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ABSTRACT

This paper presents an algorithm for obtaining a state

representation for linear, time-invariant, multiple-

input, multiple-output, differential systems, of the

form L(p)y = M(p)u.

INTRODUCTION

The problem of finding a state-space representation for a differ

ential system has received wide attention. Thus, algorithms for obtain

ing a state-space representation for single input, single output systems

can be found in numerous textbooks, such as those by Zadeh and Desoer,

2 3
Laning and Battin, and Athans and Falb. There are also a few algo

rithms available for linear RLC networks, such as those given by

4 5
Bryant and Kuh and Rohrer, which can be considered to be particular

forms of multiple-input, multiple-output differential systems. However,

there does not seem to be a specific algorithm described in the literature
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which shows how to obtain a state space representation for a general,

multiple input, multiple output system. In this paper we propose to

help bridge this gap with an algorithm for reducing differential systems

to a minimal state representation.

This algorithm can also be used in a two-stage procedure to obtain

state representations for systems described by transfer functions with

the first stage computing an associated differential system of minimal

degree.

STATEMENT OF THE PROBLEM

1 2
Consider the differential system S with input u(t) = (u (t),u (t)...

t T 12 n T
...u (t)) and output y(t) = (y (t),y (t),...,y (t)) , described by the

system of differential equations

S:L(p)y(t) = M(p)u(t), (1)

where L(p) is a n X. n matrix, M(p) is a nXr matrix, whose respec

tive elements i..(p), m..(p) are finite polynomials in p = d/dt, the

differentiation operator. It is assumed that the transfer function matrix

W(s) = L" (s)M(s) exists and that its elements w..(s) are polynomial
•J

ratios with the degree of the denominator not smaller than the degree of

the numerator.

It is proposed to construct from S a system S, with input

u(t) =(uVhu^t),... ,ur(t))T and output y(t) =(yX(t), y2(t),... ,yn(t))T,

of the form

/v>
x(t) = Ax(t) + Bu(t)

S: , (2)
y(t) = Cx(t) + Du(t)
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12 NT
where x(t) = (x (t),x (t),...,x (t)) is a state vector, and A, B, C, and

D are constant matrices of dimension N X N, NXr, n K N, and n X r,

respectively. The dimension of the state N will be seen to be equal to

the degree of det(L(s)), and hence S will be a minimal state represen-

tation of S. The system S will have the following property. Let u(t)

be any input defined on [t0,oo) and measurable in t, and let y(t) be any

output of S satisfying the equations of S for this u(t). Then y(t) also

satisfies the equations of S for this u(t). Conversely, let y(t) be any

output of S satisfying the equations of S for this u(t), then there exists

a unique initial state x(t~) such that y(t) also satisfies the equations of

S for this u(t).

Definition

We shall say that two systems S'f S", of the form of (1) or (2),

are equivalent if and only if any output y'(t) of S1 corresponding to an

arbitrary input u(t), with t€[tn,oo), is an admissible output of S"

corresponding to the same input, and vice versa.

Thus, we propose to construct a completely observable system S

which is equivalent to S. The algorithm about to be given consists of

two parts: in the first S is reduced to a specific triangular form using

the Gauss elimination method, and in the second the state equations are

constructed. The Gauss elimination method is well described by Zadeh

and Desoer and it is given here only to make the description of the

algorithm complete.

TRIANGULARIZATION OF THE SYSTEM S

Let Z(p) be any n X n matrix whose elements are finite polynomials
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in p = d/dt. We shall say that the system S is invariant under pre-

multiplication by Z(p) if and only if the system S1 : Z(p)L(p)y(t) =

Z(p)M(p)u(t) is equivalent to S, i.e. , if and only if S and S' are

alternate mathematical descriptions for the same physical system.

To triangularize S we shall use the following three n Xn matrices

The matrix T.. [f(p)] whose principal diagonal elements are unity and

whose off diagonal elements are zero, with the exception of the ijth

which is equal to f(p), a finite polynomial in p; the matrix U.. whose

principal diagonal elements are unity, except for the ith and the j th

which are zero, and whose off diagonal elements are zero, with the

exception of the ijth and the jith which are unity; the matrix V..(c)

whose off diagonal elements are zero and whose diagonal elements are

unity except for the ith which is equal to c, a scalar. Thus,

TyWp)] =

. . f(p) . . . 1 0 0 0

0 1 0 0

0 0 . 0 0 1 0

0 0 . 0 0 0 1
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h 0 0 • • . . 0 0 0 °\
r 1 0 *

• . . 0 0 0 °\
i / ° 0 0 0 • . . 0 1 0 °\

1

1

0 0 0

0

ij
•

0
0 0 1 0 0

0
j \ ° 0 1 0 0 0 °/

\° 0 0 • • • • 0 0 1 °/\o 0 0 0 0 0 1/

V..(c) =

When L(p) is premultiplied by T..[f(p)], the jth row of L(p) is

multiplied by f(p) and added to the ith row of L(p), otherwise the

product has the same rows as L(p). The effect of premultiplication

of L(p) by U.. is to exchange the ith and jth rows, and the effect
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of premultiplication by V..(c) is to multiply the ith row by c, leaving

the rest of L(p) intact.

Theorem

The system S is invariant under premultiplication by T..[f(p)],

U..,or V..(c), with i^j any integers in {1,2,..., n}, f(p) any finite

polynomial in p, and c any finite scalar.

Proof

Since the determinants of T..ff(p)l, U.. and V..(c) are nonzero
ijL ^/J ij iv '

constants, their inverses exist and have elements which are constants

(for U.., V..(c)) or polynomials in p. It now follows trivially that the

system S is invariant under premultiplication by these matrices.

Algorithm

Perform the following operations on the matrices of the system

S.

Step 1

Find among the nonzero element in the first column of the matrix

L(p), one which is of least degree. Suppose this element is in the ith

row. Premultiply L(p) and M(p) by U... to obtain new matrices L'(p) ,

M'(p)> with the element in question in the first row and column of L'(p).

Rename the matrices L'(p) and M'(p) as L(p), M(p) .

Step 2

For i= 2, 3, ... , n, divide I ii(p) into ^ i(p) to obtain
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iil(P) = iH<P)(5il(P) + ru(P)' i=2, 3, ..., n, (4)

where chi(p) is the quotient polynomial and r.,(p) is the remainder

polynomial, with degree strictly less than the degree of in(p). Now,

multiply both sides of (1), in succession, by the matrices T.. [-q.,(p)],

where i= 2, 3, . . . , n. This results in a matrix M'(p) and in a matrix

L'(p) whose first column is

T(in, r21, r31, ... , rnl) , (5)

in terms of the quantities appearing in (4). Rename the matrices L'(p)

M'(p) as L(p) and M(p).

Step 3

If the elements i,,, i»,, ..., i , are not identically zero, repeat

Step 1 and Step 2 again and again until the remainders r.,(p), as given

by (4), are identically zero for i= 2, 3, . . . , n. Since all the polynomials

are of finite degree and since each iteration of Step 1 and 2 lowers the

degree of the element ^(p), it is clear that this is a finite procedure.

Again rename the matrices as L(p) and M(p).

Step 4

Find a nonzero element among ^22' *"\2* • • • » * ? wnic^ is °*

least degree (second column, last n -1 rows). Suppose it is in the ith

row. Premultiply both sides of (1) by U^. to bring it to the second

row and rename the matrices of the products as L(p) and M(p), res

pectively. Carry out Steps 2 and 3 with the index 2 replacing the index

1 in all operations. We now have a matrix L(p) whose elements in the
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first two columns, below the principal diagonal, are zero. Proceed in

a similar fashion to obtain a system S whose matrix L(p) has only

zero elements below the principal diagonal, i. e. ,

fcu(p) *12<P> ••••

0 i22(P) ...

o o *33(p) '3n<p>

(pVnn

'mu(p) m12(p) ... mlr(p)

^mnl(p) mnr^pV XU

n;

u

(6)

Step 5

Now force, in each column, the off diagonal elements of the

matrix L(p) to be lower degree polynomials than the diagonal element.

To achieve this, divide ^22^ into ^12^' to obtain

i12(p) = i22(p)q12(p) + r12(p)'

where q12(p) is t*ie quotient polynomial and r^P) is tne remainder

-8-
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polynomial, with degree strictly less than the degree of i^pCp)* Now

multiply both sides of (6) by the matrix T.2[-q_2(p)] and rename the

respective matrix products as L(p) and M(p). Next, divide &%?(p)

into J0.,(p), ^23^P^ to ODtain

ii3(p) = i33<P><ai3<P> + ri3<p>' i =1' 2 (fi)

where q.~ is the quotient polynomial and r.~ is the remainder polynomial

with degree strictly less than 433(p). Now multiply both sides of (1) by

T. - [ -q._(p)], i = l, 2, and rename the matrix products as L(p) and M(p),

respectively. Proceed in a similar fashion to reduce the degree of the

off diagonal elements in the remaining n - 3 columns of the matrix L(p).

With the system S reduced to the equivalent form in which the

matrix L(p) is upper triangular, with the degree of the off diagonal

elements in each column lower than the degree of the corresponding

diagonal element, we are ready to derive the state equations of S.

REDUCTION OF THE SYSTEM S TO ITS STATE EQUIVALENT S

Let v. be the degree of the polynomial i..(p), where i = l, 2, .. . , n.

Then, since we have assumed that the transfer function W(s) = L (s)M(s)

exists and has elements which are ratios of polynomials with the degree

of the denominator no smaller than the degree of the numerator, it

follows that the degree of the polynomials m..(p), j = 1, 2, . .. , r, is no

greater than v., i = l, 2, . .. , n. Hence we may assume that the elements

of the matrices L(p), M(p), in (6) may be written in the form

0 1 v. v.
I ..(p) = a., + a., p + . .. + a .. p , i = 1, 2, ... , n, j = 1, 2, . .. , i

(9)
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n V. V.
0 , ,1 , , , i im (p) = b.. + b.jP +... +b p , i=l,2, ...,n, j =l,2, ...,r (10)

Referring back to (6), it is seen that

Det(L(p)) = lu(p)i22(p)... inn(p), (11)

and hence the order of the system S is v-, + v-» + • • • + v . We now sho
1 1 Z n

1 2 v'
how to obtain v. state variables, x., x .,..., x. , from the scalar

equation for the output y , where i = l, 2, . . . , n.

Again referring to (6), we see that the scalar differential equation

r n .
for y is

w

r

rs v v V^ a i v v0,1, n n. n ... \ ., 0 . . 1
(a +a p + ... +a p ) y (t) = / (b. + b.p + ...+b.p ) uJ(t)v nn nnv nn * ' y v [_, x nj njr nj * '

j=l
(12)

We now use a standard algorithm (p. 231 , [l]) to associate states with
1 ? v

the output y . Let x , x , . . . , x be defined as follows :

r

, v v" v1 n n \ , n jx=a y-/b.uJ
n nn ; /_, nj

j=l

r r
v v^v . v-1 v-^v-1.

2 nn \ t_ n J . n n \ k n ,Jx = a py - / b • puJ + a y - / b . tr
n nnpy Z_y nj F nn ; Zv n

j=l j=l

v vv-1 v^ vv-1. v -1 v -2 _ v^ v_-lv_-2
n n n n \ , n n j

-iv -^ v^ v -iv -£ •
n n n \,n n i ,

n p y - 2, bni p u +---

(continued)

x = a p v - / b • p uJ + an nn p y Zv nj p nn * U nj

-10-



, 1 n V+ a y - >nn' £,
j=l

bX.uj

Solving the above system of equations we obtain:

x (t) = A x (t) + B u(t)
n* nn n n x '

yn(t) = C x (t) + D u(t)
' nn nA ' n x '

12 n
where x = (x , x , .. . , x ), A is a v x v matrix, B is a

n n n n nn n n n

v xr matrix, C is a lxv matrix.and D is a lxr matrix, each
n nn n n

with components as shown below:

nn
n

i
nn

n

nn

v -2

-a n 0 a
nn nn

n

(13)

(14)

(15)

(16)

v v-1 v~lv~ v v-1 v-lv
. n , n n ^ n\ / n, n n
(a b , - a b , ), (a b -> -a
v nn nl nn nl x nn n2 nn "J>

v v-1
/ n, n
(a b -a
x nn nr nn

B =
n

n

-lv\
n b nl
n nr1

nn vn 0
(a b , - a « ,
x nn nl nn nl

0 Vr,
b?) ,

v 0
I nb
* nn n2

0 v n\-a b -,)
v

i

nn n2

, VnK0 0 v
(a b -a b )
* nn nr nn nr

(17)
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Cn =(l/an", 0, .... 0), Dn =(bn[7an», b^/a^..... b^/a^) (18)

Now let us proceed to the next scalar differential equation in (6),

i. e. ,

X

i , ^pJy11"1 = -a t (p)y11 + > m . .(P)uj (19)n-l.n-l^' n-l,nx^'7 [_, n-l,jr * "
j=l

The set of equations (13) are now used to eliminate y and its deri

vatives from (19), resulting in an expression of the form

n
v

I i iteJy1"1 = / e1 , x1 + ) [m , .(p)+m . .(p)]uj,n-l,n-lv^,y Li n-l,n n Li n-l,jxr/ n-l,jx^/J
i=l j=l

(20)

where the e1 , . are scalars and m , .(p) are polynomials in p with
n-l,j n-i,j

degree no greater than that of I , ^(p)* The fact that no derivatives

of previous state variables occur in (20) was ensured by forcing the

degree of the off diagonal elements in each column to be less than the

degree of the corresponding diagonal element, while the property of the

degrees of m , .(p) is due to the assumption on W(s) = L (s)M(s).

Now, treating the variables x1 in (20) as additional inputs, we use a

substitution similar to (13) to introduce the following v , state variables,

12 vn 1x,,x .,...,x " , which satisfy a set of equations of the form
n-1 n-1 n-i

u(t) (21)x ,(t) A . .x ,(t) + A . x (t) + B ,
n-11 ' = n-1, n-1 n-P ' n-l,n n* n-1

n-1y11-1 = C . ,x ,(t) + C . x (t) + D .u(t) (22)
y n-1,n-1 n-lv ' n-l,n nx n-1

-12-



Where A . , is a v ,xv , matrix, A . is a v ,xv matrix,
n-1, n-1 n-1 n-1 n-l,n n-1 n

B , is a v ,xr matrix, and C . ., C , , and D . are
n-l n-i n-1, n-1 n-l,n n-1

matrices of respective dimension lxv n, lxv and lxr.
r n-1 n

The same process is now applied to the third line from the

bottom of (6) and continued until all the n equations of (6) are similarly

treated. Putting it all together into a single matrix form, we get the

desired minimal state equivalent of our original system S:

xx(t)

i2W

x ,(t)
n-1

x (t)
nx

Cll C12 Cln

0 C22 C23 "• C2n

0 0
nn

n

Note that the dimension of the system (23) is } v^
i=l

(23)

D,

D.

u(t)

D

n/
(24)

the same

as the dimension of S. The matrices in (23), (24) are defined in an

obvious manner. This terminates the exposition of the algorithm. We
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conclude this paper with an example to demonstrate its application.

Example

Consider the system

/p +3p +1 2p +3

S: \ 3 2 2
\p +3p +p 3p +3p+6

(25)

Multiplying through by T_.[-p], (i.e. , multiplying the first equation

by -p and add in the result to the second equation) we get

1 0

S : I I I 1 " I III (26)

1 p + 3

We note that the system now is of the form (6) and that Step 5 of the

algorithm in the previous section has been carried out. Hence, we
2

may proceed to construct the state equations. We have, for y ,

p2y2 +Opy2 +6y2 =u1 +(p +3)u2 (27)

Therefore, following the formulas just obtained, we let

i\ =x2 +u2 (28)

2 = -6xi+ S^ +u1 (29)
x2

-14-



2 1
y = x2 (30)

We note that this is consistent with (27). Now, proceding to the next

equation we find that

(p2 +3p +l)y1 = -(2p +3)y2 + u1 (31)

From (28) to (30) we get that

- (2p +3)y2 =-(2x2+3x2) - 2u2 (32)

Hence

(p2 +3p +l)yX =(2x2+ 3xh - 2u2 +u1 (33)

Now, let

1 , 1A Jx* = -3x+x (34)
1 " 1 1

x2 =. xj +u1 - 2u2 - (3x2 +2x2) (35)

1 1
y = x! (36)

We see again that the last three equations are consistent with (4). We

may now write down the state equations of the system:

-15-



-3 -1 o 0 0 0

-1 0 -3 -2 1 -2

(37)

0 0 1

0 0-6 0

(38)

I 1°

-16-



CONCLUSION

The assumption that the transfer function W(s) =L"1(s)M(s) of

the differential system has elements with numerator polynomials of

degree no higher than the corresponding denominator polynomials is

only necessary to ensure that the resulting state representation be of

the form (2). When this assumption is not satisfied, the algorithm can

be extended, in an obvious manner, to obtain state representations of

the form : x = Ax+Bu, y=Cx + Du + Eu + Fu+...

The algorithm was written in a form particularly suitable for

digital computer implementation. The reader using it for hand calcu

lation may find it helpful to refer to (12) and (13) at each step follow

ing Eq. (19).

The main advantage of the algorithm is that it gives a completely

unambiguous and easily implementable way for transcribing systems

in differential equation form into a more desirable state form.
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