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ABSTRACT

A system transformation which can be used to extend Popov's

criterion to sectors with non-zero lower bounds is discussed. Two

tests are developed which are applied to the frequency response of

the original system and establish sectors of stability without requir

ing that the transformations be actually carried out. A theorem is

proved concerning the limitations of the transformation discussed.
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INTRODUCTION

Consider the system 2 of Fig. 1, where G is a linear block

with transfer function G(s), * and N is a time-invariant, memoryless,

piecewise-continuous, nonlinearity such that §[0) = 0. Using the ter

minology introduced by Aizerman and Gantmacher [1] , we further des

cribe the system as follows. If a <-2i£i_ < h, o- t 0, a and b con

stants, then N (or <}>) is said to be in the sector [a,b] . If G(s) is

strictly stable, then 2 is called a principal case, and if G(s) is stable

but not strictly stable, then 2 is called a particular case. If 2 is a par

ticular case and there exists p>0 such that the linear system obtained by

putting <j>(cr) = k<r is strictly stable for all k€ (0, p), then 2 is said to

satisfy the condition of stability-in-the-limit. If 2 is globally stable

for all N in the sector [a,b] , then 2 is said to be absolutely stable in

the sector [a,b] .

Popov [1] shows a sufficient condition that the system 2 be ab

solutely stable in the sector [ 0, k] for the principal case and in the

sector [e,k] in the particular cases (where €>0 is arbitrarily small)

is that there exist a finite, real number q such that

1;}>0Re i (l+jwq)G(jco) + =^\ > 0 for all go > 0, (1)

§For simplicity, assume G(s) is rational in s. The infinite dimensional
cajse may be treated with additional assumptions as shown by Desoer [ 2] .
L input sources may also be treated in the usual way.



-a

Fig. 1. The system 2 .
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and, additionally, that stability-in-the-limit be satisfied for the par

ticular cases.

This inequality condition has a simple graphical interpretation.
*),
***

If G (jco) is defined by

G*(jco) = X(jco) + jcoY(jco) = X*(jo>) + jY*(jco), (2)

where X*(jco) = X(jco) = Re G(jw), Y(jco) = Im G(jco), and Y"(jco) = coY(jco),

then (1) becomes

X*(jco) - qY*(jco) +^ > 0. (3)

Thus, if G (jco) is plotted in the (X , Y ) plane with u>0 as a

parameter, the inequality (1) is satisfied everywhere to the right of

the line X'̂ - qY + =- = 0 which has slope —and intersects the X

axis at the point -£-. Therefore,Popov's condition is satisfied if and
* * 1 .

only if there exists a line in the (X , Y ) plane with slope — t 0 and

X"*-intercept -*- which lies always to the left of the G (jco) plot. Such

a line is called a Popov line.

& l

It is clear that if G (jco) is such that the point (-p 0) on the
*

Popov line can be made arbitrarily close to the G (jw) plot, then the

Popov condition is both necessary and sufficient for the absolute sta

bility of 2 in the sector [0,k] ([e,k] in the particular cases). On

the other hand, if the point (-p 0) on the Popov line cannot be made

arbitrarily close to the G (jw) plot, then Popov's condition may not be

a necessary condition for the absolute stability of 2 in the sector

[0,k], <[cfk] ).

-3-



Other cases may arise where it is desirable to find a sector of

absolute stability with a negative lower bound and still others where the

system 2 is stable for linear gains in the sector (a,b), a>0, (i.e., a

conditionally stable system) and a sector of absolute stability is desired

within (a,b). There is, however, no way of dealing with these questions

by applying Popov's condition to G(jco) directly.

THE ROLE OF TRANSFORMATIONS

Popov's condition may be applied to these problems, however,

after a suitable transformation. Consider the system T, (2) of Fig. 2,

where h is any linear gain such that G' is stable. It is clear from

Fig. 2 that the response of 2 and of T, (2) is completely determined

by the initial conditions on G, and the response of the two systems is

identical for identical initial condition on G. In particular, T, (2) is

globally stable if and only if 2 is globally stable. Thus, it is clear

that T, (2) is absolutely stable in the sector [a,b] if and only if 2 is

absolutely stable in the sector [a+h,b+h] (since N = N'+h). In par

ticular, if Popov's condition proves that T, (2) is absolutely stable in

the sector [ 0,k] (or [e,k] ) it follows that 2 is absolutely stable in

the sector [h,k+h] , (or [h+e,k+h] ).

It is now clear how this transformation would be applied in the

case of a sector with negative lower bound or a conditionally stable

sector. It might be desired, however, to find a-number of such sectors

for a single system. This would require a number of transformations

all with different values of h and each calling for a new frequency

response to be calculated and a new plot to be made. It would be
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Fig. 2. The system Th(2)
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helpful to have a method of examining the stability of T, (2) for arbi

trary h with only a single plot. Such a method is given by Theorem 1.

Theorem 1; Popov's condition applied to the system T, (2) will prove

the absolute stability of the system 2 in the sector [h, k+h] if and

only if:

(1) The linear part of T, (2) is strictly stable,

(2) There exists a finite, real number q such that for each

co>0 the circle

/V + k+2h >2 + /V koq ^ - k2(H*>V) (4)<A + 2h(k+h) ' + (Y " 2h(k+h)' 4h2(k+h)2

in the Nyquist (i.e., the (X, Y) plane) encloses both the point

G(jco) and the origin or neither point. In the case h=0 or h=-k,

the circle degenerates to the line X - qcoY + *- = 0 or

X + qwY - -. = 0, respectively.

The theorem is proved in the appendix.

At this point it should be emphasized that;

(1) The theorem defines a family of circles with w as a para

meter,

(2) The family of circles lies in the Nyquist plane for the

original system 2,

(3) The "if and only if" of the theorem refers only to the

satisfaction of Popov's condition and in no way implies a

necessary and sufficient condition for the absolute stability of 2.
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(4) In the case of q=0, the family degenerates to a single circle

giving an extremely simple test [ 3] , [4] .

In order to apply the test of Theorem 1 it is helpful to specify

the circles in more detail. It is easily checked that each circle inter

sects the X-axis at the two points (-7-, 0) and (-i-tv-, 0) and that the

slope of the tangents at these points is -^— and—, respectively. A few
coq coq ^ J

typical circles are shown in Fig. 3 for the case h>0, q>0. Notice that

for a fixed q the Y component of the center of the circle is proportional

to o> while the X component remains fixed; the circles therefore move

up (or dowji) and get bigger as w is increased while always intersecting

the X-axis at the same two points.

The simplest application of the circle test (in the case q^O) is

illustrated in Fig. 4. The system is conditionally stable with 3 poles

and 2 zero's; co is the frequency of the first crossing of the negative

X-axis by the Nyquist plot and co is the frequency of the second

crossing. G(jco ) = -a. The largest possible circle which intersects

the negative X-axis in the interval (-a, 0) and does not intersect the

Nyquist plot is drawn. This is defined as the co_ circle. Drawing this

circle and assigning it parameter to_ determines h, k, and q. It is

clear from Fig. 4 that all the circles for ooXo- satisfy the condition of

Theorem 1 and it is extremely unlikely that any difficulty will be encoun

tered for (Ai«o1 since the lowest circle (for u>=0) extends below the X-axis

less than y.

In some of the following development it is more convenient to

work in the (X , Y ) plane. Therefore, the following corrolary is
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Fig. 3. A few typical circles in the case h > 0, q > 0.
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Fig. 4. Illustration of the circle test.
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presented. The proof is immediate by mapping the (X, Y) plane onto the

(X , Y ) plane for each co>0.

Corollary 1: Popov's condition applied to the system T. (2) will prove

the absolute stability of the system 2 in the sector [h, k+h] if and

only if:

(1) The linear part of the system T, (2) is strictly stable,

(2) There exists a finite, real number q such that for each

co>0 the ellipse

/Y* , k+2h ,2 , ,Y* kcoq x2 _k2(l+co2q2) (5)
(X +2h(k+h)' + (TT " 2hWhf ~4h2(k+h)2

in the (X , Y ) plane encloses both the point G (jco) and the

origin or neither point. In the case of h=0 or h=k the ellipse

degenerates to the line X - qY"* + ^ = 0 or X +qY ~k=0,

respectively.

Note that in the (X , Y ) plane the degenerate cases yield a single line

but the case q*0 yields a family of ellipses.

A second corrolary gives rise to a simple test which is useful

for finding sectors of absolute stability which do not include the charac

ter <j>(<r) = °«

Corollary 2: If(E I, we (0, oo) is a family of ellipses as defined in

Corollary 1 then:
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(1) <*> >co =£E, lies inside E .2 1 cox co2

(2) lim E exists and is the parabola defined by
co-joo CO

v* , k+2h v* kq ,,# 1
X +h?k+h)X " A Y +E53ET= ° (6)

Proof: Expanding the defining equation for E yields

Y*2 , k+2h v* , Y* kq * ^ 1
X + hlk+hj X +T- " hlkW Y + h7k+hT = ° «*>

1* f.

let co?>co1 and assume (X , Y ) is a point on E , i. e. ,

*2
2 Y

* k+2h * o kq * 1
Xo + h(k+h) Xo + ~2" ' h(k+h) Yo + h(k+h) = °*

Wl

But, clearly,

^2

v *2 + k+2h v * . Y° >q Y* + } < 0Xo + h(k+h) Xo + —2 h(k+h) Yo + h(k+h) 1 U
W2

i. e. , (X , Y ) lies inside E

Thus, (1) is proved and (2) is immediately evident from (*).

By applying Corollary 2 to the ellipses of Corollary 1, the following test

is obtained.

-11-



Parabola Test: If:

(1) The linear part of the system T,(2) is strictly stable, 8 and

(2) There exist k>0, q, h, such that the parabola

* k+2h * kq * 1
X + h(k+h) X ' h(k+h) Y + h(k+h) = °

does not contain either the origin or any part of the G (jco) plot,-

then the system 2 is absolutely stable in the sector [h, k+h] .

It is immediate that the parabola passes through the two points

(-—, 0) and (-ttziT* °) and that the sl<>Pe of the tangents at these points is

~- and —. respectively. It is easily checked that if a perpendicular

q q *
is constructed from the intersection of these two tangents to the X -axis,

the parabola intersects this perpendicular at its mid-point and has slope

zero at this point. "While the parabola test is very simple to apply, it

should be noted that it imposes somewhat stricter conditions than re

quired by the Popov test. See Fig. 5 for an example.

Consider next the case mentioned previously where the X - inter-

cept of the Popov line cannot be made arbitrarily close to the G (jco)

plot. It might be conjectured in this case that there may exist a trans

formation of the form Th(2) which, when tested with Popov's condition,
would yield a sector of absolute stability for 2 of the form [h,k+h]

with h<0 and k.<k+h<k , where 1^ is the upper bound of the Popov sector for
2; and k- is the upper bound of the corresponding Hurwitz sector.

§§In the case where G(s) instable, the stability of the Jinear part of
T (2) may be insured if G (jco) does not enclose the -^ point; this in
turn is guaranteed by the satisfaction of the second condition.

-12-



parabola y»2" k+£h_Y* ka v». I
A h(h+k)A ' h(h+k)Y h(h+k) = 0

4, G«

System 2 absolutely
stable for <f)(<r) in the
sector [h,k+h]

Fig. 5. Application of the parabola test.
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Stated differently it might be hoped that the transformation T,(2) with

h<0 might tend to "straighten out" the Popov locus so that the Popov

line could be drawn " closer" to the locus and result in an improved upper

bound. The following theorem shows that this is not possible.

Theorem 2: If the point (-=-, 0) on the Popov line for the system 2 can-

not be made arbitrarily close to the G (jco) plot, if the upper bound of

the Popov sector for 2 is k., and if Popov's condition applied to T, (2)

with h<0 proves the absolute stability of 2 in the sector [h, k+h] , then

k+h is strictly less than k.. Stated another way, if in the case under

consideration the lower bound of the Popov sector is lowered by means

of a transformation T, (2), then the upper bound is also lowered.

Proof:. Assume that there exists a system 2 for which the theorem is

false. It is immediate that 2 is the principal case since a particular

case can never be absolutely stable in a sector [a,b] with a<0<b.

Therefore, the G (jco) plot for 2 lies entirely in the finite plane [1] .

Hence, it is clear that the Popov line passing through the point (-£, 0)

approaches arbitrarily close to the G (jco) plot at two points, one above

and one below the X^-axis, since if this were not the case the upper

bound of the Popov sector could be increased by rotating or translating

the Popov line. Let these two points be G^(jco ) and G (j<*>2). Now by

the assumptions of the theorem and by Corollary 1 of Theorem 1 there

exists a family of ellipses defined by (5) with h<0 and k+h>k1>0 such

that each member of the family contains the corresponding point G (jco)

(since each ellipse obviously contains the origin). Hence, by Corollary

2 the parabola defined by (6) contains every ellipse of the family and,

-14-



(fa

x. Popov line

(Only the salient features
of the Popov locus are
shown.)

Fig. 6. Pertaining to proof of Theorem 2.
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therefore, contains the entire G (jco) plot. This parabola passes through

the two points (-p 0) and (-irnri °)» Bu* 'lt is clear (from Fig. 6) that

if -t->0 and Trrr>Tr-t then the parabola cannot contain both points

G (jco ) and G (jw2)« This is a contradiction; therefore, the theorem is

proved.

Of course, (in cases where the upper bound of the Hurwitz sector

is not attained) the upper bound of the Popov sector can be improved by

a transformation T, (2) with h>0, but this results in a sector of absolute

stability with a positive lower bound and hence is of limited practical

importance.

CONCLUSIONS

Two new stability tests of practical significance have been pre

sented. The parabola test is very simple to apply and the circle test

can save a significant amount of labor, especially where the frequency

response of the linear part of the original system must be physically

measured.

It has been conjectured that a transformation of the type dis

cussed might increase the upper bound of the Popov sector without

increasing the lower bound. Theorem 2 proves that this conjecture is

false.

-16-



REFERENCES

1. M. A. Aizerman and F. R. Gantmacher, Absolute Stability of

Regulator Systems, Holden Day, San Francisco, Calif., (1964).

2. C. A. Desoer, "A Generalization of the Popov Criterion, " IEEE

Trans, on Automatic Control, vol. AC-10, pp. 182-185, April 1965.

3. M. E. Labarrere, "Extensions on Popov's Criterion by Means of

Transformations," Plan II M. S. Thesis, University of California,

Berkeley, Calif. , (1964).

4. A. M. Hopkin, Unpublished class notes, University of California,

Berkeley, California.

-17-



APPENDIX

Proof of Theorem 1:

For the particular cases, the Popov theorem can be proved by

transforming the particular cases into the principal case by a trans

formation of the form T (2) [4] . Therefore, it is clear that it is

sufficient to prove Theorem 1 for the case where T, (2) is the principal

case which requires the linear part of T, (2) to be strictly stable.

Hence, condition (1) of the theorem.

Now let X(jco) = Re G(jco) and Y(jco) = Im G(jco) as before and

let U(jco) = Re G'(jco) and V(jco) = Im G'(jco), where G'(jco) =

Then

G(jco)
l+hG(jco)'

U+ -v = X+jT, __ = (X+jY)(l+hX-jhY) =X(l+hX) +hY* +jY (?)
J 1+hX+jhY (1+hX)2 + (hY)2 (1+hX)2 + (hY)2

hence

X(l+hX) + hY*

(1+hX)2 + (hY)2
V =

(1+hX)2 + (hY)2
(8)

This defines a bijective, conformal map T,:(X, Y) —»(U, V). Note that

Th(0,0) = (0,0).

Assume Popov's condition applied to T. (2) proves the absolute

stability of 2 in the sector [h,k+h] . (i.e., proves the absolute sta

bility of Th(2) in the sector [ 0, k] . Then by (3),
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U(jco) - qcoV(jco) +^ > 0 for all co > 0.

i.e., for each co > 0 the point (U(jco), V(jco)) lies to the right of the line

U - qcoV + •*- = 0 as does the origin of the (U, V) plane.

Now map the (U, V) plane onto the (X, Y) plane by (T, )" .

Clearly T^O, 0) = (0,0) and T^flKju), V(j")) = (X(jco), Y(jco)).
Substituting (8) in the equation for the line gives

X(l+hX) +hY2 - qcoY +1 = 0
(1+hX)2 + (hY)2

which is equivalent to (4). That is, the lines U-qcoV + t- = 0 map onto

the circles defined by(4). Therefore, condition (2) of the theorem is

satisfied.

Conversely, suppose that condition (2) is satisfied. Map the

(X, Y) plane onto the (U, V) plane by T, and, since the circles defined

by (4) map onto the lines U - qcoV + r- = 0, it is clear that the points

(U(jco), V(jco)) lie to the right (the origin side) of the lines

U - qcoV + r- = 0. Thus, T, (2) is absolutely stable in the sector

[h, k+h] . This concludes the proof of Theorem 1.
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