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Matrix Differential Equations and Irreducible

Realizations of Transfer Function Matrices

D. M. Layton

ABSTRACT

In this report we consider the problem of the determination of

the degree of a given transfer function matrix, and the association of

a minimal set of state equations (an "irreducible realization") . In

Part I a matrix is exhibited whose rank is equal to the Mac Millan

degree of the transfer function matrix; this matrix is obtainable by

inspection from the transfer function matrix. In Part II a matrix

differential equation is obtained which facilitates the association of a

set of state equations of minimal dimension with the transfer function

matrix. This association does not require explicit knowledge of the

poles of the system under consideration.
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INTRODUCTION

One of the central problems of linear, time-invariant systems

is the relationship between the state variable and transfer function

matrix characterizations. In this report, the properties of this

relationship are studied by introducing a matrix differential equation

as a characterization which is "intermediate" between the itate

equations and the transfer function matrix. It will be evident that

this approach affords considerable advantages in determining the

degree of the transfer function matrix, and the association of an

irreducible set of state equations.



I : Determination of the Mac Millan Degree of a Transfer

Function Matrix

The problem of associating a set of equations of the form;

x(t) = Fx(t) + Gu(t)
(*)

y(t) = Hx(t)

with a linear, time-invariant system described by the transfer function

matrix :

Y(s) = ZfsJUts)1 ... (**)

has received considerable attention [1] - [3]. A subsidiary problem is

the determination of the minimal dimension of the vector x for which

the system (*) has the same zero-state behavior as the system des

cribed by (**). This minimal dimension is commonly called the Mac Millan

degree of the matrix Z(s) . Of course, the degree is determinable by

reducing Z(s) to its Smith-Mac Millan form. In the following we des

cribe a method for finding the degree which does not require this

reduction.

+

Notation: The tilde denotes a vector; x, u, and y are, respectively,

n, m, and r vectors; F, G, and H are, respectively, nXn, nXm, and

rX n matrices with real elements. Z(s) is a r X m matrix of ratios of

polynomials in the complex variable s. Throughout, it is assumed

that lim Z(s) = 0.
s-^oo
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We first focus our attention on the system (*). It is well-known

[4-Chapt. ll] that for a system described by (*), number of control

lable state variables = rank G, FG, ... F " Gj; number of observable

state variables = rank [h , F H , ... Fn H J. Consequently, if (*)

is an irreducible realization of Z(s) (and thus both completely control

lable and, completely observable), then

rank [g, FG, ... Fn_1G] =rank [h\ f¥, ..., Fn 'hi1]
= n

Since each matrix has n rows, we conclude that for each the rows are

linearly independent. Furthermore, if q(< n) is the degree of the

minimal polynomial of F, then for any p > q - 1 there exist numbers

\1 j
a., i= 0, . . . q -1, such that F™ = ) a. F (Cayley Hamilton theorem) ,

i=0

t t
which means that the columns of FPG or Fp H for p > q - 1 are each

linear combinations of some of the columns of I G, FG, . . . Fq GJ or
P t n
[H , F H , . .. , Fq H I, respectively. Hence we need only consider

powers of F up to and including q - 1.

Consider now the matrix product :

H

HF

q-1
HF

[G FG... Fq_1c] HG HFG

HFG

,q-L
HF^ XG

3-

... HFq'1G

HF^^G



which we write for convenience as :

H'G« = M'

It is easy to show that the linear independence of the columns of H'

and rows of G' and the fact that H' and G' have common dimension

n imply that the rank of M' is n. Consequently, if we can determine

the matrices HFPG, p = 0, ... 2(q-l) from Z(s), then the matrix M'

above, and hence the degree Z(s) may be determined. However, as

will be seen by the following argument, these matrices may be found

by inspection of the transfer function matrix.

Initially, consider the following method for determining the

matrix Z(s) from the state equations (*) : denote the minimal poly

nomial of F, i|j(p), by : i|j(p) = pq + a,pq" + .. . + a (q < n) .

Form:

y = Hx = HFx + HGu ... (1)

y = HFx + HGu

= HF2x +HFGu + HGu ... (2)

W = HFqx + HF^Gu + HFq"2Gu + .. . + HGu(q_1) . . . (q)

Multiply (1) by a ,, (2) by a 7, etc., and add these together: To

this add a y = a Hx. This gives:
q£ q ^
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v(q) +Xa.jta-11 =H^Fq +^ a^"1 >. x
i=l I i=l

+[HFq_1G +aiHFq"2G +.. . +a ^HG j u

+[HFq"2G +aiHFq"3G +... +a ^HG Ju+

(q-D+ HGu
fsJ

The coefficient of x in the above is identically zero by the Cayley-

Hamilton theorem. Thus, the transfer function matrix is found

directly by Laplace transforming each side of the equation, and

dividing by the minimal polynomial of F. However, we are primarily

interested in the matrix differential equation exactly as written above.

For convenience, rewrite it as :

i|i(p) • y = N(p) • u

ip(p) is again the minimal polynomial of F, and N(p) is the matrix

polynomial in p represented by the right-hand side of the above

equation.

We now make the following observation: write the transfer

function matrix Z(s) as :

z(s) =5^ • z.(.).

where h(s) is the least common denominator of the elements of Z(s),

and Z'(s) is a matrix polynomial in s . Then h(s) is the minimal
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polynomial of an irreducible realization of Z(s), and the coefficients

of the powers of s in Z' are equal to the respective coefficients of

the powers of p in the matrix N(p) defined previously. That this is

true is seen as follows :

From (.*) ,. Z(s), = H[sI-F]_1G,

adjornt[sI-F] F'(s)
then., [sI-F] = = .

det[sI-F] iJj(s)

( adjoint[s I - F] is the transposed cofactor matrix of [sI^F].) F'(s)

and y\t(s) are formed by cancelling all factors common to det[sl -F]

and the elements of the adjoint matrix of [si -F] .

Then the polynomial i|j is the minimal polynomial of F[4 -p. 594]

Furthermore, if we make the assumption that (*) is an irreducible

HF'(s)Grealization of Z(s), then forming ', \ will not introduce any

further cancellations between factors of ty(s) and those of the elements

of HF'G, since any such cancelling factors would represent modes

which are either uncontrollable or unobservable. Thus, the least

common denominator of the elements of Z(s) is the minimal polynomial

of the F matrix of an irreducible realization, and the equality of the

coefficients of powers of p in N(p) and Z'(p) follows directly.

The result of this observation is that we can determine by

inspection of the least common denominator ^(s) and the matrix Z'(s)

the coefficients a. of the minimal polynomial, and the matrices

n 1

HG, HFG, . .. HFq G. Knowing these and using the Cayley-Har

theorem, we can find HF^G, . . . , HF *q so that all the element
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of the matrix M1 will be known.

To recapitulate briefly then, given a matrix Z(s), a procedure

for finding its degree is as follows:

(a) Ensure that the numerator and denominator polynomials of all

elements of Z(s) are relatively prime. (Euclid's algorithm may

be employed for this task, and no roots need be determined.)

(b) Find the least common denominator of all elements, and form the

matrix differential equation:

i|i(p) • y = N(P) ' u •

(c) From the coefficients of the matrix differential equation (and use

of the Cayley-Hamilton theorem), construct the matrix M'.

(d) Degree of Z(s) = rank M1 .

This result was obtained previously by a different approach [5]

Example

Consider the following transfer function matrix [3]

Z(8) =
1

S+1

"4

5

l"

5.

, 1
*7

_2

21

3(s+1)"3 6.

3 2
s + 3s + 3s + 1

7-

4s2+ 8s +ll 7s2+ 14s +28

5s2+ 10s +7 5s2 +10s+ll



We see that a, = 3, a2 = 3, a~ = 1, HG = 4 7

5 5

From the remaining matrix coefficients we obtain

HFG = - 4 7

5 5

HF2G 11 28

. 7 11

And the Cayley-Hamilton theorem gives

HFJG = - 25 70

11 23

; HF^G = 46 133

17 41

Thus, M' =

4 7 -4 -7 11 28

5 5-5-5 7 11

-4 -7 11 28 -25 -70

-5 -5 7 11 -11 -23

11 28 -25 -70 46 133

7 11 -11 -23 17 41

M' is triangularized to:

1 1 -1 7/5 -1 11/5

0 1 0 9/5 -1 32/5

0 0 1 -2 3 -6

0 0 0 -4 0 -12

0 0 0 0 0 0

0 0 0 0 0 0

So that Rank M1 = degree Z(s) = 4.
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Remark

Making use of the results presented above, we can approximate

from the transfer-function matrix to any desired degree of accuracy

the impulse response matrix W(t - t), without having to find the poles

of the elements of Z(s) .

Letting t - t = £, we observe that

W(g) = H • exp(Fg) . G,

Expand exp(Fg) as:

exp(F g) =I+F£+(F2^ +

Powers of F greater than or equal to q may be expressed as

linear combinations of the first q -1 powers of F, so the series may

be written:

exp(F£) =or0(g) • I+^(g)F +... +arq_1(|)Fq"1

q-i

Then, W(£) = S a^jHF^, where the <*.(£) and the HFXG are known.
i=6

Of course, the determination of &.(£>) will in general be a very

laborious process. This approach would be particularly useful if the

response to some input were desired only over a relatively short time

interval.
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II: A Minimal Realization Procedure

In the literature, most of the methods for determining minimal

realizations [1] - [3] of transfer function matrices require that the

poles of all the elements of the matrix be known explicitly. In this

section, a method for obtaining a minimal realization is described

which requires nothing more complicated than elementary row and

column operations on polynomial matrices; in particular, the poles

need not be explicitly determined. We first associate with the transfer

function matrix an equivalent matrix differential equation (different

from that obtained in the previous section), and from this obtain the

state equations. Since the introduction of the matrix differential

equation obviates the finding of the poles of the transfer function

matrix, this additional step more than justifies itself.

We first put the matrix Z(s) in its Smith-MacMillan form. As

before, we write

z<s> =W) • z'<s>

1

^(s)
M(s)r'(s)N(s) ,

where M, T', and N are polynomial matrices, M and N have con

stant, nonzero determinants, and T* has the form:
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r'(s) =

Y^s) 0

0

vR(s)

0 r X m ,

where R is equal to the rank of Z'(s), and the y. are polynomials with

leading coefficient unity, called the invariant polynomials of Z'(s).

i i

Also, degree y. > degree y. ,, i= 2, . . . , R.

Divide each element of T1 by i\>[s) to give:

Z(s) = M(s)

Y^ 0

0

V*R

(Factors common to the y. and y\i are cancelled.)

Write this as

Z(s) = M(s) • *_1(s) • T(s) • N(s), where

ft

«(s) = * R

rXr

-11-
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r(s) =

or, Z(s) = [^(sJM'̂ s)]"1

^R

r(s)N(s).

-L

0 rXm

Since detM = const., ^(s)M~ (s) is a matrix polynomial in s. There

fore, a matrix differential equation which describes a system (zero-

state) equivalent to that described by Z(s) is given by:

^(p)M_1(p) • y = T(p) • N(p) • u . . . (*) .

We observe that no extraneous state variables have been introduced in

the process of associating the matrix differential equation, for: the

number of arbitrary initial conditions

= degree {det^(p) • M" (p)} ,

= degree {det\&(p)},

R

= \ degree {^(p)}>
i=l

= MacMillan degree of Z(s),

= dimension of an irreducible realization of Z(s).

Also, the matrix differential equation has been obtained using only

elementary row and column operations on polynomial matrices.
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We now proceed to associate a minimal set of state equations

+
with the matrix differential equation. For simplicity, let

A(p) = ^(p) • M (p), B(p) = T(p) • N(p). We first triangularize

the matrix A(p) using elementary row operations; i. e. , find a

unimodular matrix H(p) such that A'(p) = H(p)A(p) has the form:

A'(p) =

au(p)

0

0

a22(P}

Write B'(p) = H(p)B(p) as:

bu(p)

B»(p) =

brl(p)

alr(p)

a (p)

blm<P)

... b (p)

The triangularization may always be performed so that

degree b,.(p) < degree b, , (p), j = 1, . . . , k -1, k = 1, . .. , r,

This algorithm is due to Prof. E. Polak, Dept. of Electrical

Engineering, Univ. of California, Berkeley.
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Let y = column (y, . . . y ), u = column (u, ..., u ). Then
X. wl Jx ^ x 1 m'

the bottom row of the matrix equation may be written:

m

a (p)y« = / b (p)u> whererr\r-//r j^ ry*' y

k , k -1 k
r r 1 r r r rarr(p) = p + arr p + . . . + arr , and

n k -1 . k -2 k -1
b .(p) = b°.p rr + b1.? rr + ... + b rr .rj^' rj * rj * rj

(k.. is the degree of the j ith element of A'(p) ). The degree of the

polynomials b .(p) are strictly less than the degree of a (p) because

of our assumption that Z(s) has a zero at infinity.

We associate state variables as:

1 } r

m

x2 = x1 +arrx1 - 2,brjuj'

m

x3 =x2 +arrXl - 2brjUj'

k -1 ™ k -2
, rr \ , rr

x, = x, , + a x, - ) b . u.
krr krr_1 rr • l ^ rj J
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and

S k -i
rr , \ , rr

x, =-a x, + ) b . u..k rr 1 /, rj j
rr j=l

Consider now the (r - l)th row of the matrix equation. This has the

form:

m

ar-l r-l<P> yr-l +ar-l r'?1 Yr =^Vlj^V
j=l

We first express the polynomial a , (p)y as a linear combination

of the x. (i = l, . . . , k ), the u. (i = l, . . . , m), and derivatives of the
i* rr' i*

u. up to order less than degree {a , -i(p)}. (Again it may be shown

that our assumption that Z(s) has a zero as s -*• oo makes this always

possible.) State variables are then associated with a , i(p)y i in

exactly the same manner as above; i. e. , let x, ,, = y
+1 'r-1

rr

,1
xk +2 " xk +1 ar-l r-lXk +1

rr rr rr . ,

m

> b , .u. .

(The coefficients of the u. are primed here because they will include

terms introduced when a , (p) y is expressed in terms of the first

k state variables, the u., and derivatives of the u.)
rr j y
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r-1 r-1

*k +k . . = "ar-l r-1 *k +1
rr r-1 r-1 rr

k
rr m k -1

+ > or. x. + ) b , . u..

k
rr

V r r-1The term > ft. x. represents the coupling between the
/ j J J

j=l

x. (i = k +1, . ♦., k + k , ,) and the x. (i = 1, ... , k ).
r rr rr r-1 r-r r rr'

i

We proceed up the rows of the matrix A (p) in this fashion,

associating new state variables with the diagonal elements. Clearly,

the total number of state variables = degree {det A (p)} = MacMillan

degree of Z. Hence, this realization is minimal.

The matrices F, G, and H have the form shown on the

following page.
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H

G =

rl

1

>rl

k -1
rr

>rl

6(Z)
11

0

rm

1

rm

k -1
rr

>
rm

/6(Z)
lm

(6(Z) = MacMillan degree of Z)

0 0 0

1 0

0 0 ... 0

1 0

Since the motivation for obtaining a minimal representation is

frequently to effect an analog simulation, it would be useful to indicate

how such a simulation could be constructed. The situation for two inputs

and two outputs is shown in Fig. 1; the generalization is obvious.

The procedure will be clarified by considering the following

example, which was also treated in Part I.
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Figure 1.
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Obtain an irreducible realization for:

4s2 + 8s +11 7s2 +14s + 28
Z<s> = "I—"I

s + 3s + 3s + 1 5s2 +10s + 7 5s2 +10s +11

without explicit knowledge of the poles.

The Smith-Macmillan form for Z(s) is:

4s + 8s + 11

Z(s) =

-(5s + 10s + 7)

60"
77

75

27.

2
s + 3s + 3s + 1

s + 2s + 5

s+1

1 ^(5s2 +10s +32

0

It is evident that degree Z(s) = 3 + 1 = 4 . The equivalent

minimal matrix differential equation is thus:

p3 +3p2 +3p +1 0

p + 1

0 p + 2p + 5

5/27 - 4/27

^ (5p2 +lOp +2) - 1 (4p2 +8p +11)

1 i (5p2 +lOp +32)
• u

p* + 2p + 5

-20-
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-27/2 -21/2

Operating on the equation with

5p2 +lOp +7 5p2 +lOp +11

puts it in the triangular form

- £<P +D 27/2 - 21/2p+1

0 p3+ 3p2 + 3p +1
y =

5p2+ lOp +7 5p2 +lOp +11

Let y = column (y^y?)* u = column (u,,^). The state variables

are selected as:

x, =1 = *2

x2 = xl+ 3xl " ^Ul " ^U2'

x3 = x2 + 3xl " 10ul " 10u2 '

and, xA = y
1*

The irreducible state equations are then:

x.

3 1 0 0

3 0 1 0

1 0 0 0

7 7/2 0 -1

5 5

10 10

7 11

4 7

An analog simulation is shown in Fig. 2,
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Figure 2.
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CONCLUSION

An attempt has been made to illustrate the efficacy of matrix

differential equations in problems associated with the determination

of minimal realizations of transfer function matrices. More speci

fically, a procedure has been given which enables the straightforward

determination of the degree of a given rational matrix. As mentioned

before, this result was obtained previously [5]; it seems, however,

that the use of the matrix differential equation is a more natural and

straightforward approach. Also, an algorithm has been presented

which enables the determination of an irreducible realization for a

given rational matrix without the necessity of determining the poles

of its elements. The computations required are quite straightforward

and appear to be particularly adaptable to digital computer programming,
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