The derivation of

this result from Theorem 1' proceeds in essentially the same manner

as the derivation of Theorem 7 above.

Remark. It has already been pointed out that Theorem 7 differs

from the corollary to Theorem 6 only in the condition (v). In fact, using

the method outlined above, a Maximum Principle can be derived in the

presence of state space constraints of the type considered in (29, (iii)),

provided all the other assumptions of Halkin or Holtzmann are satisfied.

One then gets a theorem identical to Theorem 6 except that condition

(vi) is replaced by the Maximum Principle, i. e. , condition (v) of Theorem

7. Theorem 7 then becomes a corollary to this more general result.
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, *

CONCLUSION

We have shown that a wide class of constrained minimization

problems can be reduced to a common canonical form, the so-called

Basic Problem, for which we have derived necessary conditions of

optimality. It is rather clear that the present paper does not exhaust

all the possible permutations and combinations of necessary conditions

or minimization problems that can be treated by reduction to the Basic

Problem. To name but a few, not discussed herein explicitly, we can

point out optimal control problems with nonseparable constraints, such

as total energy, total fuel, or else involving products of trajectory and

control variables, which can also be reduced to the Basic Problem.

However, one gets for these problems a necessary condition which

applies to the entire trajectory and which does not necessarily break

down into a series of conditions applicable at each sampling instant.

One can also consider optimal control or nonlinear programming

problems in which the "trajectory" constraint sets are specified in

more general form than equalities or inequalities. The necessary

conditions derived in this paper can be suitably modified to cover such

cases, yielding transversality conditions in terms of polar cones

rather than in terms of gradient vectors.

Although nothing has been said in this paper about sufficient

conditions, it is clear that under assumptions such as convexity, it is

possible to show that some of the necessary conditions given here are

also sufficient.

Finally, it should be pointed out that the general approach

presented in this paper, is the result of hindsight, an irritation with
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fragmentation, and the authors' conviction that in terms of problem

solving, the geometric approach taken has great conceptual and intuitive

advantages.
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APPENDIX I. THE BROUWER FIXED POINT THEOREM

In proving Theorem 1, the authors have used a modified version

of the Brouwer Fixed Point Theorem. The conventional form of the

theorem, which is stated and proved in reference [14], is worded as

follows.

Brouwer Fixed Point Theorem. If f(») is a continuous map from the

unit sphere in E into the unit sphere in E , then f(») has a fixed

point.

The version used in this paper is stated without proof by

Dieudonne [15]. Since the proof is very short, it is included here.

Theorem. If f(» ) is a continuous map from the unit sphere in E into

En with f(x) = x + g(x), where ||g(x)|| < 1 for all x with ||x|| = 1, then

the origin is contained in the range of f(*)*

Proof. To say that the origin is contained in the range of f(-) is equi

valent to saying that the function h(x) = -g(x) has a fixed point. Let

us define the function h,(») by

\M =
-g(x) if ||g(x)|| * 1

-g(x)/||g(x)|| if ||g(x)|| > 1
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Clearly, h,(») is a continuous function from the unit sphere in En into

the unit sphere in E . Therefore, by the Brouwer Fixed Point Theorem,

h^- ) has a fixed point, say Xy If ||x1|| = 1, then ||g(x,) || < 1, by

hypothesis, and hence HtUx.) || < 1, a contradiction. Thus

llxlll = llhi(xx) II < *> which implies that h^x^ = -g(x,) and hence x,
is a fixed point of -g(-).

APPENDIX II. FARKAS' LEMMA

Farkas' Lemma [16] is a frequently quoted result in mathemat

ical programming, which is also well known in other fields. However,

the authors are not aware of a readily accessible, simple proof for this

lemma and, consequently, include one here.

Farkas Lemma. Given a set of vectors a,, a?, . . ., a belonging to

E , a vector b in E satisfies

<C b, x^> ^ 0 for all x e {x : <^ a., x^> < 0, i =1, 2, . . . , m}

if and only if there exist scalars X.. £ 0, i = 1, 2, . . ., m, such that

m

b

i=l

m
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Proof. <^= Obvious.

m

=P- Let C = {x : x = ) X.. a., \. t 0 for i = 1, 2, . . ., m} , and
i=i

let PC = {x:<^ x, x^>< 0 for all x e C} . The set PC is called the

polar to the cone C. Clearly, both C and PC are closed convex cones.

At this point we digress to prove a proposition.

Proposition. If C is a closed convex cone in E , then P(PC) = C.

Proof. Clearly, P(PC) D C. Suppose y c P(PC), but y 4 C. Since

C is a closed convex cone, there exists a vector z € E such that

<\ z, y^> > 0. Clearly, z e PC. But then y k P(PC), which is a con

tradiction. Thus, P(PC) = C.

m

In our case, PC ={x :<^x, / ^a^ < 0, ^ ^ 0} , i.e.,
i=l

m

PC = {x:/ |J..<^X» a-^> - ° for a11 M-i - 0} , and hence
i=l

PC = {x:<x, a.^> ^ 0 for i =1, 2, . . ., m} . Then b e P(PC) since

<C^b, x j> ^ 0 for all x € PC by hypothesis. By the proposition we just

proved, b e C. Q. E.D.
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