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SUMMARY

This report describes in detail the approximations involved in the

statistical study of Pulse Width Modulated Feedback Systems. The

exact and the approximate systems are simulated on a digital computer

and various statistical quantities are measured and compared. It is

shown in this study that the three approximations used in the study of

the earlier paper1 are well justified and yield results within reason-
4

* able accuracy* Furthermore theoretical study of the errors involved in

the approximation is also discussed with possible modifications for

increased accuracy in the analysis.
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I Introduction

In a preceding article, the statistical study of HIM Control

Systems has been thoroughly discussed* In this work certain approxi

mations have been made to simplify the analysis* These studies are

based on the following three approximations, i) The first approximation

involves the replacement of the pulse width modulator by a sampling switch,

and a hold circuit followed by a saturating type non-linear element, ii)

the second approximation involves the replacement of the non-linear element

by equivalent linear element or the use of the so-called separable method

and, iii) this approximation involves the statistical independence of the

pulses at the output of the saturating element* In this approximation

the correlation functions can be evaluated with the use of only the first-

order probability density*

These approximations are used in the study of PWM control systems in

the preceding paper* In this report we will study these assumptions and

the approximations arising from them in a detailed manner and to indicate

their validity and to estimate the error involved in using the various

models of the original systems* These studies are mainly performed on a

digital computer. IBM 70li, because of the ease of calculations and the

results shown indicate the promising approach initiated in the earlier

work*1 To systemize the experimental study we will briefly discuss the

following topics*

II Procedure for Evaluating the Three Approximations by Simulation

In this part* the three approximations mentioned earlier will be

discussed in more detail as well as the procedure performed on the
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digital computer to measure the error involved in this approximation* The

system under consideration is shown in Figure 1*

1) The first approximation as noticed from Figures 1 and 2, involves

replacing the pulses as indicated earlier at the output of the FWM system

which have a varying pulse width by varying amplitude* This approximation

facilitates the calculation of the auto-correlation function at the output

of the pulse width modulator* This approximation is referred to as the

equal area approximation** To check its validity, we perform the following

testss

a) For the exact system we obtain 0., yC), the auto-correlation

function of the output* We also obtain the auto-correlation function of

the approximate system as shown in Figure 2, denoted as 0) (f)o Then we
m

compare these to find the error involved under the assumption that the time

constant of the plant following the JWM is at least twice the sampling

period*

b) We also obtain the auto-correlation function of the error

signal both for the exact and the approximate models, denoted by 0^Js)
(A)

and 02?^ respectively and compare these curves to obtain the error of

approximation*

The above two measurements would give us an idea of the error involved

in the equal area approximation.

2) The second approximation based on the concept of separable

processes is needed to obtain the cross-correlation between the input and

output for a feedback PWM system* This approximation has been utilized as

shown in Figure 3 and Equations 7° and 80 of Reference 1* To check the
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validity of this approximation the following is performed:

We want to find the relationship as expressed by Equation 79 of

Reference 1

The above can be written by linearizing the non-linear element as

(Figure 3) Equation 80 of Reference 1

013Cr) = k.012a(<r) (2)

We check the validity of the above approximation ty obtaining

$22(f) and ^2al^ £or tne sys*em ^ Figuro 2* Then we check whether

Equation (2) is a good approximation and what error is involved* Thus we

obtain the error of approximation involved in the calculation of the cross*

correlation function*

3) To check the validity of the third approximation that the pulses

at the output of the nonlinear element are statistically independent we

perform the following:

We obtain the auto-correlation function 0u,(T) for the system of

Figure 2 and compare it with the theoretical one which can be calculated

from Equation 75> of Reference 1,

jr / sT —sT

$ i*(s) -*iv>] -w(e Ty -2) •^x-*) (3)
The above will indicate the error introduced in this approximation*

In the next section, the techniques of simulation will be discussed*
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Ill Simulation on IBM 70ll

The exact and approximate systems shown in Figures 1 and 2 are

simulated on the digital computer* The input Gaussian process (whose

2 -0 K^l
correlation function is assumed to .be 0" e ; is generated by a

random number generator and a digital computer subroutine is used* To

get this correlation function, we used a filter of the form cr/s+P •

Thus, for simulation purposes the exact and approximate systems are

shown in Figures h and 5.

The random numbers having a Gaussian distribution are called X(K)*

Those numbers are fed into a filter as shown in the figures to generate

the desired correlation for X^K)* Using rectangular integration rules,

we can write

XX(K) = TCX(K-1) + (1-Tc)X1(k-1) (U)

where (TC is the sampling interval on the IBM 70U*

We also have the figures (assuming G(s) = —-—— )
vs + 1

X2(K) = X^K) -X^K) (5)

and

VK) =(Vv )x3(k-i) +(i-V^ )VK"1) (6)
The relationships between Xo(K) and X2(K) are quite different for the

exact and the approximate model and the digital computer programs in

dicating this are readily obtained.

The correlation functions 0^ (Z), 0^)9 02£C) and 022 (C) are
also obtained from the computer program* The input correlation 0ri(t) is

obtained on the computer to be checked with the theoretically assumed one,
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namely,

0u(r)= aVmi (7)
Furthermore* for the approximate model we also obtained the correla

tion functions

$Vp), 0lS{Z)9 033(£), JZf55(T) and %3(r)
In the above situation study we assumed:

0 =i

V =1

T = 0*2 sec,

Tc = 0.0U sec. (8)

IV Accuracy of the Results

It is evident that the accuracy of the measurements depends on

a) the length of the sampling interval Tc and, b) on the length of the

total sample* The latter length is limited by the memory of the computing

machine* To check the above accuracy we compared the input correlation

function given by the computer with the theoretically assumed* As noticed

from Figure 6 this error is very small* The discrepancy gives an indi

cation of the error anticipated in the calculation of the other correlation

functions*

In one experimental study, we used 1*000 samples at *02j. seconds apart*

The sampling period of the system in Figure k is .2 sec* The error at

point (2) which is fed into the PWM and the linear plant is taken only at

.2 sec* intervals* This seems quite satisfactory if we make the computer

sampling period •Ok sec* Four thousand samples of X, X-,, X2, X3, Xi, and

X£, are stored in memory to be utilized later to calculate the correlation
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functions for values of X between *0U seconds to 2 seconds* The whole

procedure is done on the Fortran Computer Program*

The dependence of experimental variance on correlation time t and

2 3
sampling interval T is known in the literature ' and for those chosen

values the error involved is very small* This error is given in terms of

standard deviation of one measured correlation function and is less than

10 per cent of the true variance* These errors are quite standard and

do not affect the input correlation substantially from the theoretical

input* This is an indication of the good accuracy of the results.

V Discussion of Experimental Results

We start the discussion by comparing the auto correlation function

of the input as obtained in the simulated system with the theoretically

assumed one* This is shown in Figure 6, where it is noticed that for

small values of "t" there is no appreciable difference* This difference

increases percentwise as n£n becomes larger as is expected because of the

finite sample length which can be obtained on the computer study. We

must also realize that the random numbers generated in the experimental

study is a completely deterministic process and any set of random numbers

can be generated at will* The experimental curve as noticed from the

figure is therefore a reasonably good fit, and now we can study the other

experimental curves to obtain an idea of the errors involved in our three

approximations•

1) To investigate the equal area approximation we have plotted the

auto-correlation function of the output and error for the exact aswell as

the approximate model simulated on the digital computer* These are shown
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in Figures 7 and 8 respectively. The actual simulated input, output and

error were also printed out over a ten second period for both the exact and

the approximate model to study any major differences. This proved to be

very satisfactory. The exact model simulation yielded input, output and

error and is shown in Figure 9 over a 10 second period* Figures 10 and 11

respectively show the output and error for both the exact and approximate

model over a ten second period. Studying these, it seems that there is

essentially very little difference and is quite safe to make equal area

approximation* By re-examining Figure 7 we see that the Mean Square Value

at the output for the approximate case is about 10 per cent higher than the

exact case. For large values of ar(ie,'C>.6J there is no appreciable difference

between the two output correlation functions. This small error can be

expected. Similarly, if we study the error auto-correlation function in

Figure 8 we also notice about 10 per cent difference in mean square values

and there is also a difference in shape of correlation functions between

X = .6 sec. and T = .8 sec, otherwise there is no essential difference.

These changes are again to be expected* Hence we can say that the approxi

mate method gives about 10 per cent higher MSVs than the exact method but

is within reason*

2) The second approximation is used to linearize the non-linear

element to calculate certain cross-correlation functions and depends upon

the relationship (see Figure $)9

*XJ® ' £[*d&] (9)
The cross-correlation functions 013(T) and ^(f) are shown in Figure 12.
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Also, the ratio 0^c)/fygifi) versus t is shown. We notice that this ratio

almost remains a constant and at some values it deviates to a maximum of

about 6 per cent. We indeed find that

0i3(r)
P = it.93 (10)

This was expected because Gaussian Process is a Separable Process' and we

are able to write

013(<O = K.J^(tf) (11)

This proves that we are justified in linearizing the non-linear element for

calculation of cross-correlations as given in Part H of reference 1.

3) The third approximation which assumes statistical independence of

pulses at the output of Pulse Width Modulator is also checked by simula

tion. We note that what we are really interested in is the value of

#1^(0) because this is the only place where we use this approximation. We

have shown that Cj>^(s) can be written in terms of the MSV of error and

G(s). This is given by equation (3) and can be written as

<lM'> -"^f31" 2) •<X«)-a<-) (12)
where T2

2 2
w- « (71

T2

In our case

G(s) =_i- (lU)
s + 1

Hence we can write
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&x.)-«•"*?-<>**"*''"-*
Ts' T(l - s2)

2),- <V8) * (P,,(S)

We also know that

sT.
e ds

-jiDO

By complex plane integration we can get

JD w r n0<hh <tr) =jL*1"^1^-1^^ +(T+t)(i(^r)-i(-r-T))l

^}(t) -J [^e^lW^e^K-C) +e"r+Tl(t:-T) +er-Tl(-1*T)
+e<r+Tl(-f-T) + e'T"Tl(T+T)l

where 1(T) is the unit step function*

Hence we can get

(15)

(16)

(17)

(18)

(19)

XD (2)<V*> =% W ♦^V) (20)
For a given value of the input MSV, the value of W is a constant because

T and <\ are already chosen to be 0.2 sec. and 1 respectively. Equation

(20) can now be plotted as A,(T) versus t. The results are tabulated

below and are plotted in Figure 13.

T 0 .2
sec.

•k .6 1.0

.037W .02$W

1.6 2.0

^CD .0936W .082W .067W .055W .02W .0136W

We have already simulated the approximate model from which above correlation

0]^X) has been obtained. In the simulated case we know from the digital

computer study that 0j^(O) = 0.0159. This is plotted in Figure 13.
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In the theoretical case we need W as seen in the above table. To get

W we need or as is obvious by looking at equation (13). For G(s) as given

by equation (lU) and T = 0.2 sec. and <X= 1 we can solve equation (103) in

example in earlier paper. We also need the MSV of input which is obtained
2

from the simulation study and is given by (T = 0»022lu This is approximate.

This yields the value of cr = .09. Using this value in equation (13) we

have approximate value of W = 0.2.

We must remember that we are dealing with very small numbers numerically

and hence there are bound to be errors involved. With this value of W we can

calculate the theoretical output correlation function as given in the table

below. The theoretical as well as the simulated output correlation func

tions are tabulated in the table below and plotted in Figure 13. This is

for the approximate model.

Theoretical __0 .2 .h .6 1.0 i.U lo6 2.0 sefi.
01^(r) '0187 -0161* .0131* .011 .0071; .005 .00U .0027

Simulated

$]&&) '°16 -01^ -OH *008 oOOitf .0025 .002 .0013
on Approx.
Model

Figure 13 shows that the results are reasonably close. The mean square

values are within 15 per cent of each other. The shape of both the cor

relation functions is the same. There is some error involved in the

determination of W and it is quite possible that the error involved is much

lower." The similar shape of both correlation functions is an excellent

sign of the reasonableness of this approximation. Hence we conclude that
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the approximation that assumes statistical independence of pulses at the

output of PWM is within reason for our study.

VI Theoretical Consideration of Errors

1) Andeen implies in equal area approximation that one can replace

the Pulse Width Modulator by Pulse Amplitude Modulator if the dominant

time constant of the linear plant following the Pulse Width Modulator is

large (at least twice) compared with the sampling period. This is not

generally true as shown by Kadota. He shows that it entirely depends on

the form of G(s). This is shown by 8 -function expansion. If the linear

plant is of the form l/s+1 as we have assumed for our examples, the equal

area approximation is indeed true as will be seen below. If G(s) is of

higher order then this approximation is valid for some values of t and error

for other values of t has to be evaluated. Let us consider this in some

detail. The one efficient way of studying this approximation is to look

at the output of the linear plant G(s) when the input to it are pulses

coming out of the Pulse Width Modulator and also the case when PWM is re

placed by PAM. This will give us some idea as to when the equal area

approximation is valid. If the input to the linear plant is f(t) we can

write the output x(t) as

x(t) =| g(t-8>f(T0d)f (21)
Jto

assuming the initial conditions to be zero at t = t0.

This above integral can be expanded in the form of 6-function expan

sion. We can write
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where

x(t) =j g(t-n)f(n)dn (22)

oo

:<*),f(n) =y 8i 8l J(n-t0) (23)

t

- (-1)1

'*<

Where o 'is the k derivative of 0-function and these are symbolic

functions defined in the sense of distributions* The 5-function expansion

can also be obtained by rewriting equation (21)

x(t) = I dW S(n-r)g(t-n)f(n)dn (25)
J*o %

and formally expanding 5(n-y) in Taylor's expansion with respect to

y at Y= t0. The output x(t) can be interpreted for input f(n), t0<: n«ct,

as the sum of response of the system to S-function and its higher

derivatives at n = t0 whose moments are given by weighted integrals of f(n)

from t0 to t.

In case of the exact model of PWM system we have the input to the

linear plant as

f(t) = H(t) - H(t-h) , h> 0 (26)

where h is the width of the pulse.

Expanding equation (26) in S-function expansion we can write

equation (22) as (t0 = 0)

h =-1-j- j S^-^oodr (2W
4-o
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x(t) = g(t-y)[t5(t) -|t2 SW(t) +....ldir
*0

=tg(t) -|t2 g(l)(t) +...., t<Lh (27)

x(t) =Ig(W)[hS(t) -|h2 &(1)(t) +....] dr

=hg(t) -ih2g(l)(t) +...... t*h (28)

This gives us the output of the linear plant.

In the case of the approximate model of the PWM system where we re

place the FWM with the PAM we can write the input to the linear plant as

*.<*> -| [**> -**•*>] (29)
Hence the output becomes

xa(t) "f *<*" *>d* <30>
o

Equations (27) and (30) should then be used for any value of G(s) and error

evaluated. In the case of the linear plant of the first order we prove

that the Andeen approximation is good.

Example:

Let G(s)=—i
vs + 1

Tteng(t) = ^•.e"t/V (3D

Exact model output for this g(t) is then given by equations (27) and (28)
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x(t) =t/v . e"t/v +t2/2v2 • e"t/v . . . , t ^ h

x(t) =h/v • e"t/v+h2/2v2 • e"t/v . . . , t ^h

Approximate model output is given by equation (30)

x (t) =h/v e-t/v +hT/2v2. e"t/v

(32)

(33)

(34)

We now have to compare the outputs given by equations (32) and (34).

We notice that for t ^ h the first term of the expansions is the same

and therefore error is in higher order terms and now if we make v large

compared to T, say (v ^ 2T), the error would be small and actually is

given by

^2 -i
error =

hT

2v 2v

e~t/v +. . . , t * h (35)

Compared to the first term this is small. Hence, we can say that the equal

area approximation as defined previously is all right for the first-order

linear plant.

For higher-order plants this above study does give an indication that

the equal area approximation is always good provided the second- or higher-

order terms in the o -function expansion can be neglected. For t ^ h, the

error will increase at t -* 0. Error in this case is given by

-t/v
error = e

•(t-h) (t*-hT) ,
v 2 **

v

, t ^ h (36)

Kadota has shown that for a second-order linear plant the approximation

is only valid for t »h but there error is multiplied by the factor of 2 at

t = h and the approximation is not valid for t< h. In this case the
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second-order term can not be neglected and the error will be introduced for

t<Th* So, if we consider a second-order linear plant we must keep this

fact in mind. In general, we can only make the equal area approximation

without introducing any serious error if second- and higher-order terms in

the §-function expansion can be neglected.
6

2) Nuttal has proved that the separability property of the input

Random Process is a necessary and sufficient condition that the cross-

correlation function across the non-linear element is proportional to the

auto-correlation function of the input to the non-linear element. This

has been proved exclusively for the Gaussian Process by Bussgang.' In the

experimental verification we noted that there is a very slight deviation.

This is entirely due to the finite length of the samples taken* Hence,

the cross-correlation functions which have been obtained using this fact

introduce no error other than any error introduced in the calculation of the

value K.

VH Conclusions

The experimental study performed in this paper indicate that the

approximations, which are required for the study of PWM systems for sta

tistical inputs, is within reasonable accuracy. It is shown, in most cases,

the error involved is about 10 per cent of the exact values. This error

could be further reduced if higher-order terms in the equivalent area

approximation are considered. The theoretical justification of the approxi

mations discussed in this paper is of Importance in future studies of such

systems. Most of the relationships obtained in the analysis can be ex

tended to any order system and can be solved with the aid of the computer.
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Although the approximation error is shown to be within engineering accuracy

for the particular system simulated in this study, it is felt that those

approximations could be improved further for higher-order systems. Thus,

the analysis procedure is fairly general and could be safely attempted for

any system.

In conclusion, one can state that within the framework of these

approximations, the analysis of PWM systems as well as other non-linear

discrete systems for statistical inputs, can be readily achieved.
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FIGURE 1

GENERAL CLOSED LOOP PWM SYSTEM

®-5-^Ml£E

FIGURE 2

APPROXIMATE MODEL OF CLOSED LOOP

PWM SYSTEM
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FIGURE 3

APPROXIMATE MODEL FOR CALCULATION OF CROSS

CORRELATION FUNCTION
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RANDOM NUMBER
GENERATOR GIVING

GAUSSIAN DISTRIBUTION

X4(K)

^ PWM
XgW 1

VS+ 1

X4(K)
f
X2(K)

FIGURE %t}

EXACT MODEL OF PWM SYSTEM FOR SIMULATION ON DIGITAL COMPUTER

X,(K) *2<K> Xfi(K)

RANDOM NUMBER X4(K)
GENERATOR GIVING
GAUSSIAN DISTRIBUTION

X2(KK)

HOLD

ICIRCUIT

X3(K)

FIGURE ;J
APPROXIMATE MODEL OF PWM SYSTEM FOR SIMULATION ON DIGITAL COMPUTER
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