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ABSTRACT

This paper is concerned with the problem of obtaining the

minimum realization of a linear nonanticipative system charac

terized by its impulse response matrix: the problem is to find a

linear differential system of least order which is zero-state equiv

alent to the given one.

For the time-varying case, Kalman's decomposition is

used to obtain, in some cases, systems of lower order than Youla's

globally reduced systems. In special cases, integrators are time-

shared and integrators are saved at the cost of relays; from a

mathematical point of view, in such cases, the system's matrices

will include 6 functions.

For the time-invariant case, an explicit way of constructing

the minimal order analog computer simulation is given. The

method is based on the partial fraction expansion of the transfer

function and includes the case of multiple poles. The method is

based on careful selection of dyadic expansions; it is an alterna

tive to Kalman's method which is based on the Smith-McMillan

form.
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INTRODUCTION

This paper is concerned with the problem of obtaining the mini

mum realization of a linear nonanticipative system characterized by

its impulse response matrix: the problem is to find the linear differ

ential system of least order which is zero-state equivalent to the given

one.

1 2For the time-varying case, the key tool is the Kalman ' decom

position of the impulse response matrix. Our procedure results, in

some cases, in a system of lower order than Youla's globally reduced

system.

For the time-invariant case, we give an explicit way of construc

ting the minimal analog computer simulation of the system. Our method

is based on the partial fraction expansion and includes the case of

multiple poles. This method is an alternative to the one based on the

Smith-McMillan canonical form proposed by Kalman.
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I. Time-varying case

A. Notations

Let W(t, t) be an r Xp impulse response matrix of a nonantici-

pative system. It is assumed that, for each fixed t, W is locally

integrable with respect to t and, for each fixed t, W is locally integrable

with respect to t.

2 3
W(t, t) is said to be realizable ' if there exists a linear differ

ential system S of finite dimensional state space, (say n), which has a

zero-state response to any input applied from t~ on given by

y_(t) = j* W(t,T)u(T)dt
''0

t > tQ . (1)

More precisely, let the system S be characterized by

x(t) = F(t)x(t) + G(t)u(t) (2)

y_(t) = H(t)x(t) (3)

where F(»)> G(") and H(«) are respectively n %n, n ><. p and rXn

matrices whose elements are real valued functions defined on (-00,00) .

It is assumed commonly that F, G and H are square integrable over

any finite interval. We shall not impose this requirement on F.
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Let ®(t,tn) be the state transition matrix of (2). Then it is well

known that W(t, t) is realizable by S if and only if

W(t,T) = H(t)£(t,T)G(T) for all t > t. (4)

Since the system S is completely characterized by F, G, H one uses

the locution "(F,G,H) realizes W(t, t). "

Under the condition that F, G and H be locally square integrable,

2
Kalman has given an interesting characterization of realizability:

W(t, t) is realizable if and only if

W(t,T) = iyt)(3(T) Vt,T with t > t (5)

where *\i(°) and j3(*) are, respectively, r Xn and n Xp matrices which

are locally square integrable. Note that this characterization is not

valid if F(») is not locally square integrable. The proof is based on

the observation that (£, £, 40 realizes W(t,-r) : thus, under these conditions,

it is always possible to simulate any such impulse response matrix using

time variable gains and integrators but without feedback.

We shall see below that if we allow the use of switches then, in

many instances, there exist simulations which require a smaller num

ber of integrators.

B. Reduction algorithm

As a first step in obtaining the minimal realization of W(t, t) we

show that we can reduce the dimension of the system (2), (3) in some
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cases. As we shall see below we shall have to drop the requirement

that F be locally integrable. From an engineering point of view, this

is of little importance for we shall only/need a switch to discharge

instantaneously the capacitors of some integrators.

Lemma. Let W(t, t) be factored as ijj(t)£(T), a product of an r X n

and an n x p matrix. If, for some t,, the columns of ty(') are linearly

dependent over (t^oo) and the rows of £(•) are linearly dependent over

( -oo, t, ) then there is a realization of dimension (n-1).

Example 1: let r =p =1, 4»(t) = (e-t, l(-t)) and P(t) = col(e T,1(t-1)) .

Here l(t) is the Heaviside unit step function. Clearly t > t implies

that ^7^) = ° whenever P2(T) ^ °* Hence

y(t) = C [^(t) px (t) +q,2(t) P2 (t) ]u(r) dt
-00

= f 41 (t)P (T)u(T)dt = \ e"(t"T)u(t)dt.
J-oo J-oo

Example 2(^ : Let r =p=1and W(t,r) =^(t) ^(t) +i|i2(t)P2(T) where

r 1 if te[-2, -1] r 1 if t€[3,4]
+,(t) =\ ^Z{t) =\

L 0 elsewhere , L 0 elsewhere ,

1 if t€[-3,-4] f 1 if T€[l,2]

.sewhere .

r 1 if t€[-3,-4] r 1 if
\(t) =I P2(t) =I

I 0 elsewhere , I 0 eL

(t) This example is due to P. Varaiya.
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Then the differential system

r, = - 6(t)T) + [K-t)(31 (t) + l(t) p2 (t) ]u (t)

and

y = Ti(t)[^(t) + 4>2(t)]

(where 6(t) is the delta "function") is zero-state equivalent to the one

characterized by W(t,T). Note that (a) the matrix F(t), which is
3

here -6(t), is not locally integrable, (b) the globally reduced realization

of W(t, t) is of dimension 2, (c) there is no representation of the given

W(t, t), valid for t > t, as a product of two real valued functions ^(t)P("r) .

Proof: The linear dependence of the rows of p(#) over (-00, t.) im

plies that there is a constant column n-vector b ^ 0_ such that

b'P(t) = 0 Vt in (-00,^). (6)

The linear dependance of the columns of ty{*) over (t^oo) implies that

there exists a constant column n-vector c ^ 0 such that

4«(t)c = 0 Vt in (troo). (7)

Case I : b' • c_ = 0. Let us construct an n X n real, constant, non-

singular matrix M as follows: pick (n-1) vectors yl, y2, ..., y to

be orthogonal to b_ and such that {y »Y » •••» Y_ " » £} is a set of linear

independent vectors; let M be the n Xn matrix whose columns are

y1, y2> . .. , yn_1» £• The last row "of M" which is a vector orthogonal
to y » Y » • • • » Yn f is now vector necessarily collinear with b_'; call

it ab'; note that the scalar a ± 0. Now consider
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W(t,T) =qj(t)P(T) =qj(t)MM_1£(T)

= 5(t)P(T) t > T. (8)

The r Xn matrix ty(t) has ^{\.)q as a last column: hence, by (7), the

last column of ty(t) is identically zero for t > t • the nX p matrix

P(t) has orb'p(T) as a last row: hence, by (6), the last row of P(t) is

identically zero for t < t, . Since nonanticipativeness requires that

t > t, the last row of p(*r) and the last column of ^(t) may be deleted

without affecting the value of the product over t > t. We have thus

obtained a factorization of W(t, t) in terms of an r X(n-l) and an

(n-1) X p matrix.

Case II: b' c_ = 0, i. e. , b and £ are orthogonal. Let N be a

real, constant, nonsingular nXn matrix which has b1 as its last row

and such that c is the first column of N. This is possible since b is

orthogonal to c . Now consider

W(t,T) =^(t)NN_1p(T)

=$(t)£(r).

A.

By (6), the last row of jM") is identically zero on (-oo,t.) and by (7) the
A.

first column of *\t{m) is identically zero on (t,,oo). Let us consider the
a y\

implications of these facts in terms of the (0^, {^, 40 realization which is

shown on Fig. 1. The nth integrator input is identically zero on (-oo, t,) ;

the first integrator output is multiplied by the vector 4{i(t) , (the first column

of ^i(t)) , which is identically zero on (t,,oo) . Thus the first and last

integrators of the realization of Fig. 1 may be replaced by a single time-

shared integrator. The first and last line of the realization of Fig. 1
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are replaced by the one shown on Fig. 2. The differential equation

associated with the time-shared integrator is

f\ 1 = - 6(t-tx) rij + <Px(t) 1(t-tj + pn(t) , u(t) >

and the contribution to the output due to ru is

^(tUi^ +Ht-t^^t)].

This completes the proof of the lemma. As a special case of this lemma

we have the following.

3 ^ nCorollary: If there is a nonzero beR such that

b'P(T) = 0 V TeR (9)

or if there is a nonzero c€R such that

i|i(t)c = 0 V teR (10)

then there is a realization of dimension (n-1).

Proof : If (9) holds, let M be a real, constant, nonsingular, n X n

-1 ^
matrix such that M has b as its last row. By Eq. 8 the factorization

of W(t, t) is reduced to a product of an r X (n-1) matrix ijj(t) and an

(n-1) X p matrix p (t) . If Eq. 10 holds, pick M to have £ as its last

column and the same conclusion follows.

C. Realization of W(t, t)

We start from a factorization of W(t, t) as i|j(t)p(-r).
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The first step is to check whether there is any vector b (or c)

in Rn such that Eq. 9 (or 10) holds. For each such vector we can reduce

the realization as shown above. Repeat the procedure until all such

vectors are exhausted. For simplicity, we write again the resulting

factorization as i£(t)p^T) where ^ is r Xn and {^ is n Xp.

Given any t in (-00,00), the columns of + (•) may be considered

as functions mapping (t,oo) into E ; as such they span a subspace of

L9 (t,oo) , the space of square integrable functions mapping (t,oo) into

Er. Call n. (t) the dimension of this subspace: n, (•) is an integer-

valued function that is monotonically decreasing. Also n, (-00) = n.

Similarly consider the rows of £(•) as functions mapping (-00, t) into

E*\ call nB(t) the dimension of the subspace of L2 (-00, t) spanned by

the rows of P(-) : ng(*) is an integer-valued function that is monotonically

increasing. Note that nB(oo) = n. Let for each t in (-00,00)

n(t) = min{nijj(t), np(t)}.

Let t, be a time such that

n = n^) =np(tx) =n^).

Call B the subspace of Rn of all vectors b such that

b'J3(T) = 0_ for t < tj.

Call C the subspace of Rn of all vectors c_ such that

iMt)£ = 0_ for t > tx.
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Since ns(t_) = n. (t.) = n, dim B = dim C .

Let us pick an orthonormal set of vectors of R as follows:

(a) start with an orthonormal basis of Bl IC ; let n, be its dimension;

(b) pick an orthonormal basis for B-MlC and one for C^f IB; let k

be the dimension of each of these bases. From the definition of n, we

have n = n - n, - k.

Construct a real, constant, nonsingular, nXn matrix P whose

last n, rows are the basis vectors of Bl I C and whose rows n-n, -k + 1,

n-n, -k+2, ..., n-n, are the basis vectors of CL\ I B (see Fig. 3) ;

furthermore the inverse P~ has as its last n, columns the basis vectors

of BIIC and as its first k columns the basis vectors of B1! |C. Now

for t > t ,

W(t,r) = i(t)p(T) = ^(tJP^PPtr)

=i(t)| (T).

The effect of the last n, columns of P~ and of the last n, rows of P is

to decrease the dimension of jjj(t) and P(t) to r X (n-n,) and (n-nj Xp,

respectively; indeed, for t > t^ the last n.. columns of the r Xn matrix

kp(t)P~ are zero, and for t < t, the last n, rows of the n)(p matrix

PP(t) are zero; consequently, as long as we consider only the range

t > t, the product (^(t) P~ )( P£(t)) is unaffected if we discard the last

n, columns and the last n, rows. From now on we consider ip(*) and

p(*) to be r X (n-n,) and (n-n,)Xp matrices, respectively. The effect

of the first k rows of P" is that the first k columns of ijj(t) are zero

for t > t1 :

4^.(t) = £ for t > tj, i = 1,2, . . . , k.
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The effect of the k rows of P numbered n-n^-k+1, . . . , n-n, is that the

last k rows of j3 (t) are zero for t < t, :

P^.(t) = _0 for t < t1 , i = n-n,-k+1, . . . , n-n.. .

Using these facts we have the realization described by the following

equation :

^.(t) = -6(t-t1)T).(t)+ <p.(t)l(trt) +P (t) , u(t)>
n-n, -i+1

X — X, «, . . . , K

•H.(t) = <P.(t), u(t)> j = k +1, k +2, ..., n = n-n2-k

and

k

y(t)

i=l "'"I-

= y Ti.(t)[i.(t)+i (t) Kt-tj)]
r-C "" n-n,-i+1

+ I Vt,*J(tK
j=k+l

(ID

(12)

(13)

It is of interest to note that this realization is not minimal in all

cases. We may state the following

Assertion : (i) If the subspaces B and C have dimension 0, the

minimal realization is of dimension n.

(ii) If B-'-flc has dimension 0 (and hence so does C^ilB)
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the minimal realization is of dimension n -n, .

(iii) If B'M IC is of dimension 1 or more, then the minimal

realization is at most of dimension n = n - n, - k and at least of dimension

n-k = n-n, -2k.

These three statements follow from the realization above.

Case i : n, = k = 0 . Let t, be an arbitrary point in (-oo, oo) . The

columns of ^(*) and the rows of P (•) are linearly independent over (t,,oo)

and (-oo,t,) respectively. Consequently, given any y€^ » there is an

input u (•) zero for t > t, and of the form

n

I
i=l

a. p . (t) for t < t, , such that
x —x x ' 1

P(T)u(T)dt = V_,
J-00

For t > t., the corresponding output is given by

n

y(t) =^ Yiiitt) t >tr
i=l

Since the vectors 4^.(#) are linearly independent over (t, ,oo) , the outputs

fill an n dimensional subspace of the output space. It follows from the

theory of differential equations that any realization must have a dimension

of at least n. The realization (11), (12) and (13) (for this special case

k = n, = 0) is of dimension n.
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Case ii : Let t. be chosen so that n«(t,) = n. (t,) = n. Since here

k = 0, n = n-n, . Over (-00, t.) the n rows of {3(«) are linearly inde

pendent, and over (t, ,00) the n columns of 4^(*) are linearly independent.

By the reasoning outlined in Case i, we conclude that any realization

must be at least of dimension n-n, and we observe that the realization

(11), (12) and (13) (for this special case k = 0) is of dimension n = n - n, .

Case iii : (n, ^ 0, k 4 0) . The realization (11), (12) and (13) is of

dimension n = n-n, -k. This realization is not necessarily minimal in

all cases. We know that the first n = n - n, - k rows of £_(•) are linearly

independent over (-00, t,) and that, of the (n-n,) columns of ^(*)»

n = n -n, -k of them are linearly independent over (t,,oo) . Clearly, the

realization of minimal dimensionality will occur when there is a minimum

overlap between the linearly independent rows of P^(*) and the linearly

independent columns of v(j(») . Consider then the worst case :

jj^.(') (i= 1, 2, . . . , n-n, = n + k) are linearly independent,

I P_(») is identically zero.

t > t.

( i..(t) = 0_ for i = 1,2, . . . , k,
^.(•) (i =k+l,k+2, . . . ,n-n,=n+k) are linearly independent,

1 2 \ p_.(«) (i =1, 2, . . . ,ix =n - n, - k) are linearly independent,
p.(t) = 0 i = n+l, n+2, . . . , n+k.

v -x -

4» .(t) = 0 for i = 1, 2, . . . , n-n, ,
—x

p^.(») (i =1, 2, . .. , n-n,) are linearly independent.

W(t,T) = 0_ whenever t/(t,,t2) or "^(t^t^

-12-



When both t and t are in (t., t2) ,

n

W(t,T) =£ £.(t) >< £.(T) t ,T€(trt2)
i=k+l

Since W(t, t) has a dyadic representation involving only (n-k) dyads,

and since these (3 .'s and these ip.'s are linearly independent over (Ufty)

the realization will require n-k integrators.

CONCLUSION

We have shown that the global reduction of Youla does not always

lead to the minimal realization. It is interesting to note that in some

cases, one may time-share an integrator but it is essential to discharge

the stored charge at the time of switching. From an engineering point

of view it is a significant gain since it replaces an integrator by a few

relays.
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II. Time-invariant case

It is well known that an impulse response matrix W (t) is realizable

as a linear time-invariant differential system if and only if the Laplace

transform of W(t) is a proper rational matrix W(s) . We start from

the partial fraction expansion of W(s) . Again W and W are r Xp

matrices. Obviously the problem of finding the minimum realization of

W(t) will be solved if we have a method to obtain the minimal represen-

7 8
tation of each term of the partial fraction expansion; ' here each dis

tinct pole of W(s) has associated with it one and only one term of the

partial fraction expansion. We shall therefore consider only the minimal

realization of a term associated with a single pole.

The description of the procedure for a pole of order k would re

quire very complicated notations, we shall ease the burden of the reader

by describing the method for poles of order 1, 2 and 3 . The procedure

for the general case will be obvious.

Remark : Since the poles of W(s) may be complex all subsequent

algebra involves in general complex numbers. We use the following

notations: let a = (a,, a2,... , a ), b = (b,, b2> .. . , b ) and x = (x^, x2, . .. ,x^)

then the complex scalar product is written as < a, b> and defined by

n

< a,b> = / a . b • , where a. is the complex conjugate of a. .
— — / i XXX X

i=l

Similarly "a =(a^, a2,. . . ,an) . Finally (a><b) x = <b,x >a =f )b.x. a.

-14-
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a denotes the conjugate transpose of a and K denotes the conjugate

transpose of the matrix K. It should also be kept in mind that since

W(s) has rational functions with real coefficients as elements, poles

occur in complex conjugate pairs. In the final realization, the reali

zations --involving complex coefficients --pertaining to pole X. and to

~X. may be combined in order to obtain a realization involving only real

coefficients. The technique is to change variables and use -^ (x+x )

and -yr (x -x ) as the new variables. [See Ref. 6, p. 533 for details. ]

Remark 2: The numerical evaluation of the partial fraction expan

sion has been discussed in References 7 and 8 .

4
Pole of .the 1st order : As shown by E. G. Gilbert, the minimal

representation of a term corresponding to a first order pole, say,

T+T £

requires a state space whose dimension k = rank (K) . In the following

we denote by R (K) the range of K, i. e. , the subspace spanned by its

column-vectors. We recall that k is also the dimension of R (K) . We

denote by R (K ) the range of K , the conjugate -transpose of K; R (K )

is the subspace spanned by the conjugate of the row-vectors of K.

The first step in obtaining a minimal realization of K/(s + X.) is

to write the r Xp matrix K as a sum of dyads

5- lu
i=l

><a. (15)
— x
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where, for each i, a. is a p-tuple of complex numbers and a. is an

ik *r-tuple of complex numbers. The set {tt-K is a basis for R (K ) and

{a .} is a basis for R (K) . Obviously these bases are related.

We describe two methods for obtaining the representation (15) .

Method I. Pick any set of k linearly independent columns of K;

call them <*., <*2, . .. , _a, . Since rank (K) = k, they constitute a basis

for R (K) . The related basis {f*-k is obtained by solving the following

system of k linear algebraic equations in k unknowns:

K ~ fx <*<r*\ A

= / < a., a. > or. j=l,2,...,k. (16a)

i=l

This system can be solved by the Gauss elimination method, for example.
/v. k

For every choice of {£•}-. , the solution of the system is unique because

the matrix of the system is nonsingular. Indeed its (i, j) element is

<a ., a . > and the a .'s are linearly independent. In addition the solution

or, «,,...,«*, spans R (K ) : indeed K is a bijection -- a one-to- one

map which is onto --of R (K) on R (K ) and {f^h is a basis of R (K) .

Method II. Pick any set of k linearly independent rows of K; call

— Tthem £,, £2, ••• >£k • Since rank (K ) =k, they constitute a basis for

R(KT) ; equivalently, {a.}f is a basis for R (K ). The related basis
{a .} is obtained by solving the following system of k linear algebraic

equations in k unknowns:

-16-



K a. =
-J

i=l

/ a. >< a. ) a.£,_i -x/-j

2^<£i,aj>£. j=1, 2,...,k. (16b)
i=l

This system can be solved by the Gauss elimination method, for example.

For every choice of basis {f^-}i » the system has a unique solution be

cause the matrix of the system is nonsingular. Indeed, its (i,j) element

is <«.,'«.> and the a.'s are linearly independent. Furthermore the

solution {<*•}•> spans R (K) : indeed K is a bijection of R (K ) on R (K)

ik *and {£. )1 is a basis for R (K ).

In the following we shall describe the method for obtaining the

minimal representation in terms of the second method just described.

The state representation of K/(s + X.) is obtained as follows : to

each dyad of Equation 15 is associated one state variable

x . = - \x. + < £., u(t) > (i = 1, 2, . . . ,k) . (17)

The contribution to the output due to this first order pole is

k

yx(t) =£ x.(t) £..
i=l

(18)

This state representation of the transfer function K/(s + X.) is obviously

minimal: the system specified by Equations 17 and 18 is completely

controllable (since the a . are linearly independent) and completely

-17-



observable (since the <z. are linearly independent).

Pole of 2nd order : Let the partial fraction expansion be

s+ X. —1 " . .2 —2
(s+M

where K, and K2 are r Xp matrices with possibly complex elements.

The problem is to carefully select the dyadic representation of K. and

*S2:

*l k2

*Si =X £!><£!• *2 =^ti >< g-i-
1 1

We know that the a_. must span R (K. ) and the j^.'s must span R (K2)

however these subspaces may have a proper subspace in common. We

therefore proceed as follows:

(i) Let B, 2 be a basis for the subspace common to R (K, ) and

(ii) Let Br2 be a set of linearly independent vectors such that

*

B^2(J^i2 *s a Das^s *or ^ ^2^

(iii) Let B.- be a set of linearly independent vectors such that

B12 U B12 is a basis for R (*Si)

The a.'s used to represent K, are the. vectors of B,2 and B..5 .

The p.'s used to represent K2 are the vectors of B^2 and B~2 .

Therefore we have three types of block diagrams shown on Fig. 4 : the

-18-



first one corresponds to a vector, £,, of the basis B 2, the second

one corresponds to a vector, £-,, of the basis B- and the third one

corresponds to a vector, a_~, of the basis B..- .

Pole of 3rd order : Let the partial fraction expansion be

7TT^l +7—~2^2+ 7—T3 -3'
(s + X.) (s + X.)

Again the problem is to obtain suitable dyadic expansions of K1 , K ?

and K ~

kl k2 k3

£l= ^£i><£i. &= 1 h><^i' ^3 = Xxi><Xi

{£i^l ( ^Jl » "fli^i ' respectively) is a basis for R(K1)(R(K2)

R(K«) , respectively) .

(i) Let B,~„ be a basis for the subspace common to

R (K*), R (K*) and R (K*).

(ii) Let B-:2, be a set of linearly independent vectors such that

B123 UB123 is abasis for R(K2>) ^ R{K3] '
(iii) Let B,23 be a set of linearly independent vectors such that

B123 UBi23 is abasis for R(^^ R<K3> *
(iv) Let B:2, be a set of linearly independent vectors such that

B-123 (J B-123 (J Bl23 U B123 = B3 is a basis for R (K3) .
(v) Let B,?^ be a minimal set of linearly independent vectors which

together with some vectors of B3 forms a basis for

R (K*) flR(K2).
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(vi) Let Br - be a minimal set of linearly independent vectors which

together with some vectors of B^ and of B,23 forms a basis for

R(K*). Let B2-3tB125UBi23.
(vii) Let B,23 be a minimal set of linearly independent vectors which

together with some vectors of B2~ and B~ form a basis for

R(K*).

To each vector in the seven bases defined above corresponds a type of

block diagram, some of which are shown on Fig. 5 . The y_.'s used to

represent K- are vectors of B,23, B~23, B..- and B~23 ; the (i^.'s used

to represent K 2 are the vectors of B,23, B"23 and B23 ; the a.'s used

to represent K, are the vectors of B,23, B,23, B,23 and B,^r.

r Tkl r^ ->klThe linear independence of the six sets of vectors {«.}, » \£-/i »

k2 rC? -»k2 rA. .k3
{P.}i > {P.}i » {y}i an(* (x^i implies that the corresponding

linear, time-invariant, differential system is completely controllable

and completely observable. Hence it is minimal.

For a pole of order k, the procedure is clear: it requires,

however, 2 -1 bases.

Example : Suppose we are given the matrix transfer function of

a system that has two inputs and two outputs. Let the partial fraction

expansion of the transfer function be

21

+ (19)
s + 1 (s+1)
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The range of K, is spanned by the vector col (1, 3) . Therefore we shall

use this vector as a row vector of the dyadic representation of K1 . We

obtain

5i = [2 1] +
r

[1 3] (20)

£3 = [1 3] (21)

The realization of K.-/(s + l) requires three integrators, but the first

integrator may be used to realize the second dyad of K.. . The realization

is illustrated on Fig. 6.

If we were to use the first method, then we would observe that

R (K3) is spanned by col (7, 2). Then we pick col (7, 2) and col (1,0)

as a basis for R (K,). The representations are obtained on the basis

of a few elementary calculations:

*1 = [2.5 2.5] + r. [-13.5 -10.5] ; K [1 3] (22)

The corresponding realization is shown on Fig. 7.
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u(t) „ <£(t),u(t)>
^o—zL^—
u(t) : <&(t),u(t)>
^—O "k "

u(t) ' < B

o
n-k+l '-

u(t) • <&(t),u(t)>

£,(t)

t^—O
sin *(ti

aV"S">

^ -O

,(t),u(t)> je L <t) -e tl(t)j (t)
^ n-k+l /~\ rrk+l 7i-k+l

: W%M

Fig. 1. Analog computer setup to realize the factorization 4» (t) p (t) .
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"M ^4(t)1<t-t,)^t),u(t)^^^(tfetHfr-t,)^(t)]
=K_)

7777777"

Fig. 2. Realization of the time-shared integrator for the case b'c = 0

The switch is closed at time t, in order to discharge the inte

grator capacitor. It is immediately reopened thereafter.
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k vectors of
the basis of
BXAC

k vectors of
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n, vectors of
the basis of
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n, vectors of
the basis of
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\

Fig. 3 . Illustration showing the choice of columns in P and rows in P
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u(t) <a,,u(t)>

u(t) <E,,u(t):
o

u(t) _<a,,u(t)>

s+X

s + X

s + X

oj(t)

(a)

<r2(t)

(b)

<r3(t)

(c)

|̂Oj(t)
^

s + X T,(t)

T2(t)Ws + X

a,cn,(t)

Fig. 4. This figure shows the three possible types of realizations re

quired by a second order pole: the case (a) realizes simul

taneously a dyadic term of K.. and a dyadic term of K^: these

two dyads have the same row vector, a,, which is an element

of B.^; case (b) realizes a dyadic term of K ^ whose row

vector, P~» 1S an element of B:^ ; case (c) realizes a dyadic

term of K, whose row vector, a,, is an element of B,^ .
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r<y
«|0|(t)

^ hdI1"

u(t)

o— s+X
4—*•

Oj(t) s+X
+• w

T,(t)
(a)

^P
5ft(t>4.1*1

=>

a2cr?(t)

u(t)

o- s+X
er2(t)

s+X T2(t)
(b)

Fig. 5 • This figure shows some types of block diagrams required by a

third order pole. Case (a) realizes simultaneously a dyadic

term of K.., K2, K - : each one has the same row vector, a

vector of B..-^. Case (b) realizes a dyadic term of K and

K _ : each one has the same row vector, a vector of B.^-.
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—©— to y,

<—<T)—. to y2

s +

i—Kj)—«to V|

L-(D—'to y2

Kz^toy,

s +

KgK-toyc

Fig. 6 . Realization of the matrix transfer function given by (19) • The

dyadic expansions used in the realization are given by (20) and

(21).
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