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ABSTRACT

The traffic demands at the stations of a communication

network are usually not deterministic. Optimum loca

tions found using deterministic techniques are poor

when the random nature of the network traffic is con

sidered. The concepts of absolute centers and medians

are generalized to maximum probability absolute cen

ters and medians. Minimum variance points are also

considered. Techniques to locate these optimum points

are discussed.

INTRODUCTION

A communication or traffic network may usually be represented

by a finite graph G, with weights attached to each of its branches and

vertices. Given a graph G, one may be asked to find a point on G

which is "optimum" in some predetermined sense. For example,
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one may be asked to find a point on G from which the farthest point can

be reached in the shortest time. In the simplest case, finding an opti

mum point may be equivalent to finding the center or median of G[l,2] .

Hakimi considered the problem of finding the absolute centers

and medians of a graph [3,4] . In the formulation of his model, the

weight w. of branch B. (i = l,... , B) represents the length (or cost per

unit length) of that branch, while the weight h. of vertex v. (j =1,.. . , n)

is the average traffic (number of accidents or messages) occuring at

v. .

J

In reality, the traffic occuring at a vertex is not a fixed number,

but rather a random number with a possibly known probability distri

bution. Consequently, an optimum point found by deterministic methods

will vary with different realizations of the random events. It is there

fore necessary to reevaluate the "optimality" of the deterministic

optimum points. The concepts of absolute center and median must be

generalized.

ABSOLUTE EXPECTED CENTERS AND MEDIANS

Consider a weighted n vertex graph G; a point X on G, is a

point on some branch of G. The distance, d(X, Y), between any two

points X and Y on G, is the length of the shortest path connecting X

and Y (the length of a path is the sum of the branch weights in that

path) [5]. Let H. (i =l,... ,n) be a nonnegative random variable corre

sponding to the weight of vertex v. . With the above notions, we make

the following definitions.

Definition 1. A point X on a branch of G is an absolute expected

center (AEC) of G, if for every point X on G
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max EH. d(v.,X ) < max EH. d(v.,X) (1)
i^ • *- 1 x i oe' — ,^ • ^ i x i ' v '
l<i<n l<i<n

Definition 2. A point Y on a branch of G is an absolute expected

median (AEM) of G, if for every point Y on G

n n

]T EH.d(v.,Yoe) <£ EH. d(v.,Y) (2)
i=l i=l

Note that these definitions are identical to Hakimi's definitions in the

case of deterministic vertex weights.

Definition 3. The expected radius r of G is a number defined by

r = min max EH. d(v.,X) = max EH. d(v.,X ) (3)
XonG l<i<n l<i<n

Definition 4. The expected median length R of G is a number defined

by

n n

Ro =vm* I EHid<VY> =I EHid<vi'Yoe) <4>
Y on G . , f—\

i=l i=l

Suppose that the AEC and AEM of G are found [3] . A natural

question is: How "optimum" are these points when the random weights

of G are considered. The interpretation of "optimum" for deterministic

graphs is clear. The AEC will be no "farther" than r from any vertex

of G; the median length of G will be no greater than RQ. If 1^ is the

E represents the expectation operator,
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deterministic weight of v., equivalent statements for the above re

lationship are

Prob< max h. d(v.,X ) > r > =
U<i<n 1 1 oe J

0 r>rQ (5)

n

(6)
f n 1Probj £ h.d(v.,Yoe) >R 1=0 R>Ro

i=l

If h. is a random number, Eqs. (5) and (6) may not be true. It is thus

desirable to investigate the quantities on the left hand sides of these

equations. The following two theorems provide upper bounds for these

number s.

Theorem 1. Let X be an absolute expected center of a graph G,

whose vertices v,,... , v are weighted with the nonnegative, independent

random variables H.,...,H , respectively. Then

Prob^ max H. d(v., X) >r I <i > EH. d(v.,X)
h<i<» x x " J "r i=i x x

n n

""2" Z Yj EHi EHJ d(vi'X) d<vj'X>
r i=l j=l

+ ... + i-ii EH, ... EH d(v,,X) ... d(v , X) (7)
n 1 n * 1 ' n ' A '

r

If U is a random variable, Prob \ U > z j represents the probability

that U is greater than z.
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and in particular

Probi max H. d(v.,X ) > r ><1- (1- —] (8)ll<i<n i Vi oe' - J - \ r / * '

Proof. Since H-,...,H are independent,

Prob | max H. d(v., X) >r | =1-^7" Prob |H. d(v., X) <r]
(9)

and if U is a nonnegative random variable, it is easy to show [6] that

Prob ( U<r ] >1-—

n

(10)

Replacing Prob | H^v^X) <r j by (l -EH.d(v.,X)) in the right hand
side of Eq. (9) gives

Probj max H. d(v., X) >r[ <1 - JJ (1 . EH. d(v., X)/r) (11)
L1liln J i=l X X

Expanding the right hand side of Eq. (11) gives the desired result of Eq.

(7).

If we let X = X , Eq. (11) gives

Prob < max Hd(v X )>r \ <1-JJ(I -EH d(v X )/r) (12)
Ll<i<n x oe J i=l l l oe

Clearly,
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n

JJ (1 -EH. d(v., XQe)/r) > (1 - max EH. d(v., XQe)/r)n (13)
i=l l<i<n

and by the definition of r , Eqs. (12) and (13) imply

Prob*) max EH. d(v.,X ) > r }» < 1 - (1 - max EH. d(v.,X )/r)n
^ ,^.^ i i oe7 — ( — i^-^ i ' i oe7

l<i<n Ki<n

= 1 - (l-ro/r)n (14)

Theorem 2. Let Y be an absolute expected median of a graph G,

whose vertices are weighted with the nonnegative random variables

H,, . • • , H • Then
1 n

n i £

Prob -< ) H. d(v., YQe) >Rf < -g (15)

Proof. Using the same method as in Theorem 1, we have

Prob } Y H. d(v., Y) >R><(E £ H. d(v., Y))/R
i=l i=l

n

=I ^ EH.d(v.,Y) (16)

And if Y = Y ,
oe

i=l

n

Prob<| ^ H. d(v., YQe) >R}> <£ £ EH.d(v.,Yoe) =
(17)7
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It is interesting to note that if we attempt to use the results of

Theorems 1 and 2 to find points which minimize the upper bounds in

Eqs. (7) or (16), we find that Y minimizes the bound in Eq. (16) but

that X does not necessarily minimize the bound in Eq. (7). Additional

bounds are given in the following section.

MAXIMUM PROBABILITY ABSOLUTE CENTERS AND MEDIANS

In the preceding section we obtained some simple upper bounds

for Prob ( max H. d(v.,X) >r j and Prob j >H£ d(v., Y) >R\ .

Given a number r (or R), a natural goal is to find an X (or Y ) on

G, such that Prob f max Hi d(vr Xq) >r j (or Prob ^ ^ d(v.,, Yq) >
is minimized. In other words, we want to find a point X such that the

greatest weighted distance stays within an allowable limit with maximum

probability. These ideas lead to the following definitions.

Definition 5. A point X on a branch of G is a maximum probability

absolute r center (MPArC) of G if for every point X on G

R)

Prob < max H. d(v., Xq) > r > < Prob <
I l<i<n J

max H. d(v.,X) > r \ (18)
L Ki<n X X J

Definition 6. A point Y on a branch of G, is a maximum probability

absolute R median (MPARM) of G, if for every point Y on G

Prob \ 2^ Hi d(vi> Y0) >Rf1Prob ] 2 Hi d(vi' Y) - R̂ (19)

The above definitions can be written in expanded form by intro

ducing the concept of a local optimum point [3] . We demonstrate with
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Definition 5. Let X . be a point on branch b. such that

Prob < max H. d(v.,X .) > r
,>.. 1 * 1 oj7 —

I Ki<n J

min Prob

Xonb.
J

max H.d(v.,X) > r
Ki<n x *

(20)

Then, X . is a local MPArC and X is an X . which minimizes the
oj o oj

left hand side of Eq. (20) . Consequently, if the set of local optinnum

points of G are available, the optimum point can be easily obtained.

Consider the graph of Figure 1. If X is an arbitrary point on

branch b, , then

d(v.,X) = min[x +d(v ,v.) , Bk - x + d(v ,v.)] (21)

and, it may be easily shown that

Prob {H. d(v.,X) <r j £ F. (x) =
+d<V\>J

B. -x + d(v ,v.)
k x q i7J

0 <x<a.

a. < x < B,
l — k

(22)

where F.[z] is the cumulative probability distribution function of

H. (i = 1,. .. ,n) and a. = ^fB, +d(v , v.) - d(v , v.)l . The above rela-
l* ' l 2 L k x q i7 x p i7 J

tionship is illustrated in Figure 2.

From Figure 2 and Eq. (9)> we can immediately obtain the

following probability bounds for X , , a local MPArC.
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n

Jj min <| F.
i=l

d(v ,v.)
p i .

F. d(v ,v.)
, q i7J

1

< Prob< max H. d(v.,X J < r
1 ,^.^ l x i ok7

l<i<n

n

<7T" max ^ Fi
" i=l

d(v ,v.)
* p i7

, F, d(v ,v.)
q i7.

(23)

The problem of finding a local MPArC is equivalent to finding an

x which maximizes j j F.(x) and is numerically straight forward.

However, if the random variables H.,...,H are discrete, the following

interesting result is obtained.

Theorem 3. Let H,,. .. ,H be discrete independent random variables.
In

Then, there exists an interval (possibly degenerate) [X , X J on each

branch of G, such that any X€ [X ,X ] is a local maximum probability

absolute r center of G.

Proof. Let F. [z] (i =l,... ,n) be the cumulative probability distribution

function of H. such that

F.[z] = k.. j - 1 <
iL J ij J —

j = 1,2,

The probability distribution of d(v^, X) Hi is Fi ^, ^>

z = r, is a function F.(x) shown in Figure 3 and given by Eq. (25 a) for

0 < x < a. and by Eq. (25b) for at < x < Bfe.
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k. = Ff-TT—^ rl 0 < x < —£-=- - d(v.,v )is Ld(v.,v )J — — s-1 l i' p'
1 P

F.(x) = < k.. ..
1 1 i(s-j)

( k.. . = F.(a.)i(s-m) ix i7

F.(x) = I ki(s-m+j)

—r - d(v.,v ) < x < ?—t- - d(v.,v )-j i' p7 - s -j -l uvvi* p;

j > s

a. < x < B, + d(v.,v ) -
i — k x i* q7 s - m+1

B, + d(v.,v„) -
i q s - m + j

< x <

B, + d(v.,v ) -
k x l q7 s -m +j + 1

(25 a)

(25 b)

Let 7^ = j xi =0, xiX,. .. ,xit j (i =l, . . . ,n) be the set of

jump points of F.(x) and let 77 =I wQ =0, c^,. ..,u>t j (t < Yt.) be
the common refinement of the J L • Clearly, F.(x) is constant for all i

on the open interval (w. ,,oa.) for j = 1, . . . ,t. Therefore,

Prob | max ^ d(v^, X) < r | is also constant on each such interval.

Then, either there exists at least one interval, say (o> ,,co ) where

this probability is maximum, or the maximum occurs only at an w. of

77.

Note that a maximum probability point must occur at an co. of

J I , regardless of the existence of a maximum probability interval.

Hence, local MPArC's could readily be found for a graph G by computing

the jump points of the F.(x) .
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Remark. It is also possible to show that if the H. are discrete, inde-
v J

pendent random variables, and there exists a non-degenerate, maximum

probability interval (X , X ) such that any X in that interval is a

MPAr,C, then there exists an e> 0, such that if |r, -r2| < «» there

exists an X'e(X ,X ) such that X' is a local MPAr2C of G.

We now turn our attention to the maximum probability absolute

n

R medians of G. Consider the quantity / H. d(v., Y) . If n

n

is
1 • 1 -

i=l

"reasonably" large and the H. are independent, for each fixed Y, we

can approximate the sum by a normal random variable Z with mean

2
ji(Y) and variance o- (Y) where

n

\x(Y) =^ EH.d(v.,Y) (26)
i=l

n

<r2(Y) =£ Var H. d2(Vi, Y) (27)
i=l

Therefore,

Prob{z<R } =$(R;(y ) (28)

where * is the standard normal distribution function. Since $ is a

strictly increasing function, Y =Y maximizes Prob \ Z < R | if

and only if Y = Y maximizes
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n

R- ^ EH. d(v.,Y)
R - NY) = i=l (29)

<r(Y) /^ 9 \ 1/2
»Y)f2var hi d2(vij

^ i=l

From Eq. (29), we can immediately evaluate the "optimality" of

an sbsolute expected median Y
oe

n

(30)
l • i oe — o j c

i=l

Prob [| H. d(v., Yoe) <Ro j =\

Consequently, Y is a "poor" location for the median of G. Maximiz

ing Eq. (29) is a relatively routine numerical problem, and will not be

discussed further. Thus, if the normal approximation is used, MPARM's

of G can be located without great difficulty. If exact expressions are

required, n-fold convolutions are encountered and the solution is con

siderably more complicated.

MINIMUM VARIANCE ABSOLUTE MEDIANS

In finding an optimum location for a median of G, the designer

may be satisfied in knowing that the probabilistic demands for the sys

tem stay close to a nominal value. Hence, it could be desirable to find

a point Y on G such that the variance of / H. d(v., Y ) is minimum.
r OV l_j i i ov

Let H,,. . . ,H be independent random variables with variances

2 2o- ,... , o- , respectively. For Y on branch b^ ,
1 n
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Var

{n •% n 2

2 H.d(v.,Y) =J^fminty+̂Vp.Vi), Bk -y+d(vq> v^] }
i=l i=l 1

Minimizing Eq. (31) is again numerically straight forward. However,

3
if b, is an isthmus of G, we obtain the following result.

Theorem 4. Let b, be an isthmus of G, which if deleted divides G

into subgraphs G, and G^ • Then, there exists a Y on b, such that

Var

and

where

Y H. d(v.,Y )[ =
l_j 1 x 1 ov7
i=l J

min Var

Yonb,

r n

I Hi d<v
L i=l

Y)

d(v ,Y )
x p ov7

0

< D
B,

D < 0

0 < D < B,

B, < D
k —

J crv2 d(vp,v.) - £ crv2 d(v^,V;)
i_i v

v.eG,
l 1

v.eG, J
J 2

P J

D =

n

i=l

(32)

(33)

Proof. Since b, is an isthmus of G, there are no paths from any

vertex of G, to any vertex of G2, except through branch bk. Let

v eG, and v € G0 . Then, for v.eG,, v.cG7 and Y on b, ,
pi q c. lljt. k

Any branch of a connected graph G, which if deleted from G divides

the graph into two components (subgraphs) is called an isthmus.
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d(v.,Y) = d(v..v ) + d(v ,Y)

d(v.,Y) = d(v.,vq) +d(vq,Y)

or, referring to Figure 1,

d(v.,Y) = d(v.,v ) + y
P

d(v Y) = d(v.,vj + B - y = d(v., vJ - y
K J P

Therefore, from Eqs. (31) and (35) ,

Var

n

1H. d(v., Y) =£ o-^2 (d(v., vp) +y)2 +£ %2 (d(v., vp) -
i=l v.eG, v.eG-, ^v.eG,

i 1
v.e G0

J 2

n

2 Y 24-9y / (r + 2 y
3 /_i v. 3

i=i 1

n

) (r d(v.,v ) - / cr d(v.,v ),/j v i* p7 /_, v. v J p7
v.eG, J

J 2
v.e G,

u l 1

+ Y o- 2d2(v.,v )
Li v. i p7
i=l

(34 a)

(34 b)

(35 a)

(35 b)

y)

(36)

Taking the derivative with respect to y of both sides of Eq. (36) gives

n n

^Var £ H. d(v., Y) =2y £ o- 2+2£ ^ d(v., vp) -2£ ^ d(v.,vp)
i=l i=l X v.eG, 1 v.eG- ^

il

(37)

Consequently, Var I H. d(v., Y) attains a minimum at y = D where
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/ o- d(v.,v ) - ) o" d(v.,v )L v. v i' p' Li v. j» p'
v.eG, v.e G7

D = -i i J (38)
n

Li v
i=l

and if 0 < d < B, , then Y , located on b, by Eq. (38), is a local
—~ ""• K. OV K

minimum variance median. If D < 0, then Y is at v and if

D > B, , then Y is at v .
k ov q

Corollary. If G is a tree, the minimum variance absolute median has

a location on some branch b, given by Eq. (33).

Proof. If G is a tree, every branch of G is an isthmus of G.

Generalization of Theorem 4. The proof of Theorem 4 uses the fact

that if Y is on an isthmus of G, d(v., Y) = d(v.,v ) + d(v , Y) where
l is s

s = p or s = q . Let G be a connected graph and b, any branch of G.

Then, from Eq. (21), d(v.,Y) = d(v.,v ) + y for 0 < y < &i and

d(v.,Y) = d(v.,v ) + B, - y for a. < y < B, . Suppose we introduce a

new vertex at y = a. and label the subdivided branch as b., and b^ J

for the purposes of computing d(v., Y), Eqs. (34) hold on each branch

segment. Let us generate all of the ai(i =l,. .. ,n) and reorder them

such that a. < a.,, . The a. divide b. into w segments (w<n + l),

and on each such segment Eqs. (34) hold. Consequently, the appropriate

modification of Eq. (33) can be used to find the minimum variance point

on each segment. The local minimum variance absolute median is

easily found among the set of these points.

Remark. A natural, parallel approach to the above problem is to find
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a minimum variance absolute center, i. e. , a point X on G which

minimizes Var {max H. d(v.,X)j . This problem is far more com

plicated than the above because of the difficulty of obtaining analytic

expressions for the moments of a finite set of non-identical random

variables [7] . Even if normality assumptions are made, the approxi

mate expressions encountered are complicated [7] and the problem is

exceedingly cumbersome.

OPTIMUM LOCATIONS ON A GRAPH

WITH SAMPLED POPULATIONS

Often, it is unreasonable to assume that the probability distri

butions of the H. are known. A more reasonable assumption is that a

set of observations h.,,h.?,. .. ,h. of H. are available. Let the
11 l u lm. i

i

random variable H.. (i =1,... , n; j =1,.. . , m^ correspond to the jth

observation of H. and suppose that H^,... ,H.ffl are identically and
1 i

independently distributed. Furthermore, we will assume that F.[z] ,

the unknown probability distribution of H. is strictly increasing; that

is, H. is a continuous random variable.
i

On the basis of the observed values of H., we would like to

make a decision concerning the location of the optimum points of G.

Let S (z) be the empirical distribution function of H. [6] . In other
m. r • i

i

words,

where

m.
i

S (Z) =-1 Y f (H..) (39)
m.v ' m. Li z xJ

j=l
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U > z

f2(U) =
U < z

Thus, m.S (z) is the number of samples of H. which are smaller
1 m. ' r 1

1

than z . The following theorem shows that if the m. are large, local

maximum probability absolute centers found by using the S as the
i

true distributions of the H. will be "close" to the actual centers of G.
l

Theorem 5. Let S (z) be the empirical distribution function of the
i

continuous random variable H. whose true distribution is F.[z](i = l,. .. ,n)

Let X (m,,... ,m ) be a local MPArC on branch b, , found with respect

to the S . Then, for 6 > 0, there exists an integer M, and a point
m.

i

X on b, , such that for m. > M (i = 1, . . . , n) ,
o k l —

Prob { d(Xo,Xo(mr . . . ,mn)) < 6} -* 1 asM-oo (40)

and X is a local maximum probability absolute r center of G.

Proof, (a) We first prove that for any e > 0, there exists an M such

that for m. > M (i = 1,. . . ,n) ,

Prob \ | 77 Sm (z) - 77f.[z]| <e [ -> 1 as M- oo (41)
I i=l i i=l J

By Glivenko's Theorem [6], for |3 > 0,

Prob {sup|Sm (z) -F.[z]| <P[- 1as m -> oo (*2)
v. z i *J

-17-



which implies

Prob | F.[z] -p<Sm (z) <F.[z] +pU 1as m. - oo (43)

For M an integer and m. > M(i =l,...,n) we have

n n n

Prob^ JI (F.[z] - P) < JI S (z) <77(F.[z] +P) >- 1 as M- oo
I i=l x i=l mi i=l * J

(44)

and since the inequalities

n n n n

77(F.[z] +P) < 77f.[z] - 1+(l +(3)n = 77f.[z] + Y pk (45a)
i=l x i=l x i=l * y.

k=l

and

n n n n

TT"(f [z] -p) > 77f [z] +(-p)n > 77 f [z] - Yp
i=i 1 ~ i=i x " i=i x .^.

k=l

hold, then

T n n n n |
Prob^ - Y pk <JIS (z) - 77F [z] < Ypk )>-> 1

^ i=l i i=l ^k=l iii ii k=1

If p =(e +l)1/n - 1, Eq. (41) follows.

(b) Let X = X maximize
v ' o

F(X)

n

=> 77
i=l

d(vpc5

-18-
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and, let X = X = X (m,, ... ,m ) maximize the random variable

s<x> =^vNN <47b)
Then, we will prove that for m. > M

Prob] F(XQm) >F(Xq) - 2e I-> 1as M-> oo

From Eq. (41)

Prob \ F(Xq) -e <S(Xq) <F(Xq) +eI - 1 (49)

and if

(48)

F(XQm) = F(Xq) - Y (Y > 0) (50)

it follows that

}Prob < F(Xq) - e - Y <S(XQm) < F(Xq) - y + e j> - 1 (51)

However, if y > 2e> we obtain

Prob \ S(X ) <F(X ) - e <S(X ) >-♦ 1 (52){S<Xom> <F<Xo< '€KS<Xo> }
This is impossible since Eq. (47 b), S(X ) > S(X ) .

(c) Clearly, around each optimum point X on b, , Eq. (49)

defines an allowable region for X . Let x and x be the locations
° om o om

of X and X on b,, respectively. Within a sufficiently small e
o om k c

region, F(X) must be strictly increasing for x < x and strictly de

creasing for x > x (without loss of generality, we have assumed F(X)
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is not flat at X ) . Consequently, within this region, the inverse function

of F(X) exists and is continuous. Then, for any 6 > 0, we can find an

e > 0 such that

|F(Xq) -F(Xom)| < e implies

x - x I < 6 (53)
o om1 x '

Since x - x I = d(X ,X ) (for sufficiently small 6) , the theorem
o om' o om

is proved.

The problem of finding the maximum probability absolute medians

of G on the basis of the population samples requires, in general, an

n-fold convolution of the empirical distributions. However, the problem

may be considerably simplified if we make the assumption that ) H. d(v., Y)

is a normal random variable. In this case, Eq. (29) must be maximized.

— 2
Let H and V be defined by

m. m. J
l l

m.
l

H = — Y H.. (i =l,...,n) (54a)mi m. Li iJ
1 Fi

m.
i

Vm2 = -^ y (H -H ,)2 (i =l,...,n) (54b)
m. m. Li ij. m.

j=l

— 2 2 . ,
H and V are consistent estimates of EH. and cr , respectively

m. m. i Vv
ii x

(many other "nice" properties also hold)[6] . Consequently, it is not

difficult to show that if m. > M (i = 1,... , n)
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R-IHm.d<vi'Y> R" I EHi d<V Y>
lim Prob< - - > e S = 0
M-oo j v ? 1/2 v 1/2

ZVm dVi'Y> Z'v d<Vi'Y)
(55)

In other words, we may base our optimization procedure on the sample

means and sample variances of the vertex populations.

CONCLUSIONS

The concepts of absolute median and absolute center were

generalized to include the randomness of the network traffic. A number

of problems remain unsolved. For example, if the random variables

which represent the vertex demands are not independent, the location

of maximum probability points on G becomes considerably more

challenging. Hakimi generalized the absolute median to an absolute

p-median [4] . A similar generalization can be made in the probabilistic

case. The problem becomes much more complicated if distance is

considered to be a random variable. The author is presently studying

the feasibility of such an extension.
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Fig. 1. Distance relations on branch b, of G .
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Fig. 2 . Probability relations on branch b, of G
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ki(s-m)

n °i Bk
3 indicates left continuous

E indicates right continuous

Fig. 3 . Discrete probability relation on branch b, of G
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