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ABSTRACT

A method for implementing a class of self-organizing control

systems is described. A self-organizing control system is able to

learn which control to apply to a plant so that the plant is controlled

in a near optimum manner. The criterion of optimality considered

here is minimum time control.

Learning is considered as a problem in pattern recognition,

and a pattern space is defined as an augmented state space. The

members of this pattern space are the plant patterns which are to be

classified by the system into different categories, each of which

corresponds to a certain control choice. A heuristic training program

is developed with the aid of which the system learns how to establish

the different categories in pattern space so that a near optimum con

trol results. After the learning period the system is ready for actual

operation: it measures the plant patterns every T seconds, classi

fies the pattern into the appropriate category and then applies the

corresponding control. Two examples of the proposed method are

given. Fortran codes of the programs are presented in the appendix.

A similar approach to learning systems was proposed by
i 2.

K. S.Fu.' He essentially considers a minimum square error optimal

ity criterion but does not use pattern recognition in the same way as

it is used in this paper.
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I. INTRODUCTION

A learning system consists of a plant, a controller, and an

information processor. The information processor may be considered

as a source of artificial intelligence. Without a priori knowledge of

the plant, the system must learn how to control the plant according to

a prescribed control objective. Typically, a system error is defined

and the control objective is to reduce the system error to zero. More

over, it is desired that the control objective be accomplished in a near

optimum manner, in which the optimality criterion must be specified and

furnished to the information processor. One may specify, for instance,

that the system error be reduced to zero in minimum time or with a

minimum amount of energy consumption.

Learning is accomplished through experience. Before the

system can be used to perform its task, it must go through a training

phase in which it will learn how to control the plant. During this

training period the system subjects itself to a large number of tests

which are steered and evaluated by the information processor. The

source of intelligence in the information processor stems from a

heuristic program.

The main objective here is not to find an optimal control for a

system but rather to demonstrate learning and self-organizing features

of physical systems which are without life organisms in the biological

sense. A block diagram of a learning system is shown in Figure 1.
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Fig. 1. Simplified representation of a learning system.
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II. LEARNING AND PATTERN RECOGNITION

The number of different controls, u., that the controller may

apply to the plant are limited to members of a set of admissible con

trols, ft^. These restrictions are imposed so as to simplify the pro
blem, but frequently they may also be necessary because of the physi
cal limitations of the controller. In determining ft we should make

° u

use of any information available on the characteristics of controls for

the desired control objective. For instance, if time optimal control

is desired, one may restrict ft to two, constant-control choices,

one for maximum-positive forcing and one for maximum-negative

forcing, since it is known that these are the time-optimal controls for

linear plants. The unknown plant may not be linear, but the proposed

controls constitute at least a good guess for being suitable controls.

The system must now learn which of the finite number of control

choices should be applied to the plant in which control situations, so as

to perform the control objective in a near optimum manner. Control

situations are characterized by the state of the plant, the present

environmental conditions under which the plant operates, and other

information which may be essential to control the plant, such as the

instantaneous value of time-varying plant parameters. Each control

situation is then characterized by an (n + k) - tuple P = (x1, . . . , x ,

m,, . . . , **v) = (x, m_), where x is the state vector af the plant, and

m = (m,, . . . , m, ) is a vector whose components describe the state of

the plant environment and instantanious values of time-varying para

meters. The vector space to which P belongs is called the pattern

space (J , and P is a pattern characterizing a particular control

situation. A typical pattern for a second order plant with varying time

constant t and output x would be P= (x,x, t,T) where T is the

temperature in which the plant operates.

These patterns must now be classified into categories and each

category corresponds to a particular control u.gft . Thus the system

must learn how to partition the pattern space and to classify each

occurring control situation into the appropriate category and then apply

the control associated with this category.
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III. ESTABLISHING CATEGORIES

j

Let E be a d-dimensional pattern space in which, according

to their properties, patterns are to be classified into R categories.

Each category may be thought of as representing a region in the pattern

space, separated from other category-regions by boundary hyper-

surfaces. These boundaries of the pattern categories are called de

cision surfaces. The problem is to determine these decision surfaces

since this solves the pattern classification problem. There exist cases

where an infinite number of decision surfaces are required to classify

patterns into a finite number of categories, but we are not concerned

with these cases here and the representation of a category by a region

in pattern space (where the region must not necessarily be simply

connected) is justified.

The decision surfaces of a pattern classifier with R categories

can be implicitly defined by a set of R functions g^P), g->(P)» ...»
gR(P), which are called discriminant functions. These functions are
chosen such that for all P in category R.,g.(P ) > g.(P) for i, j = 1, . . .

R, j f i. In other words, for all patterns P belonging to category

R., the discriminant function g.(P) has the largest value. Suppose

now that the regions R. and R. are adjacent. Then the decision

surface separating the two regions is given by

In the case where only two pattern categories exist, one has two dis

criminant functions, gi(JP) and g?(P). For all P in R,, gi(JP) >

g_(P), and for all P in R_, g2(P) > gi(jP)» Then instead of working
with these two discriminant functions, only one function

need be considered. Then for any pattern P, if g(P) > 0, P belongs
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to Rj, if g(P)< 0, P belongs to R2, and g(P) = 0 implies that P
is on the decision surface.

To determine the discriminant functions, it is assumed that

they belong to a set of functions which can be represented in the form

g(P) =+(P, W) =Wlfl(P) + W2f2(P) + . .. + WMfM(P) +WM+1. (3)

Each member of this family of discriminant functions is called a

<j)-function. Then we define a <|>-function with weights W,,..., WM,
W

M
, ,, as any discriminant function which depends linearly on the

weights W. .

After the functions f.,i = 1,...,M are specified, the actual value

of g(P) for a given pattern Pdepends only on the choice of the weight

vector W= (Wj^,..., WM, WM +1)f The functions f. must, of course,
be linearly independent. More will be said about the choice of the

functions f. later on. For the moment, assume that the f.'s are
i i

given, so that only the weights need to be specified in order to deter

mine the discriminant function g(P) .

The weights are determined by a training procedure. For this,

a set of training patterns must be available about which it is known to

which of the R categories each member of the training set belongs.

The weights of the R discriminant functions are then so adjusted that

the training patterns are all classified correctly, i.e. , for all P be

longing to R.,, g^P) takes on the largest value of all the discriminant
functions, i = 1,..., R. This training procedure is known as non-para
metric training of a pattern classifier. It consists of an iterative pro

cedure which examines pattern after pattern and adjusts the weights of
the discriminant functions until all patterns in the training set are

classified correctly. Rosenblatt, Widrow et_al. proposed this method
and showed that the training procedure will converge, i. e. , that nu

merical values for the components of W can be found provided it is

true that the discriminant functions chosen can separate the pattern
categories.
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For example, consider the patterns shown in Fig. 2a. Suppose

that it is assumed that the patterns are linearly separable, that is, that

the discriminant functions are of the form

g.(P) = Wupx + W.2p2 + W.3 1=1.2,3. (4)

It is obvious that decision planes (here straight lines) can be found which

will separate the pattern categories, and thus the training procedure will

converge.

P2 B A S3(r) - gx(R) = 0

♦ /e Rl

83(E) " g2<E) = °.

g2<E) - Si<R) = °

Fig. 2a

However, in the case shown in Fig. 2b, the assumption of linear

separability is not valid and a training procedure using discrimin

ant functions of the form as given in Eq. 4 would fail.

P2
A

Fig. 2b
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It should be noted that the decision surfaces separating the different

pattern categories as shown in Fig. 2a and 2b are not unique. It is

important therefore, that the set of training patterns be truly represent

ative of all possible patterns which may be encountered when the pattern

classifying machine is in actual operation. If the set of training patterns

were poorly chosen, many misclassifications would occur later since all

decision surfaces have been determined according to the training patterns.

If, in general, the choice of discriminant functions is restricted to

<j>-functions, the next questions are how to choose the functions f., and

how many of them to choose, such that the probability is large that the

associated discriminant functions can classify all the training patterns

correctly into their appropriate categories. This probability measures

then the effectiveness of a particular family of discriminant functions,

where by a family we mean a collection of discriminant functions which

differ only in the numerical values of their weights, but are otherwise

of identical mathematical form. This probability has been calculated

by Cover and others for the case of two-pattern categories. The classi

fication of a set of patterns into two categories is called a pattern dicho

tomy, and if this classification is obtained by a <J>-function, it is called

a <j>-dichotomy. For a ^-function with M + 1 adjustable weights and a

setXof N patterns we like to know what is the probability P_j .. that
this <j)-function can implement the pattern dichotomy. Since there exist

N
2 possible dichotomies of N patterns, we obtain this probability by

dividing the number of <j>-dichotomies by 2 . Cover et al. have ob

tained an expression for the number of <j>-dichotomies for a set of N

d-dimensional patterns. It is given by

<$(N,d) =2 2 (N-lY (5)
i=0 V l /

Note that (5) is independent of d and the f.'s, but a function of M and

N, where M +1 is the number of adjustable weights of the <J>-function.

This result is true under one very mild condition: the N patterns must

be in ^-general position, which means that there exists no surface
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<1>(P,W) = 0 in the pattern space containing M + l members of the

training set. The probability that a pattern dichotomy of N patterns

in <j)-general position can be obtained by a <J>-function with M + l degrees
of freedom (M + l weights) is then given by

P =2N,M L
1-N

M

(6)

i=0

Let N = \ (M + l). Figure 3 shows a plot of PwM . i* M vs \ for
various M.

1

P\(M+1),
>

M

1.0 - M = 15

0.8 .
\ M =25

0.6 .

K M =1
0.4 -

0.2 .

1 H—-^ -^+ 1 1 ~ •».

12 3 4 5

Fig. 3

From Figure 3 one observes a sharp threshold effect around X. = 2,

i. e. , N = 2(M + 1). This means that for large M one can almost be

certain to obtain any specific dichotomy of fewer than 2(M + 1) training

patterns with a given <}>-function, while one is almost certain to fail to

achieve any specific dichotomy of more than 2(M + 1) training patterns,

The conclusion to this may be summed up as follows: with no
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a priori knowledge about the decision surfaces of the pattern categories

available, the choice of the M linearly independent functions f. appear

ing in the ^-function is immaterial; however, in order to succeed in

determining the weights W., j = 1,..., M + l, of <|)(P, W), it is im-

portant that for a training set of N patterns cj>(P, W) has more than
N
-=• adjustable weights.

The following two sections describe the operation of the heuristic

training program which has been used in the examples.

IV. COLLECTING THE TRAINING PATTERNS

The problem of learning how to control the plant was considered

to be equivalent to classifying the plant patterns into categories corres

ponding to the different controls. From the previous section it is clear

that a set of training patterns is required so that these categories can

be established.

Problem:

We shall consider the problem of driving the state vector of the

plant to the origin using admissible controls u.eft = {u, = 1; u~ = -l}.

This is equivalent to driving the plant pattern vector from

Pt = (x^tQ), . . . , xn(tQ), m^tg), . . . , m^t^ ) to

Pt = (0,..., 0, m^), . . . , mk(tf))1

where as a rule the environmental patterns cannot be controlled by u..

Furthermore, the state of the plant shall be driven to the origin in

minimum time. Note that only two categories have to be established,

therefore only one discriminant function must be found.

In order to collect training patterns, the information processor

will cause the controller to apply a control u. in ft for a time in-
" J i u
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terval of length T to the plant. The information processor observes

the behavior of the plant under the influence of this control, then de

cides whether the control chosen was a good control for this particular

control situation, or whether uncertainty exists about the desirability

of this control, or whether the control is undesirable. The criterion

for the desirability of a control is the second and third time derivative

of the norm of the state vector X (i. e. , the time derivatives of the

distance between the plant pattern P and the manifold 0?fe in pattern
space, 3T6 ={ Pc (?/ P =(0,. .., 0, mr . . . ,mk)} ). If the
second or third time derivative of the norm of X remains negative

during the time T in which the control u. is applied, then u. is

called a good control for this plant pattern.

It may seem that the first time derivative of the norm of X

should have been used. The first derivative was not chosen since

even for very simple systems there exist regions in the state space

where neither of the controls in ft will move the phase point toward

the origin, and other regions where each of the controls in ft will

move the phase point toward the origin. Thus the first derivative will

give no information. In these situations the question to ask is: Which

control increases the norm of the state vector by a smaller amount, or,

which control decreases the norm of the state vector by a larger amount.?

This leads to the examination of higher order derivatives.

Instead of using time derivatives of the norm of the state

vector it is useful at times to use a weighted norm

II ?£ I IV = ^2?* Y2? > ) where V is a positive definite n x n
matrix. This is advantageous if one wants to measure distance differ

ently in different regions of the state space. Loci of constant || X || v
are then in general hyper-elliptic shells. Usually one is uncertain in

which region of the state space that distance should be measured dif

ferently. But with the relative scaling decided upon, the region may

be found by trial and error ("learned by experience") by rotation of

< X» VX >. This is equivalent to an orthogonal transformation on the

matrix V, and is therefore easily done.

-11-



From here on we shall refer in general to the norm and/or

weighted norm of the state vector as the sub-index of performance

(SIP) of the system.

Since the equations of the plant dynamics are not known, the

time derivatives of SIP must be approximated by measuring differences

and taking ratios. The process of collecting training patterns proceeds

then as follows:

First the entire pattern space is bounded so that only patterns which

lie in a well defined region of the space around the origin are considered.

For instance, one may consider only patterns whose Euclidean norm is

less than some number K< ooor, as in the present work, one may put

different bounds on individual components of the pattern vector. These

bounds must be large enough so that it is unlikely that in practice a

plant pattern will occur outside of this region.

Suppose that for some time the controller has applied controls

ui€^u to t*ie Plant> measuring the plant pattern vector every T seconds.
At. t = NT the second time derivative of SIP, normalized to the incre

ment T, can be approximated by

A2SIP(N) =ASIP(N) - ASIP(N - 1), (7)
where

ASIP(N) = SIP(N) - SIP(N - 1). (8)

T must be chosen small so that the pattern vector does not change its
position much over an interval of 2 - 3 T. Depending on the sign of

A SIP(N) and other previous events, decisions are made about the

desirability of the previous control and also what the next control

should be. Since a number of calculations and logical operations are

involved, which are performed by the information processor, the

control to be applied at t = NT is not based on observations made at

t = NT since it would take too long to evaluate these observations and

determine which new control to use. The control to be applied at

t = NT is therefore calculated between (N-l)T and NT. This results
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effectively in a time lag of T seconds on many decisions and intro^

duces some difficulties. With a fast information processor available,

this predetermining of controls is unnecessary. However, for the sake

of feasibility considerations the first approach is taken here. This

then reinforces the previously mentioned requirement that pattern

vectors measured within a few successive intervals T be "close

together" in pattern space. For this reason T is adaptive. The

pattern space is divided into regions in each of which a different T

may be used. In general T decreases with the distance from the

origin in order to preserve this notion of "closeness of patterns. "

The flow chart of Program I shows how decisions are made and orders

are executed by the information processor. The flow charts are pre

sented in Section VI.

Whenever ten pattern vectors have been collected, the iterative

training procedure mentioned earlier is applied to all patterns collected

so far and weights for the discriminant.function are calculated. This

method allows one to decide when to stop the pattern collecting and

training procedure, that is, when the weights of the discriminant

function stop changing and no new information can be gained by collec

ting more training patterns.

The discriminant function used is of the <|>-type. In agreement

with the theory of pattern recognition, the cj>-function should have more

than N/2 weights and functions f. if N training patterns were

collected. However, the problem encountered here is of not so general

a nature as is often the case in pattern recognition problems. Most

likely the two categories to be established in pattern space will be

simply connected regions, and it may even be known that the separation

surface has to pass through the origin of the state space. Therefore

^-functions with by far less than N/2 weights can be used. Since the

pattern space of interest has been bounded, one can represent the

decision surface by an orthogonal expansion over a finite interval and

choose the first M terms of the series as the functions f. in <|>(P, W).

The number M must ultimately be determined by trial and error, i. e. ,

the information processor may learn the proper value of M by in-
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creasing M if the system fails to obtain a pattern dichotomy with the

value of M given initially.

At the end of the pattern collecting and training procedure the

information processor will run a test on the system. Just as in the

training procedure, the pattern vector will be measured every T

seconds, but the discriminant function which has just been determined

will be used to classify each measured plant pattern and thus determine

the appropriate control. If the control objective is met successfully,

the pattern collecting and training procedure is complete. If the plant

cannot be controlled, the discriminant function is poor. This may be

due to

1) M was too small,

2) T was too large,

3) The training patterns are not well distributed and thus

not representative of actually occurring plant patterns.

In this case the information processor will iterate on the pattern

collecting and training procedure by using a larger M and a smaller

T. The training patterns are usually well distributed over the bounded

pattern space since the plant is reset at random to initial states when

ever the state vector leaves the bounded pattern space or very closely
approaches the origin. ,

If the test on this system is successful, the discriminant

function still will not represent the switching surface for time optimal
control. At most, it approximates the switching surface for minimum-

square-error control, since the training patterns were essentially

collected by a minimum-square-error criterion.

V. GRADIENT TECHNIQUES

The weights of the discriminant function determined by the

training procedure will now be adjusted so that the discriminant

function represents a good approximation of the true time-optimal
switching surface. During this adjustment procedure, time varying
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parameters as well as environmental conditions of the system must

remain constant over short time intervals during which the weights

are adjusted. Therefore, the following discussion is restricted to

the state space of the system and does not consider the entire pattern

space.

The cost function of the system now becomes a function of W,

that is,

j = v|j(W) =NT, (9)

where tp is an unknown scalar-valued function and NT is the time

required to drive the system from some initial state to within a pre

determined distance A of the origin of the state space. Thus, J is

a different function for each initial state. But if the switching surface

could be exactly described by the discriminant function with the ap

propriate numerical values for the weights, then each function

J /a\ = 4MW) would have an absolute minimum for the same value of
X| \v) 1 —

W. The absolute minimum for an individual Jx-(n) °-oes not occur
at some fixed point W, but J /n\ attains its absolute minimum for

"l (0) -Wall W which belong to a certain manifold in the space '" . To see this,

consider the following example for a particular J /n\ of a double

integrator with time varying gain K(t). Let

g(P) =W^ +W2x2 +W3K(t)Xl3, (10)

and let

X (0) = (-4, 0) and K(t) = 1, 0 < t< ty ^ > NT.

The switching surface g(P) = 0 is given by

W1X1 +W2X2 +W3X13 =°* *U)

Now from Fig. 4 it can be seen that J (n) = +(W) W^H have a mini

mum for all W such that
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-2W1 + 2W2 - 8W3 = 0 . (12)

Therefore, any W in the manifold described by (12) will minimize

J
x(o)-

Each other J . . will have its manifoldJfk . such that forXi(o) i

all Wedfk. J , . is at its absolute minimum. If the true switching— i ££i(o) to

curve could be exactly described by g(P), tlien the desired value of

W would be the intersection of all these manifoldsOf&.e'Vif0 .
— i

optimum
switching curve

u = +1

Fig. 4

State Space

In practice one should not hope for the case that g(P) can describe

the switching surface exactly. It almost never occurs since switching

surfaces are usually described piecewise by different functions. How

ever, for a well selected discriminant function with sufficiently many

weights, there exists W such that g(P, W )=0 is a good approxi

mation for the switching surface over the bounded region of the pattern

space.

It is assumed now that the W determined by the training pro

cedure represents a point within the convex region, containing the
manifold onto. of each J , v . Now gradient techniques will bex^o). b ^
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applied to determine WQ. The initial condition x_.(0) is selected at
random and the gradient V*MW) is approximated by difference quo-

. AJxi(0)
tients —^ , j = 2, . . . , M + 1.

i

The difference quotients are obtained through measurements of

AJ /q\ when the individual components of W are perturbed by AW.,

j = 2,..., M + l (one of the weights is redundant). This requires of

course resetting the plant M times to the same initial conditions

(with no change in the environment). Therefore the J* (0) can only be
selected from a restricted region of the pattern space where this is

possible. After M measurements have been obtained W is changed by

AW= - Ao- V^.(W) (13)
i —

where Act is a scalar increment which determines the magnitude of

AW . Then another x. (0) is selected at random and the process is

repeated until some sort of convergence can be detected. No matter

how long the process is continued and no matter how small the incre

ments AW are chosen, exact convergence to some point W will not

occur. This is because for no J ... will the gradient ever be zero,xi(0) B

since <j>(P, W) cannot represent the switching surface exactly. Therefore,

if W starts to vary only within a small percentage range of its value,

the gradient technique should be viewed as successfully terminated and

Wyy chosen as the mean of the range over which W varies. However,

this kind of convergence can not be guaranteed. There is no certainty

that the W with which the gradient technique was started lies within

the convex region of the "deepest valley" of each function J ...

For nothing is known about the functions ip.(W), and in general they

seem to be very unwieldy functions and not convex at all. In addition

to this, J / . is quantized by the sampling period T which affects

the measurements of the gradients. The following examples will
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demonstrate however, that this method can be used successfully,

although it may not be successful in all cases. Since no proof for

the convergence of the gradient technique, as applied here, can be

given, the method should be viewed as a heuristic. It essentially

represents an improvement scheme which man would use while learn

ing some particular task. A flow chart of the program follows.

Fortran codes -ems presented in the Appendix-Jfe^JgS. implements the

gradient techniques in the following section.

VI. COMPUTER PROGRAMS

A. DATA ON COMPUTER PROGRAMS:

1. Storage

a. During Learning Phase:

1) Memory lists:

(M + 4) x (number of training patterns collected)

+ M + 20 words.

2) Storage for execution of program: Approximately

120 words.

2. During Actual Operation of the System: (Special purpose

computer is sufficient) .

a. Memory lists: M + 2words.

b. Storage for execution of program: Approximately

50 words.

M = number of functions f. contained in <J>(P» W) .

The number of training patterns collected typically

varies between 100 and 400.

B. COMPUTING TIME:

Computing time for these programs includes the simulation of

the plant. Compilation time of the Fortran codes is excluded.

The programs were run on an IBM 7094 machine.

Program I and Subroutines: 0.8 minutes for 300 training

patterns; M = 4. Program II and Subroutines: 3.35 minutes

for 200 iterations; M = 4. The flow charts of Programs I and

II follow.
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call subroutine

correct

start test operation

set plant to arbitrary
initial state

U(N) =SIGN(g(P(N)))

I
apply U(N) to plant

wait till end of period

measure P(N + 1)

print N

trial = trial + 1

*
apply control

U(N) (or T sec
plant

simulator

calculate SIP(N)

ASIP(N). AZS1P(N)
I

U(N+1> =- SIGN (^fsiP(N) )U(N)| U(N-l) |

U(N+1)= U(N)

erase U(N)and U(N-l) from

memory by setting U(N) =U(N-1)=0

reset plant to arbitrary
initial state

do not record U(N +1) in
memory

^ wait till end of period

measure P (N + 1)

reset plant to arbitrary
initial state

do not record U(N + 1)
in memory

Check after every 10th period if sampling
rate T must be adapted depending on where
P is In the region.

If sampling period is changed, erase U(N)
and U(N - 1) from memory.

Flow Chart of Program I: Pattern Collecting and Training Procedure,
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yes

Return to

main program

yes

From main program

NUCO=0

ZEZ
ITI = 1

NT = N-ITI

calculate correction
factor C

W=W + CU(NT)P(NT)

end of iteration

ITERAN = ITERAN + 1

ITI = ITI + 1

NUCO = NUCO+1

yes

Iterate once more without correcting W.
Record uncorrectable patterns and erase
them from memory.

ITERAN = ITERAN-1

Last - Last + 1

yes

Flow Chart of Program I Subroutine Correct.
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Set plant to arbitrary initial
condition. Record it.

-_Call subroutine driver
.. ^ .return with _
N]T - time to go to O

Do A V
K = Z, M+l/1

i
&W(K)» 0.2W(K|

W(K) =W(K)» 6W(K)

Reset plant to same
initial condition

Call subroutine driver
return NkT

W(K):W(K)- 6W(K)

I
Aff = 0.1 • II V W

DoB S.

K=Z. M ♦ l/~

AW{K)= -Krad(K) A <r

AW(K)r 0. 5AW(K)-^?

AW(K) '- SIGN(AW(K)j<threshold)

W(K)=W(K)+AWfK)

Check for termination of gradient

technique procedure

The termination procedure may consist of checking whether the last 10 values of
W vary only within a prescribed percentage of the value of the latest W . or it
may just consist of checking if a predetermined number of iterations has been per
formed.

Flow Chart of Program II Gradient Techniques.
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From main program

*
initial condition

= P(1); N = l

U(N) = SIGN [ g(P(N), W) ]

yes

£

U(N) = -U(N-l)

1

yes

record N

apply U(N) to plant

wait till end of period

1
measure P (N + 1)

record failure

return to main progr,

no

simulator

N = N + l

Flow Chart of Program II Subroutine Driver,
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VII. EXAMPLES

In the following two examples the knowledge of the plant is only

used to simulate the plant and to compare results with those obtained

from mathematical analysis when the plant dynamics are known.

Example 1.

In this example no environmental patterns are considered so

that the pattern space is identical to the state space of the system. The

system shown in Fig. 5 is to learn to drive the plant from any initial

condition in as short a time as possible to within one unit of the origin

of the state space. The state space is bounded by | x, j < 20, | x2 | < 20,

Fig. 5
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Step 1:

Pattern collecting and training procedure: Program

No. 1 is used to supervise this step. Fig. 6 shows

three different decision surfaces that were obtained

from the pattern collecting and training procedure.

The control objective could be fulfilled with any one

of the three curves.

Curve 1.

An attempt was made to express the decision surface

by the first three terms of an orthogonal expansion

(Fourier Series) over the interval [ -20, 20]. Thus,

g(x)was assumed of the form

irx. 3-irx.

g(x) =Wxx2 +W2 sin ^ji-+ W3 sin -^- +W4 sin

Sub-index of performance:

SIP =[<x, V x >]1/2,

where

with

V= POP

cos 60

P =

sin 60

- sin 60

cos 60

5 ITrxl
40

(14)

0

The training procedure yielded:

W= (-0.05, -0.25, -0.13, 0.09).

Not enough training patterns were collected near the boundaries of

the bounded state space, thus explaining the drooping of the learned

decision surface near the boundaries.
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Curve 2.

Assumed form of the discriminant:

g(x) =W^ +W2x2 +W3x22 +W4x23 . (15)

Sub-index of performance:

SIP = [< x, V x> Y1 with V as for curve (1).

The training procedure yielded:

W=(-0.09, -0.19, 0.00, -0.03).

Curve 3.

Assumed form of discriminant:

g(x) =W^ +W2x2 +W3x22 +W4x23 (16)

which is the same as (14).

Sub-index of performance:

SIP =[ <x, x >]l/Z =||. x || .,'...
Curve 4.

Ideal switching curve of the system computed for com

parison purposes.

During pattern collecting and training procedure the

sampling period T was 0.5 and 0.25 sec, respectively,

(in different regions of the state space) for all three learned

switching curves.

Step 2: Gradient Techniques:

Program 2 is used to supervise this step. In this

example curve (2) of Fig.6 is used as the starting point of

the gradient technique. Fig. 7 summarizes the entire learn

ing procedure. It shows:

a. the training patterns which were collected and used

-25-



I

CN
I

CD-@ Decision curves as obtained
from training procedure for
three discriminants of different

form.

™4

—6

—8

—10

—12

Phase plane:
Actual system 6(s) =l/s2
(4) Actual time optimal

switching curve

Fig. 6. Three decision curves obtained from the pattern collecting and
training procedure.
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Then if

in the training procedure,

b. the resulting decision surface (dashed curve,

same as Curve 2 of Fig. 6):

g]L (x) =-0.19x2 -0. 03x23 =0, (17)

c. the ultimate decision surface (switching curve)

obtained after gradient techniques were applied

(solid line):

g(x) =-2 25xx -0. 08x2 -0 25x22 -0 3x23 =0.

(18)

g(x(N))<0 =>>u (]SI')= -1,

g(x(N) ) = 0 =^ u (N) = -u (N-l),

g(x(N) ) > 0 =^ u (N) = +1.

For comparison purposes the ideal switching curve of the

system is also shown in Fig. 7 (dash-dot-dash).

Fortran codes of programs (1) and (2) as used in this example

are presented in the appendix.

Example 2: Regulator Problem: Dual Mode Operation.

In this example a plant with time varying gain K(t) is con

sidered. The system shown in Fig. 8 is to learn to drive the sy

stem error to zero in minimum time. The state variables chosen

are x^ = e and x2 = e. When the system error is within A units
of the origin the usual negative feedback mode of operation is used

to drive the error exactly to zero This avoids a limit cycle around

the origin. The system is considered to be a regulator and as

reference inputs only steps r(t) = kl(t), |k| < 100, are considered.
The pattern space is a three-dimensional space (f={P | P = (x.,x_, K)}
It has been bounded by |x,|< 100, |x | < 100, 0 < K < 100.
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r(t) e

-T

dual mode op.

x T

5

information

processor

7T r

-^f-* controller

Fig. 8

K(t)
s(s+l)

Step 1: Pattern Collecting and Training Procedure:

Program (1) is used to supervise this step. A dis

criminant function of the form

c(t)

g(P) =W^ +W2x2 +W3x22 +W4x23 +W5 J +W6(5 + w,
7 K

(19)

was assumed. As the results of the training procedure showed,

this was not a very good choice. A discriminant function with

a larger degree of freedom, i. e. , more adjustable weights,

should have been chosen. Curve 1 in Fig. 9 shows the de

cision surface that was obtained from the training procedure.

It is essentially the same curve for all K, 10 ^ K ^ 100.

Sub-index of performance:

SIP = [ < x, V x > ] 1/2

where V = PflP
♦
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with

cos 30 - sin 30

P = ft =

sin 30 - cos 30 0

The training procedure yielded:

W=(10. 0, 0.113, -0.0781, 0.0156, 0.00088, -0.00082, 0.00039).

Training patterns cannot be shown in Fig. 9 since the actual

pattern space is three-dimensional.

Although the training procedure did not distinguish between

different K's, 10 < K < 100, the system was able to fulfill the

control objective (i.e. , drive the error to zero) with the determined

discriminant function for all K's, 10 < K < 100.

Step 2: Gradient Techniques:

Program (2) is used to supervise this step. Since the

pattern collecting and training procedure did not account for

any difference in the decision surface for different gains K,

the gradient technique method will be applied for different

constant K's. That is, the range of K will be quantized and

a number of decision surfaces for different K's will be de

termined. Fig. 9 shows the resulting decision surfaces

(switching curves) for three different K's: K = 10, K = 50,

K = 100. The corresponding discriminant functions are all

of the form

g(x) =W^ +W2x2 +W3x22 +W4x23, (20)

The different weight vectors W are given respectively as:

a. for K = 10; W1Q = (10. 0, -0. 000148, -0. 00105, 0. 00065)

b. for K = 50; W5Q = (10. 0, -0.000103, -0.000860, 0.000417)

c. for K = 100; ^Q() = (10. 0, -0.00012, -0.00147, 0.000141).
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CO Q,(P) =0 as obtained from
training procedure.

®-(f) g(P)=0 for different K's
after gradient techniques

were applied.

Region of linear feedback

mode of operation.

Fig. 9. Results of learning process,
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Then we have again:

g(x(N), K (N) ) < 0 ==> u (N) = -1

g(x(N), K (N) ) = 0 > u (N) = -u (N - 1)

g(x(N), K (N) ) > 0 => u (N) = +1

A typical trajectory for r(t) = 60* l(t) is shown in Fig. 9.

The crosshatched area around the origin is the region where conven

tional linear feedback is used as shown in Fig. 8. The controller is

bypassed in this mode of operation.

During the entire learning process the sampling period was

T = 0. 05 sec throughout the entire bounded pattern space with the

exception of the region where K < 15; there T = 0. lsec. For

comparison, the ideal switching curves of the system are shown in

Fig. 10.
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K=IO

u = +l

-80 -60 -40 -20
^ \-

x,=e

20 40 60 80

u=-l

—80

-—100

Fig. 10. Ideal switching curves for system shown in Fig. 8.
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CONCLUDING COMMENTS

A possible method for implementing self-organizing control

systems by means of pattern recognition has been presented. Two

examples of the method were given. The class of systems that has

been considered is characterized by allowing only two control choices.

In particular, the case of time-optimal control has been considered

with the set ft of admissible controls restricted to u = + 1.

Training patterns were collected and then pattern recognition

techniques applied to partition the pattern space, which contains the

plant patterns characterizing different control situations. The train

ing patterns were collected according to a sub-index of performance,

SIP. Here, SIP was such that the control choice was termed good

for a certain plant pattern, if the second and/or third time derivative

of the weighted norm of the state vector of the system remained nega

tive during the application of the control.

When more than two control choices are allowed, this kind

of SIP is not very well suited. With a different SIP the pattern

recognition and training techniques can be used to extend the method

such that it can then also be applied to systems where more than two

controls must be allowed; for instance, for systems which are to

operate with a minimum amount of fuel consumption. Therefore, it

seems most advantageous to direct further research towards finding

better SIP's which can be used to collect truly representative train

ing plant-patterns and their associated controls for the cases where

more than two admissible controls exist.

The main advantage of this method over others is that the

learning process is short and that the memory requirements during

the learning process, and afterwards during actual operation of the

system, are quite small. When the learning process is terminated,

all the information necessary for controlling the plant is contained in

the M-component weight vector W of the discriminant function. Large

memory requirements for self-organizing systems were some of the

main difficulties of other methods proposed.
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$FMS

FORTRAN CODES FOR PROGRAMS I MO II AS USED IN hXAMPLE 1 .

PROGRAM 1 - PATTERN COLLECTING mND TRAINING PROCEDURE

FORTRAN

COMMON Y,W, U, DIPS. DDIP» MVALUE. AL» M» N

DIMENSION Y<4,151)
DIMENSION X(2,151)

DIMENSION W<4)

DIMENSION U(151)

DIMENSION DIPSI151)
DIMENSION DDIP(151)

DIMENSION MVALUE(5)

DIMENSION AL(5)

DIMENSION VALUE!5)

DIMENSION FRACI5)

DIMENSION SIPS(151)

EQUIVALENCE ( W(l). Wl )

EQUIVALENCE ( W(2). W2 )

EQUIVALENCE ( W<3). W3 )

EQUIVALENCE ( W(4>» W4 J

DISCRIF(A,B,C,D)=W1*A+W2*B+W3*C+W4*D
READ 1, SP.DELTA.X(1.2),X12,2),(w(K),K=l,4)

1 FORMAT (F5.3/F5.2/2F10.2/4F10.2)

READ 2. (MVALUE(I).1 = 1.5). (AL(I>»I = 1 .5). (VALUE<L)»L=1.5). (FRAC(

ID.Lai.5)
2 FORMATC5I4.5F8.4/5F8.3.5F5.3J

MOR=0

M=10

KILL=1

U(l)=1.0

U(2)=1.0

SIPS(1)=0.0

DIPS(1)=0.0
vDDIPI PgQ.O

PoSP
DO 3 J=1.4

Y(J.1)=0.0

DO 100 N=2.150

IF(X(1»N)**2+X(2»N)**2) 101.101.4
VM.NIsXM .Nl

Y(2.N)=XI2.N)

Y(3»N)=X(2»N)**2

Y<4,N)=X(2,N)**3

IF(UIN)) 5.6.6

X(i »N+1)=-0.5*P**2 +X(2.N)*P+X(1,N)
yi7.N4-1l=-P+Xf?.Nl

GO TO 7
6 X(1.N+l)=0.5*P*#2+X{2.N)*P+X(1,N)

X(2.N+1)=P+X(2.N)

7 SIPS(N)=SQRTF(3.0«X(1.N)**2+4.0*1.732*X(1,N)*X(2.N)+7.0»X(2,N)»»2)
DIPS(N)=SIPS(N)-SIPS<N-1)
DD1P1N»=DIPS(N)-DIPS(N-1)

U(N+1)=-SIGNF(1.0.DDIP(N) )*U (_N) *ABSF (U(N-l) )
IF(U(N+D) 9,8.9

8 U(N+1)=U(N)

9 IF(U(N+1)-U(N)> 10,12.10

10 IF<DDIP<N)-DDIP(N-1)) 8.8,11

U<N)=0.0

12 GO TO (15.14.13,13),KILL

13 U(N-1)=0.0

14 U(N)=0.0

KILL=1

15 !F(XM.N+1)»»2+X(?.N+H«»?-PELTA) 20.20.16

16 IFIABSF(X(1,N+1)1-20.0)

17 IF<A8SF(X(2,N+1)1-20.0)

18 PRINT 19, N

19 FORMAT!1H t12HNEW DATA AT

GO TO 22
70 \:nR=M0R4-l

17,18,18

24.18,18

13)

PRINT 21. N,(W(K),K=1»4)

21 F0RMATC1H .13HAT ORIGIN AT I3.22H PLUS ONE WITH WEIGHTS 4F10.2)
22 K.ILL=KILL+2

READ 23»X(1,N+1),X(2»N+1)

23 FORMAT(2F10.3)

GO TO 28
24 IF(N-M) 100.26.26

26 M=M+10

28 CALL CORECT

DO 30 L = 1.5

IF(X(1»N+1)**2+X(2»N+1)*#2-VALUE(L)) 31.30.30

30 CONTINUE
L = 5

31 P1=P

P=FRAC(L)*SP

IF(P-Pl) 32.ICO.32

32 KILL=KILL+1

100 CONTINUE
101 PRINT 102
102 FORMATUH1.53X.13HFINAL KESULTS///)

PRINT 103.P,DELTA,IWCK),K=1,4),MOR

103 FORMAT(22H SAMPLING PERIOD T ISF6.3.7H SECOND/42H SQUARE DISTANCE
1 FROM ORIGIN DELTA EQUALS F4.2/9H WEIGHTS 4F10.2/29H NUMBER OF TIM

2ES NEAR ORIGIN 13/)

PRTNT 104. ((X(K,N),K=1.2).U(N),SIPS(N),DIPb(N),DDIP(N),N.N=2.
1150)

1C4 FORMAT!1H1,9X,4HX(N)»9X,4HU(N).5X»7HSIPb(N),3X,7HDlPb(N)»4X»7HDDIP

l(N),8X,lHN///(lri .6F10.2.U0))

PRINT 105
TOS FORMAT!1H1.75HTRIAL OPERATION OF SYSTEM//)

KTR=0

P = SP

110 READ 111. X<1,1) ,X<2»1>

111 FORMAT (2F10.3)

IFIX11.1)**2+X(2,1)**2) 112.250.112
n? nn ?nn N=i.?nn

Y(1,N)=X(1.N»

Y(2.N)sX(2.N)

Y(3,N)=X(2,N)**2

Y(4,N)=X(2»N)**3
U(N)=SIGNF(1.0.DISCRIF(Y(1.N),Y(2.N).Y(3.N).Y(4.N)))

1H TF<U(N))114.116.118

114 X(1»N+1)=-0.5*P**2+X(2.N)*P+X(l.N>

X(2.N+1)=-P+X(2.N)

GO TO 120
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PROGRAM 2 - GRADIENT TECHNIQUES

FORTRAN
COMMON X,W,J»M»P

OIMENSION X(4,200)

DIMENSION W(4)

DIMENSION DELTW<4)
HTMFNSTON DW(4>

DIMENSION J(6)

DIMENSION GRAD(4)
EQUIVALENCE ( W(l)» Wl )

EQUIVALENCE ( W(2)» W2 )

EQUIVALENCE ( W(3)» W3 )

EQUIVALENCE ( W(4), W4 )

NORMF(Al,A2,A3,A4)=SQRTF(Al**2+A2**2+A3**2+A4**2)

READ 2. (W(K),K=1,4),SP,DELTA

2 F0RMAT(4F10.5/F5.3/F6.2)

PRINT 3
3 FORMAT!1H1,26X»7HGRAD<K),46X »4HV.'< K.),28X,5HINDtX//1

DO 100 INDEX =1,230
READ 4,X(1,1),X(2,1)

4 FORMATJ2F10.3)

IF(X(1,1)**2+X(2.11**2) 110»110.5

5 M=l

P=SP

GRAD(1)=0.0
CALL DRIVER

30 DO 40 K = 2*4

DELTW(K)=0.2*W(K)

W(K)=W(K)+DELTW(K)

CALL DRIVER

35 FL=J(M-1)-J(1)

GRAD(K)=P*FL/DELTW1K)

W(K)=W(K)-DELTW(K)

40 CONTINUE

DSIG=0.1#N0RMF(GRAD(1)»GRAD(2)»GRAD(3),GRAD(4) )

DO 60 K=2»4

DW(IO=-GRAD(K)»DSIG
42 IF(ABSF(DW(K) )-0.2*ABSF(vv'(K) )) 45*45»43

43 DW(K)=0.5*DW(K)

GO TO 42
45 IF(ABSF(DW(K>)-0.10E-06) 46*47,47
46 DW(K)=0.10E-06*SIGNF(1.0»DW(K)1
47 WfK)=W(IO+DW(IO

60 CONTINUE

PRINT 62, (GRAD(K) ,K = 1,4),(W(K)*K=1,4),INDEX

62 FORMATdH *4E15.6»4E15.6, I5 )

100 CONTINUE

110 CALL PLOT
«-*'' fxtt

END

SUBROUTINE TO PROGRAM 2 - SIMULATING BtHAVIOK OF PLANT

FORTRAN

SUBROUTINE DRIVER

COMMON X,W,JV-',D
DIMENSION X<4,20G)

DIMENSION W(4)

DIMENSION J(6)

DIMENSION U(200)

EQUIVALENCE ( W(l), Wl )
EQUIVALENCE ( W(2>» W2 )

EQUIVALENCE ( W(3), W3 )

EQUIVALENCE ( W(4)» W4 )
DI SCR IF(A,B,C,D 1=Wl*A+W2*B+W3*C+W4»D

12 DO 25 N=l,200

X(3.N)=X(2,N>«*2

X(4,N)=X(2,N)**3

U(N)=SIGNF(1.0,DISCRIF(X(1,N),X(2,N),X(3,N),X(4,N)))

13 IF(U(N)) 14,16,18
14 X(l,N+1)=-0»5*P**2+X(2,N)*P+X(1,N)

X(2,N+1)=-P+X(2,N)

GO TO 20

16 U(N)=-U(N-1)

GO TO 13

18 X(1»N+1)=0.5*P**2+X(2,N)*P+X(1,N)

X(2,N+1)=P+X(2,N)
20 IF(X(1,N+1)**2+X(2»N+1)**2-DLLTA) 26,26,25

25 CONTINUE
N=200

26 J(M)=N

M=M+1

30 RETURN

END

DATA

A-3
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