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I. INTRODUCTION

The usual nonlinear programming problem is the following:

Maximize { f(x) | g(x) > 0, x > 0} , (1.1)

where x € R , g : R » R is a differentiable mapping and x > 0,

g(x) > 0 means each coordinate of x, respectively, g(x) is nonnegative.

f is a real-valued differentiable function which represents the perform

ance index. The first satisfactory necessary conditions that a solution

of (1.1) has to satisfy were given by Kuhn and Tucker [1]. Subsequent

generalizations include the papers by Arrow et al [2, 3]. The model

that we shall consider is the following generalization:

Maximize {f(x) | g(x) e Ay, xc A} , (1.2)
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where X, Y are real B-spaces, -* x € X, g:X *Y is a differen-
tiable —'function, Ay is a convex set in Y and A is an arbitrary sub
set of X. f is a real-valued differentiable function. In Sec. 2 we

introduce some notation and give some useful preliminary results. In

Sec. 3 we discuss the Kuhn Tucker constraint qualification [1] and the

weak constraint qualification of Arrow, Hurwicz, and Uzawa [6]. In

Sec. 4 we give the main results. These are similar to the K. T. neces

sary conditions. We also exhibit a saddle-value problem related to

(1.2) when Av is a cone.

II. PRELIMINARY RESULTS

We introduce some terminology and define a pair of sets which

we call the local cone (LC) and the local polar (LP) which are essential

to our study. The relevance of these sets to (1.2) is given by

Theorem 2.1.

Let X be a real B-space and X* its topological dual. Let A

be a nonempty subset of X and let x € A.

Def. 2.1 By the closed cone of A at x we mean the intersection of

all closed cones —' containing the set A - x = { a - x | a € A} . We
denote this set by C(A, x).

Def. 2.2 By the local closed cone of A at x we mean the set

LC(A, x) = D C(ADN, x)
n e 7& (x)

where 7& (x) is the class of all neighborhoods of x .

Def. 2.3 By the local polar of A at x we mean the set
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LP(A, x) = {x* eX* |<^x*, z^>J < 0 for all z€LC(A, x)} .

Remark 2.1 (a) The local cone is always nonempty since it always

contains the origin, (b) If A is convex, C(A, x) = LC(A, x) is a

closed, convex cone, (c) LP(A, x) is always a closed, convex cone.

The following alternate characterization of LC(A, x) is straight

forward to prove.

Lemma 2.1 A vector z e LC(A, x) if and only if there is a sequence

of vectors { x } CX and a sequence of nonnegative numbers, { X. } ,

such that

x —» x as n —* co and,
n —

\ (x - x)—*z as n—*oo.
nv n —'

Let A be an arbitrary subset of a real B-space X and let f be a real-

valued, differentiable function of x. Consider problem (2.1).

Maximize {f(x)|x€A} . (2.1)

Theorem 2.1 If x € A solves (2.1), then

5lf»(x) -1 € LP(A, x) . (2.2)

Proof Define S ={x | hx - xu < i } n =1, 2, ... Then for each
x t ADS we have,

n n

f(xn) < f(x) n =1, 2, 3, . . . (2.3)

and since f is differentiable
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f(xn) =f(x) +<f'(x)» xn -x^> J +o( nxn -XII ) <f(x) .

.*. <^ ff(x), xn - x^> = f(xn) - f(x) + o( ii xn - xn) < o( nxn - XII)
by (2.3)

. X - x o( MX - X II )
/. < £.(x)f n - > < n -

^ X—" MX - X II / — || X -XII
n — n —

Urn sup < f'(x), „xn.xl, > < 0
n—»oo x €A()S n —

n n

n—*oo x -xeC(A( iS , x) n —
n — * xr —'

co

sup{<f(x), Zy |z€ O C(AOSn, x) = LC(A, x)} <0
n=l

•'. <\ f'(x), z^> < 0 for all z e LC(A, x)

f!(x) € LP(A, x) by Def. 2. 3 . Q. E. D,

Corollary 2.1 Let A be convex and f a concave function. Then

x € A is a solution of (2.1) if and only if

f'(x) € LP(A, x) . (2.2)

Proof Suppose x satisfies (2.2). Since A is convex, by Remark

2.1(b) LC(A, x) = C(A, x). Therefore by Def. 2.1

<^ f!(x), x - x ^> < 0 for all x e A. (2.4)
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Since f is concave, for x € A,

f(x) < f(x) + <f(x), x-x>

< f(x) by (2. 4). Q. E. D.

III. CONSTRAINT QUALIFICATION

The preceding results indicate the relevance of the local cone

and the local polar to maximization problems which only consider first

variations. Now in most problems of interest, the constraint set (the

set A in (2.1)) is not given explicitly but indirectly via some functional

constraints. For example, in nonlinear programming this is given as

in (1.1); in optimal control problems there are dynamic constraints

represented by differential equations and so on. In each of these areas,

it can be shown [7] that the main results give sufficient conditions under

which the local cone and the local polar can be explicitly determined or

approximated. In the case of nonlinear programming these conditions

have come to be known as constraint qualifications.

Let X and Y be B-spaces; g:X *Y a differentiable function.

Let A„ be a nonempty subset of Y, and Ax = {x|g(x) e Ay} = g" {Ay} .
(Note: The definitions given below closely parallel Arrow et al [ 6].)

Let x € A^. .

Def. 3.1 We say that a vector z e X is an attainable direction at x

if there exists an arc {x(9) | 0 < 0 < 1} CA„ such that

(1) x(0) = x

(2) x(0) is differentiable from the right at 0 = 0 and

dx

30 9=0 " x,<°> = z'

Let AD(x) = { z | z is an attainable direction at x} . Clearly AD(x)
is a cone.
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Let A(x) = the closed convex cone generated by AD(x) .

Def. 3.2 We say that a vector z € X is a locally, constrained direc

tion at x if <( g»(x), z^> = g'(x) (z) c LC(Ay, g(x) ).

Let L(x) = {z | z is a locally constrained direction at x} . Clearly
L(x) is a closed cone.

i

Lemma 3.1 AD(x) Q LC(AX, x). Hence

A(x) CCo(LC(Ax, x) )."^

Proof Let z e AD(x). Then z =x'(0) where {x(0) | 0 < 0 < 1}
C Ax and x(0) = x.

x(0) = x(0) + 0xf(O) + o(9) = x + 9z + o(0) . (3.1)

Let N be an arbitrary neighborhood of x and 9(N) > 0 be sufficiently

small so that

x(9) eAXH N , \/9 < 9(N).

/. x(9) -xeAxriN-xC C(AX D N, x)

/. z +°!g) €C(AX n N, x) by (3.1)

•• z e C(AY D N, x) since it is closed.
2\. —

Since N was arbitrary, z e (~) C(AV D N, x) = LC(AY, x) .
N€?&(x) X ~ X "

Q. E. D,
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Lemma 3.2 LC(AX, x) C L(x). Hence

Co(LC(Ax, x) ) Q Co(L(x)) .

Proof Let z e LC(AX, x) . By Lemma 2.1, there is a sequence

{x } Q Ax and a sequence of nonnegative numbers {\ } such that

x —• x as n —• co and,
n — '

\ (x - x)—»z as n—•co.
n* n —'

Let N be an arbitrary neighborhood of g(x) in Y. Let n(N) be suffi

ciently large so that

g(xn) e Ay D N for all n > n(N)

/. g(xn) - g(x) c{Ay H N- g(x)} Q C(Ay n N, g(x))

for all n > n(N).

. g(x_) - g(x) x - x o(nx - XII)
•• —= = <Tg'(x), —- > + 2—z_

IIX - X|| \° *— ||X - X|| ' ||X - XII
n — n — n —

eC(Ay n N, g(x) ) for n > n(N) . (3. 2)

Since g(xn) = g(x) + <^gf(x), xn -x^> + o(nxn - xn).

Also, z = lim \ (x - x) so that if z ^ 0, we have
' n* n —'

\ (x - x) xn - X
—^— = lim —?—i ?— = lim-— —- . (3.3)iizii ii ^n(xn - x)n nxn - xn
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In (3.2) let n —•oo; then by (3.3) we have

< g'(x), Zy €C(Ay ON, g(x)) for z t 0.

Since 0 always belongs to C(AV O N, g(x)) we have for any neighbor
hood N of g(x) that

<g'(x), z> 6C(AyO N, g(x))

<g'(x), z> € O C(AyO N, g(x)) = LC(Ay, g(x)) .
n€^ (g(x) )

.*. z € L(x) . Q. E. D,

Combining the previous two lemmas, we have

Lemma 3.3 (a) AD(x) C LC(AX, x) C L(x) ,

(b) A(x) C Co(LC(Ax, x)) C Co(L(x) ) .

Def. 3.3 We say that (g, Ax, Ay) satisfies the Kahn Tucker

constraint qualification (KT).

AD(x) 3 L(x) for all x € Ax .

Def. 3.4 We say that (g, Ax, Ay) satisfies the weak constraint
qualification (W) if

A(x) O L(x) for all x e Ax .

Remark 3.1 KT =^-W since AD(x) C A(x) .
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Corollary 3.1 (a) If (g, Ax, Ay) satisfies KT, then

LC(AX, x) = L(x) = {z |<g'(x), z> €LC(Ay, g(x))} .

(b) If (g, Ax, Ay) satisfies W, and if Ay is a
convex subset of Y, then

Co(LC(Ax, x)) = L(x) = {z | <^g'(x), z> €LC(Ay, g(x))} .

Proof (a) follows from Lemma 3.3 (a) and Def. 3. 3.

(b) follows from Lemma 3. 3 (b), Def. 3.4 and the fact that

Av convex implies {Av - g(x)} is convex so that

LC(Ay, g(x)) = Co(LC(Ay, g(x))

by Remark 2.1 (b). Q. E. D.

Remark 3.2 It was demonstrated by Theorem 2.1 that the sets

unimportant to our discussion are LC(AX, x) and LP(AX, x). Now

usually the constraint set Ax is given indirectly as g {Ay} and hence
cannot be explicitly determined. The constraint qualifications, intro

duced above, enable us to determine the unknown set LC(AX, x) from
the known set LC(Ay, g(x)) by Corollary 3.1. In fact, as is shown
in the next result, the set LP(AX, x) has an even simpler form if a
constraint qualification is satisfied.

Theorem 3.1 Let Av be a convex set in Y and suppose that

(g, Ax, Ay) satisfies W. Let x €Ax, then

_§)LP(AX, x) = LP(Ay, g(x)) • g!(x)) " where
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LP(A , g(x)) • g«(x) = {y* • g«(x) |y* € LP(A g(x) )} .

Proof (a) Claim: LP(AY, x) C LP(AV, g(x)) • g'(x) = B .

First notice that B is a closed convex cone in X* . Suppose

x* € LP(AX, x) and x* y B. Then by the strong separation theorem
[ 4], 3 z € X, or real, and e > 0, such that

<^x*, z^> =<z>c*-€><^x*, z*^> \/x* e B .

Since B is a cone we must have,

<^ x*, z^> > 0 > <^x*, z^> Vx* €B. (3.4)

It is easy to show that x* e LP(AX, x) and <^ x*, z^> > 0 implies
that z $ Co(LC(Ax, x)). But then, by Corollary 3.1 (b)

z ^Co(LC(Ax, x)) =^<^g«(x), z> ^ y f. LC(Ay, g(x) ) .

By hypothesis, A is convex so that LC(Ay, g(x)) is a closed convex

cone, not containing y_. Once again using the strong separation

theorem, 3y* e Y*, (3 real and 6 > 0 such that,

<Y*, Y> =P>P- 6 ><y*, y> Vye LC(Ay, g(x)) .

Again since LC(AV, g(x)) is a cone, this gives,

< Y*> y> > 0 > <^ y*, y> Vy €LC(Ay, g(x) ) .
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Then by Def. 2. 3 y* € LP(Ay, g(x)) so that

y* • gf(x) c LP(Ay, g(x)) • g'(x) Q_ B .

But <^y* * g*(x), z^> = <^y*, £^> > 0 which contradicts (3.4).

(b) Claim LP(AX> x) Q LP(Ay, g(x)) • g'(x) . First notice
that it is sufficient to show that

LP(AX, x) O LP(Ay, g(x)) • g'(x) .

Suppose 3y* €LP(Ay, g(x)) such that y* • g'(x) ^ LP(AX, x). By
the strong separation theorem, there is a z € X, a real, and e > 0

with

<[ y* ' g'(x), z^> > a > a - €> <^x*, z^> Vx* €LP(AX> x)

<Cy* • g'(x), z> > o > <x*, zy Vx* €lp(ax, x).

It can be shown that the last inequality implies

z € Co(LC(Ax, x)) . (3.5)

Moreover <^ y* • g!(x), z^> = <^y*, g'(x)(z)^> > 0. Since
y* €LP(Ay, g(x)) this implies that g'(x)(z) ^LC(Ay, g(x)). By
Corollary 3.1 (b)

z ^Co(L,C(Ax, x))

which contradicts (3.5). Q. E. D.

-11-



IV. MAIN RESULTS

We recall the problem considered by Kuhn and Tucker [1]

Maximize { f(x) | g(x) > 0, x > 0} (4.1)

where x € X( = R ), g : X —* Y( = R ) in a differentiable function and

f is a real-valued, differentiable function of x. Equivalently,

Maximize { g(x) | g(x) e Ay, x €A} (4.2)

where Av is the nonnegative orthant of Y and A is the nonnegative

orthant of X. A saddle-value problem related to this is to find

x > 0, v_ > 0 such that,

(j>(x, y_) < cj>(x, y) < <j>(x, y) Vx > 0, Vy > 0

where c|>(x, y) = f(x) + <^y, g(x)^> . We note that x > 0 if and only
9j —

if x € A and y > 0 if and only if y € -P(Ay). —'
We consider the following generalization of (4.2):

Maximize {f(x) | g(x) eAy, x e A} (4.3)

where Av is any convex subset of Y and A is an arbitrary subset of

X. Also X and Y are arbitrary real B-spaces. This problem how

ever does not have a corresponding saddle-value problem. If however,

we restrict Av to a closed convex cone we can consider the problem

of finding x € A, y_* e -P(Ay) such that

<j>(x, y*) < (j>(x, y*) < <j)(x, y*) Vx eA, Vy* €-P(Ay)
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where, <j>(x, y*) = f(x) + <^y*, g(x)^> . Thus, let X, Y be real
B-spaces; g:X—»-Y a differentiable map and f, a real-valued, dif

ferentiable function of x. Let A be an arbitrary subset of X and

Ay a convex subset of Y. We assume that (g, Ax, Av) satisfies W.

Theorem 4.1 Consider the problem (4.3).

(a) Suppose x solves (4.3). Then

f'(x) e LP(A OAx, x) . (4.4)

(b) If in addition, LP(AflAY, x) = LP(A, x) + LP(AY, x)
* "" " X " (4.5)

then there is an x* e - LP(Ay, g(x)) • g'(x) such that

f'(x) + x* € LP(A, x) . (4.6)

(c) If in addition LP(Ay, g(x)) • g'(x) is a closed set, there
is a y* € - LP(Ay, g(x)) such that

ff(x) + y* • g'(x) € LP(A, x) . (4.7)

Proof (a) (4.4) follows from Theorem 2.1.

(b) By (4.4) and (4.5) we have

f'(x) c LP(AX, x) + LP(A, x) .

By Theorem 3.1, LP(AX, x) = LP(Ay, g(x)) • g'(x) so that

f»(x) 6 LP(Ay, g(x) ) • g«(x) + LP(A, x)

which yields (4.6).
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(c) By (b) we have

f'(x) € LP(Ay, g(x)) • g»(x) + LP(A, x)

= LP(Ay, g(x)) • g»(x) + LP(A, x)

by hypothesis of (c). This is equivalent to 4.7.
Q. E. D.

We now specialize to the case when Av is a closed, convex cone in

Y. Consider the following three problems.

PI. Saddle-value problem.

Find x € A, y* € - P(Ay) such that

<J>(x, v_*) < cj>(x, y*) £ <t>(x, y*) Vx eA, Vy* c - P(Ay) where

<l>(x, y*) = f(x) + < y*, g(x) > .

P2. Find x which solve

Maximize {f(x) | g(x) €Ay, x €A} .

P3 (v_*) . Find x which (for fixed y*) solves

Maximize {f(x) +<\V_*, g(x)^> |x€A} .

The proof of the following three propositions is straightforward and

hence omitted. For details see [7].
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Theorem 4.2 (a) If (x, y_*) solves PI, then

(i) || (x, y*) s f(x) +y_* • g'(x) €LP(A, x)

(ii) g(x) € Ay and

(iii) < v_*, g(x)> = 0.

(b) If, moreover, A is convex and cj>(x, y_*) is concave

for x € A conditions (i) - (iii) are sufficient for (x, y_*) to solve PI.

(c) If (x, y*) solves PI then x solves P2.

Theorem 4.3 If x solves P2 and if the hypotheses in Theorem 4.1

(a), (b) and (c) are satisfied then (x, v_*) solves PI if <}>(x, y*) is

concave over A and <^ y*, g(x)^> = 0.

Theorem 4.4 (a) Suppose x solves P3 (y*). Then

f'(x) + y* • g'(x) € LP(A, x) .

(b) If, in addition, y_* € - P(Ay) then (x, y*) solves
PI if and only if

g(x) €Ay and <[y*, g(x)^> = 0.
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FOOTNOTES

l\ A B-space means a Banach space.

2\ Differentiable means Fiechet-differentiable; see [4, 5].

_3J A set C is a cone if and only if all a > 0, a C C C .

4] < x*, z^> = x*(z).

5} f'(x) denotes the derivative of f at x. Note that f'(x) is an
element of X*. See [4]. ~

6j < f'(x), xn - xy = f»(x) (xn - x).

1} If C is a cone, Co(C) means the smallest closed convex
cone containing C.

.SJ The overbar denotes closure of the set under it.

J2J If C is a closed convex cone we let P(C) = LP(C, 0).
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