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1. Introduction

Let x(t) be a zero-mean stationary Gaussian process, with co-

variance function of the form

(1) Ex(t) x(t+T) =p(t) =1- -Ij- +| | t| +0(t4).

Let £ be a random variable denoting the interval between two successive

zeros of x(t) . The problem of finding the probability distribution of £

is of considerable interest and remains largely unsolved. (For further

references and a more detailed discussion, see Refs. 1 and 2.) In

this paper we present some explicit results concerning a zero-mean

Gaussian process with covariance function that is a special case of (1),

a"vf
dF(t)

Let F(t) = Prob (£ < t) and q(t) = . The principal results
dt

of this paper are that for a zero-mean Gaussian process with covariance

function given by
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(2) p(T) =4 e 0" (l-j e<3

F(t) and q(t) can be expressed explicitly in terms of complete elliptic

integrals. These results appear as (24) and (25) below.

It has been known for some time that for zero-mean Gaussian

processes with covariance functions of the form given by (1), q(0"**) = Ca.

Longuet-Higgins has given various bounds for C , the best ones being [ 3 ]

1.1556 1.158
< C <

The results of this paper suffice to show that in fact

37\ 1 1.15625
(3) C =1— - =

32/ 6 6

2. Some Preliminary Relationship s

Let x(t) be a zero-mean Gaussian process with covariance function

given by (2). It is assumed that a separable version is being considered,

Then x(t) is almost surely differentiable, and we shall denote its

derivative by x(t) (x(t) =^^M- Now, let t (yQ) be defined by

(4) T(y0) =min {t;t > 0, x(t) = 0|x(0) = 0, x(0) = yQ }

where the condition x(0) = 0 is understood to be in the horizontal

window sense [ 4] . Now, let

(5) <?(y0»t) = Prob {r(y0) > t}
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and

(6) ph(y0)dy0 = Prob {x(0)€(y0,y0 +dy0)|x(0) = 0}

In (6) the conditioning is again in the horizontal window sense. Then,

F(t) can be expressed as

(7) F(t) = 1 - Prob (£ > t)

Ph(y0)</>(y0.t)dy
00

Now, p,(yn) can be derived as in Ref. 4. For the process being
h U

considered, we have

II 1 2

(8) pjyn) = eli'O'
2

Therefore,

1 2
/ • t yy0 e ° <?(y0>t)dy0,

0

where we have used the symmetry <p(yQ» t) = <P (~Yq> t)

3. A Representation of x(t)

2
Let T)(t) be a standard Brownian motion (Et| (t) = t) . Define z(t) by

(10) z(t) = / ^(s)ds, t > 0
0
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The covariance function of z(t) is given by

(11) Rz(s, t) = Ez(s)z(t) =~ s2t-^ s3, t > s

Therefore, the normalized covariance function is given by

n*\ i m Rz(S,t) 3 /T 1 /s\ _(12) p (s, t) = = -../ ( - I , t > s=- f^ - - ( -)
yRz(s,s)Rz(t,t) 2vfc 2^tJ

As before, let x(t) be a zero-mean Gaussian process with covariance

function given by (2) . Comparing (2) and (12), we see that x(t) must

It 2
have the same probability laws asy3 e zle I. From (10) this

means that x(t) has the representation

-It pVJ*
(13) x(t) =73* e I T)(s)ds,

where r|(s) is again a standard Brownian motion. Furthermore, we can

rewrite (13) as

-It pi -it rF*
(14) x(t) =^/3 ^ 7i(s)ds+/3"e I Ti(s)ds

=V3 e
'o

Y1 I T](s)ds+V5"^ \%* -1/ *l(l

^T [ti(s) - n(l)] ds
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Now, we note that

•*£(15) x(0) =V3 T!(s)ds

'o

and

(16) x(0) = 2tj(1) - J r|(s)ds .

We further note that n(s) being a Brownian motion, r|(s) - ti(1) and

•n(s-l) are identical in law. Thus, x(t) can be written as

(17) x(t) =^/3^? x(0)+I e71 [e* -l) x(0)

+ •=• e ye -1/ x(0)

2
1 Vft

+y3 e J T|(s)ds.,
J0

where t|(s) is again a standard Brownian motion. (Note that the T|(s)

in (17) and the ti(s) in (13) through (16) are not the same except in

law.)
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4. The Distribution of Intervals Between Zeros

For a standard Brownian motion t|(s),define cr by

(18) o- = min {t; t > 0, t + / ti(s) ds = 0} .

In a very interesting paper McKean [ 5 ] has obtained explicit expressions

concerning the distribution of cr . Specifically, he has shown [ 5, Sec. 3,

6 ] that

(19) f(y,t)dydt= Prob {cr €(t, t +dt), [r)(cr) +l] e (-y,-y +dy)}

3 y -l(l-y+y2)p t e
= dydt -— ~T e de '

v/2ir t J0 JttQ

y > 0.

Now, t (y0) as defined by (4) can be related to cr as given by (18),

through (17) . In what follows, we make free use of the fact that

T)(t) and ct/-L) have the same law when r| (t) is a standard Brownian
motion and c > 0 . While r|(t) always denotes a standard Brownian

motion in the following derivation, r|(t) from one line to the next need
2

— t i—

not be the same except in law. Let g(t) = e -1, and g (t) = j ln(l+t).

Then, from (4) and (17) we have

y pg(t)
(20) T(yQ) = min {t;t > 0, —g(t) + / ti(s) ds =0}

2 d0
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=min {g'V) ;t >0, — t+ | T)(s) ds =0 }
2 Jo

min {g_1(t) Jt >0, —t+ I c-J-^lds =0 }

t

v I c

= min {g_1(t);t > 0, — t+c3 I r|(s) ds =0 }
2 0

= min

t

{g_1(t);t> o, JU-J+J ti(s) ds= o}

4t

1 4t / %"min {g It) ; t > 0,-*- + n(s) ds = 0}
y0 "0

min {g'̂ JLj ;t >0,t +J ti(s) ds =0}

-l/y0 \ ^3 , /, , V
g —<r, = _ in 1 + — .

Therefore, from (5), (19) and (20) we have

(21) *(y0.t) =Prob {g_1(— o-j >t}

4

= Prob {cr > -2- g(t) }
^0
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oo /-oo

ds I dyf(y, s)

^0

where f(y, s) is given by (19) . It follows from (9) that

r°° -1 y2(22) F(t) =1-1 yQ e2 ° <p(y0,t)dy0
^0

and

-«> 4 -^y2 , 4s
= 1 -/ ds / dv~ / dv — e XfV,-y-

g(t) /."•/.*^?,,f'?

/»°° r°° 4. - * v2
(23) q(t) =g(t) / dy / dy — eT ° ffy.^i1')

With the substitution of (19), the integrals in (22) and (23) can be

evaluated. The results are (See appendix)

3/2
3 r[l-2r2(t)] / 3 1

(24) F(t) = 1 1 = % I- - + - r (t),r(t)
2ir L 3-2r(t) V 4 2
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and

(25) q(t) = —

1/2
[l-2/(t)]

4ir I [l-r2(t)][l+2r2(t)]

1/2
[l-2/(t)]

[ 3-2r2(t)]

3/2
8[l-2/(t)]

[3-2r2(t)] [l+2r2(t)] L

where

(26) r(t) =

and

(27)

(28) K(k) =

(29) 7f(v,k) =
1 0 [1+ vsin%] -Jl-ti

L

1 n 1/2

TT

E(k) = / -v/l - k sin <p d<p

ir

<I 1

•f-
2 2

k sin tp

d<p

are complete elliptic integrals.

-9-
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K(r(t))-E(r(t))

7(t)

7ri|--+--r2(t),r(t)lKfr(t

— d<p
2 . 2

sin <p



It is easy to see from (25) that

(30) q(o+,=Q i(^).
4

which verifies (3), since (2) corresponds to a= — . Further, q(t)-*0
IT3

exponentially as t—>oo. In fact,

^ t ft ( 1(31) lim e2YJ q(t) = — KI =
t-voo 4tt \V2
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Let \\}(t) be defined by

(A-l) i|,(t) =

APPENDIX

r°° r i e^y°2
0 ^0 %

4t

f y'"2- d^dy'

/ 4t \where f j y, ~-y can be found from (19) to be
\ y0 /

(A-2) f(y, -j) = — * e
ro

4 yo {1_y+y2} ,y0y —22 3 6

e

yn \[2V 16? VTS"
d0

yo
Substituting (A-2) in (A-l) and letting r = , we have

2\Tt

12

(A-3) i|i(t) =
irf2

_. oo Aco 7 ? 2r [ yr3e-2r2d-y+y2)e-2tr2
o Jo

7 36
•4yr* "~T

±— de

L jo
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Tl>/2"

6 d r00 r00 7 2..,. , 2.
yr e" r (t+1" y+y )

dt {tf
4yI2 -T-

e
de dydr

3 d r°°

0 Vtt0

3/2 AY dy

2lT dt H [t+1- y+y2]Vt +d+y)2

Now, let H(t) be defined by

3 P00 3/2 AY dy
(A-4) H(t) =

2ir ^0 [t+1 - y+y2]v/t+(1+y)2

Then, we have

(A-5) i|i(t) = H(t)
dt

3 r00 y3/2dy f 1

2tt J0 (t +1. y+y2)Vt+(i+y)2 [ (t+i - y+

1 1

+ -

2 [t+(l+y) ]

From (22) and (23) it is easily seen that

-13 -
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and

00

(A-6) F(t) = - / i|/(s) ds

Jg(t)

= 1 - H(g(t))

2

(A-7) q(t) = g(t) i|i(g(t)) (g(t) = e -1)

Proceeding to evaluate H(t), we make a change in the variable of

integration in (A-4)

(A-8) y =yi + t
(1 - cos <p

1 f cos <p

The result is

3 1^ (l-cos<p) d<p
(A-9) H(t) = m

8tt (1 +t) JQ [i_v(t)sin2^]-/l-k2(t)sinZ^

with

1 1

(A-10) v(t) = - +

2 4/l+1

1 1

(A-ll) k2(t) = —
2 2/1+t
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Therefore,

(A-12) H(t) =

2
3 1 rv (1+cos <p - 2cos<p)d<p

jn8ir (l +tf L ri ... .2 1.7. ,2... . 2
x ' Jv I 1 - v(t) sm cp J V 1 - k (t) sin <p

3 1 r17/2 (l+cos2<p) d<p

4ir (1 +t)1/4 J0 [l-v(t)sin2^]/l-k2(t)sin2^

3 1 f 1 f * /2 d</>
07?U2-—14* d+t)1/4l v(t) J0 [i.v(t)8in2f]/.k2(t)Bln2,

IT

1 [I d<p
+

yW ^Ov/i-k^tjsin2^

ttzU2 WJMt),Ht)\ + K(k(t))l
:Tr(l+t)1/4l v(t) l\ J v(t) J

Using (A-12) in (A-6) yields (24).

The function i|j(t) can be found by differentiating H(t) . However, it

is somewhat simpler to proceed directly from (A-5). Making the change

in variable of integration (A-8) in (A-5), we find

4
3 1 rv sin <p

(A-i3) iMt) = ^74 / ;—/ 7 7'
32tt (1 +tf jQ [i_v(t)sin *]Vl-]c(t)sin>

111]
+ - ^ t > d<)P

"Zl-v(t)sin<p 2 [ 1-k (t) sin <p]
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Changing variables a second time (z = sin <p), we obtain

(A-14) i|j(t) =
l ri

32-rr (l+t)5/4 Jn n . /'.. ... ,2 ,
' J 0 (l-vz)vz(l - z)(l - k z

1 1 1
+ — «

1 - vz 2 (1 - k z'
dz

where v = v(t), k = k (t) are given by (A-10) and (A-11); Equation (A-15'

can be rewritten by partial fraction expansion as

3 i n
(A-16) i|j(t) =

574
32tt (1+t)

1 2

[1
2 , I v (1 - vz)

0 Vz(l-z)(l-k z)

1 1 k 1 , v , 1

(1-vz) 2k v v-k (1-vz) \v-k /1-kz

To proceed further, we note that

•/ z(l-z)(l-k z)

(A-l 7)

(1-vz)2Vz(l-z)(l-k2z) (v-l)(v-k2) dz (1-vz)

1 fv2-lft
+ [1- —

2 (v-k2)(v-l) (l-vz)\/z(l-z)(l-k2z)

l-k2z
+

2(v - l)Vz(l-z)(l - k2z) 2(v - l)(v - k2 ) Vz(l-z)
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and

(A-18)
2k d /z(l-z)

(l-k2z)\/z(l-z)(l-k2z) k2- 1 dz Vi-k2:

1 /1-kz

(k -1)V z(l-z)

Using (A-17) and (A-18) in (A-16) and simplifying the result (including

2
the transformation z= sin <p), we obtain

TX

(A-19) i|i(t) =
2v(t)-l d<p

ir(l+t)5/4 ^2v2(t)[l-v(t)] ^0 Vl-k2(t)sin2«p16 l-v(t) sin <p

IT

IT

2v(t)k2(t)^0 [yi-k2(t)sin2<p
-VTi2/^ • 2k (t) sin <p

TT

+

2(l-v(t))(l-klt)) J0

Combining (A-7) and (A-19) yields (25).

- 17 -

vCi2/^ • 2k (t) sin <p dtp

dtp
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