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ABSTRACT

This paper is concerned with the problem of obtaining the

minimum realization of a linear nonanticipative system charac

terized by its impulse response matrix: the problem is to find a

linear differential system of least order which is zero-state

equivalent to the given one.

For the time-varying case, Kalman's decomposition is used

to obtain, in some cases, systems of lower order than Youla's

globally reduced systems. In special cases, integrators are time-

chared and integrators are saved at the cost of relays; from a

mathematical point of view, in such cases, the system's matrices

will include 6 functions.
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INTRODUCTION

This paper is concerned with the problem of obtaining the minimum

realization of a linear time-varying nonanticipative system characterized

by its impulse response matrix: the problem is to find the linear differ

ential system of least order which is zero-state equivalent to the given

1 2one. The key tool is the Kalman ' decomposition of the impulse re

sponse matrix. Our procedure results, in some cases, in a system of

3
lower order than Youla's globally reduced system.

A. Notations

Let W(t, t) be an r x p inpulse response matrix of a nonanticipative

system. It is assumed that, for each fixed t, W is locally square inte-

grable with respect to t and, for each fixed t, W is locally square inte-

grable with respect to t .

2 3
W(t, t) is said to be realizable ' if there exists a linear differential

system S of finite dimensional state space (say n) which has a zero-state

response to any input u( . ) applied from t~ and given by

= I W(t, t) u(1) y(t) = / W(t, T)u(t)dt -oo > t > tQ > -oo.
fc0

More precisely, let the system S be characterized by

(2) x(t) = F(t) x(t) + G(t) u(t),

(3) y(t) = H(t)x(t),
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where F( • ), G( • ), and H( • ) are, respectively, n x n, n x p and

r x n matrices whose elements are real-valued functions defined on

(-oo, oo). Let J> (t, tn) be the state transition matrix of (2). Then it is

well-known that W(t, t) is realizable by S if and only if

(4) W(t, t) = H(t) $(t, t) G(t ) for all t > t .

Since the system S is characterized by F, G, and H, one uses the

locution "(F, G, H) and realizes W(t, t).m

Under the condition that F, G, and H are locally square integrable,

2
Kalman has given an interesting characterization of realizability:

W(t, r) is realizable if and only if

(5) W(t, t) = jj(t)J3(T) \Jt, t with t > t ,

where \\i (• ) and J3( • ) are, respectively, r x n and n x p matrices

which are locally square integrable. We note that this characterization

is not valid if F( • ) is not locally square integrable, The proof is based

on the observation that {Q_, JJ, jj) realizes W(t, t ): thus, under these

conditions, it is always possible to simulate any such impulse response

matrix using time variable gains and n integrators.

Under the condition that F( • ) is locally square integrable and that

3
(5) holds for all t and t, Youla has given an algorithm which, starting

from any given factorization of W(t, t) as _i^(t) (3(t), arrives at a factor

ization of W of least order. Such a factorization is called a globally

reduced realization by Youla. In a nonanticipative system, however, we

would require that (5) hold only over the set t > t . We shall give a

procedure which obtains a realization of minimum order for this situation.

Let us call this problem A.
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If, furthermore, we drop the requirement that F( • ) be locally

square integrable, it turns out that we can reduce even further the order

of S. We shall call this problem B.

Before we proceed to the reduction algorithms, it may be worth

while to give an example illustrating the various "minimal" realizations.

Example: Let r = p = 1 and W(t, t) = ^(t) p1(T) + ^(t) p2(r) + ^(t) P3(T),

where

1 if t€ [ -2, -1] f 1 if t€ [3, 4] flift6[5, 6]
^(t)=< ^2(t)H *3(t)=^

0 elsewhere, I 0 elsewhere, I 0 elsewhere,

1 if T€ [ -3, -4] f 1 if re [1, 2] fl if t€ [7,8]
Px(t) =<^ P2(t) =^ p (T) =i

0 elsewhere, [0 elsewhere (0 elsewhere

we first note that the functions \\i.( • ) i= 1, 2, 3 are linearly independent

over the interval (-00,00). Similarly, the functions j3.( • ) i= 1, 2, 3 are

linearly independent over (-00,00). Hence the globally reduced

3
realization of Youla has dimension 3. For the nonanticipative situation

however,

=J [^(t)^y(t) = I [^(t) px(T) + i|i2(t) p2(r) + 4-3(t) p3(r) ] u(t) dt
-00

=/ t^(t) Pj
^-00

(T) + l|l2(t) P2(T)] U(T) dt,

since ^(t) |3o(t) = 0 for all t > t . Thus we have a realization of

dimension 2. Now consider the first order differential system,

"h = -6(t)T) +[l(-t) Px(t) + l(t) p (t)] u(t),
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y = TtftKii^t) +4/2(t)]f

where 6(t) is the delta "function," and l(t) is the Heaviside unit step

function. It can be verified that this system is zero-state equivalent

to the one characterized by W(t,*r). Note that the matrix F(t) which is

here -6(t), is not locally square integrable.

B. Reduction Algorithm for Problem A

We start with a given factorization of W(t, t) as ijj(t) P(t), a product

of an r x n and an n x p matrix.

Definition 1. (a) For each t € R, define n x n matrices

(6) B(t) = / p(r) P«(t) dt,
^-00

and

poo

(?) C(t) =I 4«(t) ±(t) dt.

(b) LetOi(t) denote the range space of B(t) and letub{t) denote

the null space of C(t).

Since the integration in (6) and (7) is taken over an infinite interval,

the matrices B(t) and C(t) may not be defined. However, we are only

interested in the subspaces(?L(t) and «*> (t) so that in (6), the lower limit

-oo can be replaced by any sufficiently small number t~ < t such that the

number of linearly independent rows of p( • ) over any interval (t', t)

with tl < t is not greater than the number of linearly independent rows

of j3( • ) over the interval (tfi, t) . Similarly, the upper limit in (7) can
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be replaced by any sufficiently large number t, > t so that the number of

linearly independent columns of 4> ( • ) over any interval (t, tj) with

t,1 > t i s not greater than the number of linearly independent columns

of jj( • ) over the interval (t, t, ).

The physical interpretation of the subspaces (H/{t) and Ofo (t) is given

by the next definition and lemma.

Definition 2 Let t € R be fixed.

(a) A vector x e Br is said to be reachable at time t if there is a

square integrable function u( • ) such that

x = I J3(t) u(t) dt.
^00

A vector x € K is said to be invisible after time t if

ij> (t) x = 0 for almost all t > t.

(b) Let U(t) denote the set of vectors reachable at time t and let

V(t) denote the set of vectors invisible after time t.

Lemma 1: (a) U(t) =Ov(t) for each t. Also t. < t2 implies that

^(tL) C#,(t2).

(b) V(t) = I* (t) for each t. Also t, < t2 implies that

~ftb (tj) C T5(t2).
9

The proof is very similar to the one given by Kalman and Weiss and

is therefore omitted. Since ^(tj) ^ Slit^) CL J? for \ < t^* Si (•)
considered as a function of time changes only at finitely many instances.

A similar argument is valid for vX ( • ). Let t, < t2 ••• < t to be the

values of time at which either (& ( • ) or ?S ( • ) changes. Then,
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dl(t) [ 3S (t)]

' 9j(\) [fb{\)\ for -oo < t < tj_

(R(t2) Wo (t2)] for tj < t < t2

(tm)[»(tm)] for tm_1<t<t

<tm+l«»<tm+l)] f°r *m < * <

m

whe ret ,. i s any numbe r with t ., > t
m+1 ' m+1 m

We will now decompose^ (t. ) as follows:

Let

(8) ^(tx) = ^{\) H 3&(tx) (B % (tl),

and for i > 0,

oc

(9) (t.+1) =ft(t.) +^(t.+1) © X (t.+1),

where eA*(t, ) is any arbitrary subspace satisfying (8), and(J(t. , ) is

any subspace of ^(t.,, ) of largest possible dimension which satisfies

(9) for some JL> (t. ,). For symmetry, let us define ^(ti) =(K/(t, )(]

^(tj). Now let,

X =X(t1) ©••• ©*^(tm+1).
and

'y =y<t1)©..-©,y (tm+1>.

Then we observe that

(10) ^<tm+i) =x©'y •
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and

(11) BT =11 ^ 'Wl> ®̂ (w/=* ©14 ©&(tm+l £

Remarks: In the above decomposition the subspaces J& (t. ) and iff (t. )

are not uniquely defined. However, the dimension of each subspace is

unique. Therefore, if we let n be the dimension of cJo , n is a well-

defined number. For an illustration of this decomposition see Fig. 1.

Definition: Let P be the matrix representing the projection of K onto

JU alongU © Sv (t -) . i. e., if £ € R11 and £ = x + y with x € Jb

and y.€*U ©$l(t ^,)1 . ,
j. 0 w * m+1 , we must have

P(z ) = P(x + y) = P(x) + P(y) = P(x) = x .

We again note that although P depends upon the particular decomposition

chosen, the dimension of the range of P is the well-defined number n.

The relationships between this decomposition and the factorization of

W( •, • ) is given by the next lemma.

Lemma 2 (a) Let 1 < i < m+1 be fixed and let t. - < t < t. be a fixed
x ' — — i-l 1

number. The set of all vectors x e K such that there is a square inte

grable function u( • ) with

r*x = / J3(t) u(t) dt
J*i-1

contains the setX(t. ). (Here tQ =-00.) Also, Gl (t) HX (t.+1) ={0}
for t < t. .

1
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(b) Let x,,x0 e Jb(t. ), and let t. . < t < t. be a fixed
x ' —1 —2 i l-l i

number.

vji (t)(x, - x 2) = 0 for almost all t> t

implies that x, = x^.

(c) Finally, for almost all (t, t) with t > t we have

ji(t) £(T) = j.(t)Pp(T).

Proof: (a) Let x €96(t. ) £®, (t. ) =&(t). Therefore the:

is a function u( • ) such that

x = / |3(t) u(t) dt
^-00

P(t) u(t) dt + / P(t) u(t) dt
'-oo t. ,

l-l

= x, + x2 say.

ire

Obviously x, € &0{t. ,) so that by the decomposition (9) x, = 0 .

(b) By assumption i|j(t)(x, -x-) = 0 for almost all t > t, so that

(x, - x?) eHh (t. ). By the decomposition (9), since ^ (t. ) <Z 1% (t ) has

maximum dimension we must have

^<t.) n% <♦> = {o}.
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This implies that x, - x? = 0 .

(c) It suffices to prove that for all square integrable functions

u( • ), we have

/t /~st

4<t) P(t) u(t) dt = I ji(t) P£(t) u(t) dt.
-00 -00

Let z(t) = I J3(t) u(t) dt. Clearly x(t) €&(t) =<&(t. ) for some i.
-00

By the decomposition (9) we have

z = x + y,

where x € JLe (t,) + • • • + 3£(t. ),

and y e ^(t^ + • • - +1J (t.).

By the definition of P,

Pz= P(x+y) = Px = x.

We have to show then that ^(t) y = 0. But this is true because

tow 2y<v +• • • +v<ti>- q.e.d.
2

Since P = P, by lemma 2 we have,

±(t) J3(t) = ^(t) p^r) for all t > t

where

ix(t) ^ ji(t)P and P^t)^ P£(t) .
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Since the range of P has dimension n, there are at most n independent

rows in the matrix J$,( • ) and at most n independent columns of ik( • ).

We start with the factorization of W(t, t) as ty,{t) JMT) an<* carry out

the Youla reduction technique. Let the globally-reduced realization

obtained by this method be

W(t, t) = $(t) J3(t) for t > t ,

A A A A
where if; and p have dimension p x n and n x r, respectively.

Clearly n < n .

Theorem 1: (a) n = n .

rv rs/

(b) Let W(t, t) = 4>(t)J3^T), where t > t be an arbitrary

factorization of W as a product of p x n and n x r matrices respectively.

Then n > n.

Proof: It suffices to prove (b). Let t, < t~ • • • < t be the switching

times in the definitions (8) and (9). Corresponding to the factorization

i|j, p define the subspaces &(t. ) ^ (t. ), 3G> (t. ) etc.. Note that

these are subspaces of R . Let

3B =X (tj) +• • • + 8S (tm).

Xn *** ^
^R . To show that n > n, we shall in fact show that

n. — dimension ISC (t. ) = n. ^ dimension lUo (t. ) from

which it follows that n? \ n. = \n. = n. Let t. _, < t < t. be a fixed

number. Then (a) and (b) of lemma 2 imply that the impulse response

d»(t) 3(t) gives exactly n. linearly independent outputs over the interval

-11-



r*> o/
(t, oo). Similarly, the impulse response ip(t) P(t) gives exactly n.

linearly independent outputs over the interval (t, oo). Since these two

impulse responses are the same we must have n. = n.
11

Q.E.D.

C. Reduction Algorithm for Problem B

As before, we start with a given factorization of W(t,t) as

4>(t) P(t) , a product of an r x n matrix and an n x p matrix. We define

the subspaces Go (t) and Tta{t) as in problem A. Again let

t, < t« • • • < t be the instants at which either Uv ( • ) or ^ ( • )
12m

changes.

To keep the notation from getting prohibitively complicated we

shall illustrate the reduction algorithm for the case when m = 1. The

extension for m > 1 must be clear. Thus, suppose m = 1, so that

&(t) = ^(tj) [U(t) =%(t1)] for t < tx and&(t) = & (t£)
[K(t) =^S(t2)] for t > t,, where t2 > t is any number. Let

<ft(t.) = &(t.) H #& (t.) + X(t.) i=l,2,

(t. ) and 4*(t7) are chosen in such a manner that they have an
J. £

intersection of largest possible dimension. This is achieved as follows.

(i) Choose an arbitrary basis B, for (si (tj) D Qbit^).

(ii) Complete the basis to Bj UB21 for @l (tj) HVo{t^j.

(iii) Complete the basis to Bj UB21 UQx for ®, (t^). Then

B21 ^ Ql iS the basis for ty-
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(iv) From (ii) complete the basis to B, U B?1 U B? for

(ft (t2)HTOt2).

(v) Complete the basis to B2, 0 B. D B21 fi Q U Q for 4i (t2). Then
QiU Q? will be the basis for x(t?).

(vi) Let N be a basis for@& (t2) .

n
The decomposition of R is illustrated in Fig. 2.

Next we construct a nonsingular n x n matrix M and its inverse

M as follows:

M = B21 Ql Q2 Bl Bzr rf

V-l »Z f-3 ^4 ^5 H

M-X =

B21

<*
°2
Br

1

BIr
N

^1

^2

^6

Thus the first |x- columns of M are the vectors of B21> the next \i^

columns of M are the vectors of Q^ and so on. Similarly, the first u^

rows of M which are denoted by B21 are the reciprocal basis vectors
,-1of B.„ and so on. The last ii, rows of M~ are the vectors of N. Now

'21 ^6

.-1*(t) P(t) = U(t) M][M" p(r)]

= [$(t)][!(T)]- say,

We can regard jj(t) andJ3J-r) as

-13-



•^

J£(t) = ifel iz 43 *4 is 46

^ H2 H-3 ^4 ^5 ^6

P(t) =

£1 ^1

!2 v-z

£3 ^3

p4 ^4

ts >*5

p6 t*6

v^here for example ^(t) = 4»(t) Bl and P6(t) = N p (t). Since B^

uZ (tj) we must have according to lemma la iMt) = 0 for almost all t

Again, as B]L U B21 UB21C «5(t2) we will have ^(t) =0, \\tjt) =0
and 4»5(t) =^0 for t > tj. Now Bj (J B£1 U Qj is a basic for&ftj) so
that £3(^=^0, P5(t) =£, and P6(t) =_0 for t < ^. Similarly,

J3/(t) = 0 for t > t, . Taking these facts into account we see that

4(t)£(T) = ±(t) p(r) =\±i I±z Ii3J
^1 ^2 ^3 ±12

fe

^2

M-3 »

where furthermore JPo(t) = 0 for t < t. and 4», (t) = 0 for t > t. .

If fi. > |jl- we can add jx, - |jl- identically zero rows to J3~ and \i. - |x~

identically zero columns to \^~ to make \i, = u, . Similarly, if

|i- > |x, we can add u- - jx, identically zero rows and columns to

£- and ik, respectively. Thus we can assume that |i- = [i^. Let n,

be a vector of dimension n-. = |i« and ti2 be a vector of dimension

|x? and consider the first order differential system of dimension

H-i +^2-
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^(t) = -Mt-V U.X+ t p^tJHtj-t) +p3(t) ] u(t)

fi2(t) = P2(t) u(t)

and y(t) = [^(t) +^(t) 1_ (t-^) ] ^(t) + ty^t) r|2(t), where 6(t) is a

fx1 x Uj diagonal matrix with 6(t) as the diagonal elements and J_(t) is

a (1.x jj... matrix with the Heaviside unit function l(t) on the diagonal.

It should be clear that the zero-state response of this system is the

same as that given by the impulse response matrix W(t,t). An analog

computer setup for this system is given in Fig. 3.
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