
 

 

 

 

 

 

 

 

 

Copyright © 1965, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



Electronics Research Laboratory

University of California

Berkeley, California

Report No, M-114

A STABILITY INEQUALITY FOR A CLASS

OF NONLINEAR FEEDBACK SYSTEMS

by

A. G. Dewey

E. I. Jury

The research herein was supported by the Air Force Office of Scientific

Research under Grant AF-AFOSR-292-64.

April 21, 1965



A STABILITY INEQUALITY FOR A CLASS OF NONLINEAR
FEEDBACK SYSTEMS*

A. G. Dewey and E. I. Juryt

Summary--For some systems the Popov stability criterion fails to

verify Aizerman's conjecture, that is, when the Popov sector is not

equal to the linear (Hurwitz) sector. In these cases the question of

stability for a nonlinearity which exceeds the Popov sector but which

is included in the Hurwitz sector is unanswered. This paper provides

a partial answer to this question by taking into account the slope of the

nonlinear function. By constraining this slope to the interval [ 0, k ]

and thus the nonlinearity itself to the sector [ 0,k], the following

stability inequality is obtained

Re 1 +"^
1+ fJLCO

G(j«) + - > °
k

where jx is a non-negative parameter. For ja = 0 this inequality reduces

to the Popov criterion.

Two examples are given, in the first of which the sector is ex

tended up to the linear limit. The Popov theorem concerned only the

zero-input response of the nonlinear feedback system, whereas here a
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restricted class of inputs to the system is allowed.

Introduction

In recent years the problem of absolute stability of nonlinear

feedback systems has received much attention. Aizerman and Gant-

macher [l] have presented a historical survey of the problem and a

detailed exposition of the V. M. Popov theorem. For practical pur

poses, the Popov theorem was a significant new result, however, it

actually only provided a new method of solution for a problem that had

already been solved by Lur'e [2] since it has been shown by Yakubo-

vitch [ 3 ] and by Kalman [ 4 ] that the Popov criterion is a necessary

and sufficient condition for the existence of a Lyapunov function of

the Lur'e type. The Popov theorem has been extended to systems with

pure delay, systems with multiple nonlinearities and to sampled-data

systems.

In the practical analysis of nonlinear control systems, a theorem

concerning absolute stability is often far too general, as more informa

tion is known about the nonlinear element than the fact that it is contained

in some sector. However, the main body of researchers in this field

has concentrated on the problem of absolute stability and few have de

viated from this problem to take account of additional information about

the nonlinear element. Jury and Lee [5] have made a successful ap

proach to this problem for sampled-data systems by considering the

case where the slope of the nonlinear function is bounded. In this paper

an equivalent approach is made to nonlinear continuous systems using

the method of the Popov theorem. Yakubovitch [ 3 ] has obtained a sta

bility inequality for monotonic nonlinear ities and this result is included

as a special case of theorem 1.
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Several authors have also concerned themselves with the

stability of the responses of nonlinear systems to various inputs.

Naumov and Tsypkin[ 6] have recently presented a result for bounded

inputs in which nonlinear functions similar to those in this paper are

considered, however,the stability criterion they obtain is more re

strictive than the Popov criterion. In this paper it is shown that the

response of the system to a restricted class of inputs from arbitrary

initial conditions is stable.

It must be noted that this paper provides additional informa

tion only when the Popov theorem fails to verify Aizerman's conjecture.

In those cases where the Popov sector is equal to the linear (Hurwitz)

sector, no additional information can be gained by further restricting

the nonlinear element.

Description of System

The class of nonlinear feedback systems considered will have

the configuration of Fig. 1. The block labelled N is a time-invariant

memoryless nonlinear gain element whose output £ (t) is given by

g(t) = * [ o- (t) ] (1)

where <|> (tr) is a continuous function of tr ,

<j) (0) = 0 and 0<<{>(<r)/o-<k<oo, V<r =£ 0 (2)
These inequalities restrict the nonlinear function to a sector in the o-,

<j) plane and we will refer to this as a nonlinearity in the sector [ 0,k].

The following further restriction is made on N:

0 ^ ^i S. k' *3)
do-

Eq. (3) restricts the 'a. c. ' gain of the nonlinear element and will

clearly be a meaningful restriction only if
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k» - k (4)

This will be referred to as a nonlinearity with slope restriction [0, k'].

The block labelled G is a linear time invariant subsystem de

scribed by the equations

x(t) = A x (t) + bg(t) , t > 0
"" " (5)

y(t) = c x(t)

where A is an n x n constant matrix, x(t) is an n-vector and b, £ are

constant n-vectors.

The transfer function of G is given by

G(s) = cT (sl_ - A)'1 b (6)
and putting s = jco in (6) gives G(jco), the frequency response of the sub

system G.

The following assumption is made: in the principal case, all

eigenvalues of A have negative real parts or, equivalently, all poles of

G(s) have negative real parts. This restriction may be relaxed to allow

simple poles on the imaginary axis of the s-plane in the particular cases,

An alternative formulation for the subsystem G is as follows :

y(t) = z(t) + f g(t-T)£(T)dT , t > 0 (7)
J0

Here g(t) is the impulse response of G and G(s) =JC[g(t)] where Jc,

denotes the Laplace transformation.

1
The formulation of G as a stable linear differential system is conven
ient because of the many properties of such a system which will be
used in the Theorem. However, in terms of the more general formu
lation of Eq. (7), the following conditions may be shown to be suffi
cient [ 7 ] :

a) for all initial states, z(t) and z(t) are bounded on (0, oo),
b) for all initial states, z(t), z(t) and 2(t) are elements of L2 (0, 00) ,
c) g(t) is an element of Li(0, oc).
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z(t) is the zero-input response of G which depends on the initial

state of G.

The input to the system u(t) satisfies the following conditions:

a) u(t) and u(t) are bounded on [ 0, oo)

b) u(t), u(t) and u(t) are elements of L-, (0, oo)

The above conditions imply that u(t)-^0 as t-^oo.

Stability Inequalities

Theorem 1: For the principal case, if there exists a finite number

q ^. 0 and a finite number (i £. 0 such that for all co ^- 0

Re (1 + jcoq) G(jco) + ±+\± co2 {Re G(jco) + p } > 0 (8)
then the system is asymptotically stable in the large for all nonlinear

ities with slope restriction [ 0, k' ] in the sector [ 0, k ].

1 (Z)For a monotonic nonlinearity ( — = 0 ) the inequality becomes1 '

Re (1 + jcoq + Hco2)G(jco) + — > 0 (9)
k

Theorem 2: If there exists a finite number q and a finite number

H- > 0 such that for all co > 0

I"1 +"^1L l + \nJ-J
Re | 1 + _^£HL_ | G (jco) + i > 0 (10)

then for the principal case, the system is asymptotically stable in the

large for all nonlinearities with slope restriction [0,k], In the par-

(3)ticular cases, if the conditions for stability in the limit are satisfiedv

then the theorem remains true for nonlinearities with slope restriction

[ 0, k ] in the sector [ € , k ] where c > 0 is arbitrarily small.

Note that for |x = 0 all three inequalities reduce to the

^ Yakubovitch [ 3 ] has obtained this inequality using Lyapunov function
techniques.

v 'These conditions require that the system be stable for a linear gain
<(>(cr) = €cr where € > 0 is small. This is a linear problem and conditions
on G(jco) for stability in the limit are given by a Theorem in [l].
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V. M. Popov criterion.

The inequalities may be tested analytically or graphically as is

done with the Popov inequality. However, the graphical procedure here

is more complicated. An initial value must be taken for the parameter

|x and then an iterative technique used to find the optimum value.

Inequality (8) is useful mainly for analysis problems where at

least the value of k' is known. Inequalities (9) and (10) are more suited

to design procedures where it is required to find the maximum value of

k for stability.

The graphical technique is similar to that used with the Popov

criterion. For inequality (9) we plot

Y = coImG(jco) co ^ 0

against X = (1 + hlco2) Re G(jco)

for a fixed value of the parameter fi. Then(9) becomes

X - qY + - > 0
H k

The tangent line of slope l/q may then be drawn to find the value of the

intercept on the X axis, -l/k. The optimum value of jx must be found by

some iterative process, however, in the two examples given, this prob

lem was not too difficult.

For inequality (10) we plot

Y = -—- ImG(jco) co > 0
1+fJLco2

against X = Re G(jto)

and proceed as above.

The following remarks unify and simplify the proof of Theorems

1 and 2.

Remark 1 For the principal case, Theorem 2 follows from Theorem 1

by putting k' = k.
- 6 -



Remark 2 The inequalities guarantee the satisfaction of the Nyquist

criterion for linear gains in the sector [ 0, k ] . Let coq be the frequency

at which the X, Y plot crosses the negative X axis furthest from the

origin. This will also be the frequency for the same intersection of the

Nyquist plot and for inequality (8)

Re G(jco0) + i + uco02 [Re G(jcoQ) + ±1 > 0
Now —, _ - so this implies that

k k

(1 +H<o02) [ Re G(jcoQ) + i ] > 0

and hence Re G (jcon) > —

which is the Nyquist criterion .

Remark 3 In all three inequalities we can, without loss of generality

change the inequality

H (co, q, |i) > 0

to the inequality

H ( co, q, H-) > 6 > 0

where 6 is a positive number. This remark is explained fully in [ 1 ] for

the Popov theorem and the reasoning is identical in this case.

Remark 4 In the proof of Theorem 2 we may restrict ourselves to the

principal case since the particular cases may be reduced to the princi

pal case by the transformation

6 = kcr - | (11)

This transformation changes the characteristics of the nonlinear function

<|>(tr) tocj)(cr) = kcr - <j> ( cr ) and the frequency response of the sub

system G (jo>) to G(jco) where

G(jco) = G (jco) (12)
1 + k G (jco)
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It must be noted that the transformed system differs from the original

system only in notation. Now

<ty _ k dc)>
dcr dcr

and we have assumed for this particular case that'the conditions for

stability in the limit are satisfied. That is, that the system is stable

for a linear gain cj>(cr) = € cr (where e > 0 is arbitrarily small). Because

of the fact that the Nyquist criterion is satisfied, this implies that the

system is stable for 4>(cr) = kcr. Hence the transformed system is

stable for <|>(cr) = 0, that is, the transformed system is a principal case.

From Eq. (12)

Re 1 - j^q + I Re -1 +
jwq

1 + nco' 1 + uco'

= Re j<*>q 2 G + i ]/(l +kG)
\ 1 + |XCO

1

| 1 + kG |

| 1+ kG | 2

| 1 + kG | 2

Re

Re

Re

jtoq

1 + uco'

G +

G +

j"»q

1 + uco2

-L)(»-)'
+ I

1 + j<*>q G + -

1+ flCO2 / k

1 + kG

It is clear from Eq. (13) that for the particular cases, the inequality

Re 1 -

for all co > 0

jcoq

1 + uco2

follows from inequality (10). In (14), equality takes place for each

co = con where jcon is a pole of G(s), but clearly it follows from (14) that

G + - £. 0
k

- 8 -
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Re "i . _i»a_i G + t-L- > 0
1+ HLU2j k " «

Once Theorem 2 is proved for the principal case, we can apply this

theorem to the transformed system and thus establish stability for <J>(cr)

with slope restriction [ 0, k f ' in the sector [0,k-e]. This then implies

stability of the original system for 4>(cr)with slope restriction [ 0, k ] in

the sector [ €,k] which was to be proved.

Remark 5 In proving Theorem 2 for the principal case, we may limit

ourselves to the case q > 0.

Assume that Theorem 2 has been proved for the principal case

for q > 0. Now let q < 0 and again apply the transformation (11). Since

from remark 2, the original system is stable for <j)(cr) = kcr, the trans

formed system will be stable former) = 0, that is, the transformed sys

tem is also a principal case. Since, for the principal case, G(jco) is

finite for all co, the inequality

Re ' ' - -JSS[•-rf (XCO

G(jco) + - > 0 (15)
k

follows from inequality (10) and Eq. (13). This inequality differs from

(10) only by the sign of q and the change of G(jco) to G(jco). So once Theorem 2

has been proved for the principal case for q > 0, it follows from inequality

(15) that the transformed system is stable. But this implies stability

of the original system since these two systems are, in fact, the same,

differing only in notation. Hence the original system is stable for

q < 0. -

(4)
See Appendix 2.
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As is shown in [l], the case q = 0 follows immediately from the

case q > 0 .

On the strength of the above remarks, only the proof of Theorem

1 will be given.

Preliminaries

From Fig. 1

cr(t) = u(t) - y(t) (16)

using Eq. 7

o-(t) = u(t) - z(t)- / g(t - T) £ (T)
J 0

Let cr(t) be a solution of Eq. (17) with an arbitrary fixed function cj>(tr)

contained in the sector [ 0,k].

Then £(t) = <|>[cr(t)] is a fixed function of time. Let

g_(t) = fg(t) for 0 it < T
T ' T (18)

£T(t) for t > T
T

where T is an arbitrary fixed positive number and £ (t) is the system

trajectory obtained by replacing, for all t > T, the nonlinear function

<j>( cr) by the linear function her where

h = iGLi and clearly h € [0,k] (19)
<r(T)

Then £T(t) is continuous at t = T and since, from the Nyquist criterion,

the system is asymptotically stable for cj)( cr) = h cr,

gT(t)c L2(0,oo)

Let the Fourier transform of £T(t) be

XT(jco) = P°° £T(t)e-jut dt (20)

t

d t , t ^ 0 (17)
0
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Let

<rT(t) = u(t)-z(t)- J g(t-r) eT(t) dt, t^-0

= f(t) + ^T(t)

Then it is clear that

o"T(t) =
o-(t)

i eT(t)
h

where f(t) = u(t) - z(t)

for 0 £ 11 T

for t > T

(21)

(23)

(24)

crT(t) is continuous at t = T, and by the same reasoning as before

crT (t)e L2(0, oo)

Referring to Eqs. (16) and (17), it is seen that oC, (t) € L,(0, oo) and that

its Fourier transform ST (jco) is given by

ST(j<o) = -G(jco)XT(jco) (25)

Let g (t) = -st gT(t) and similarly differentiating Eq. (22) term by term

«rT(t) = f(t) + £T(t) (26)

From the assumptions, it follows that £T (t), cr™ (t), f(t) and cr,p (t) all be

long to L2(0» °°)

It is seen from Eqs. (18) and (24) that

| gT(t) | < k | crT(t) | for all t >0

Our assumptions guarantee that f(t) and g(t) are bounded on [ 0, oo) so let

fM = SUP l*(t)| and §m = SUP Jg(t)l
t > 0

then, from Eq. (21)

t > 0

| o-T(t)|< fM + kgM J ja-T(t)Jdt,

- 11 -
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From the Gronwall-Bellman inequality [8] it follows that

|crT(t)|<a e*g™\ t>0 (28)

where a > 0 is independent of T. This inequality will be required in

the proof of the theorem.

The following further definitions are made in order to simplify

the proof of the theorem:

Let fi(t) = f(t) + qf(t), F2(jco) =J [f^t)]

f2(t)= f(t), F2(jco)= 3F[f2(t)]
and

9T(t) =gT(t) - g(0) e'a\ a>0, t >0. (29)

Then 9T(0) = 0,

6(0)6 (jco) = Xm(ju) - -r-^i-TVJ ' TVJ ' jco + a
(30)

6T(t) =~6T(t) =gT(t) +arg(0) e aZ (31)

Proof of Theorem 1

Let \T(t) =<rT(t) +qd-T(t) - ^O^t)
=cfT(t) +q5=T(t) - ^GT(t) +fx(t) (32)

and -i

i|iT(t) = K.[o-T(t) -p6T(t)]

= H.[ffT(t) -—0T(t)]+ uf2(t). (33)

Now 0T(t), 9T(t), \T(t) and ^(t) are all elements of L2(0, oo), so

let -AT(jco) and ^T(jco) be the Fourier transforms of \^{t) and ^T(t)

Then using Eqs. (25) and (30)

AT(jco) =-(1 +jcoq)G(jco)XT(jco) - ^8^jco) +F^jco)
=-{(l+j(oq)G(jco)+l|0T(jco)-(l+jcoq)G(jco)4^+ F^jco)

-12-



and ,

*_(jco) = -K>{G(j<o)X_(j«)+^€L(j<o)} + M-F-(jco)ki ~T>

=-hijco{G(jco) +p-}©T(jco) -ajcoG(jco)^l:i +uF2(jco).

p(T)=y [\T(t)GT(t)+ i|iT(t)0T(t)]dt. (34)
Let

.00

'0

Then using Parseval's equality,

1 /*°° —p(T) = j^ J [A (jw) 6T(j(o) + tf (jco)jcoQ (jco)]dco
-00

+u[f(0) - 6(0)g<0)] ~ / 67F)dco(5)
-00

=̂ /°°F{(i+jttq)G+^ieT|2-OO L_

- (1 +j«q)Gg2L«-T +FlFT
+^(F2 - jco(G +^)6T -J«G^SL}(-juTT}
+Fif(0)"QT - ^(0)^0)^1 do>

, - 00 ?

=~h J [H(jco)|6T(jco)r - F3(jco)9^)]dco
where

H(jco) =(1 +jcoq)G(jco) +1- +uco2{G(jco) +p-}
and

F3(jco) =F^jco) - fij[f(t)] +\xi(0)J[g(t)] - (q +ua)e(0)G(jco)j^.

If F,(jco) =^[f,(t)], then from our assumptions, f~(t) is an element of

L2(0, 00). Now

Re H(jco) > 6 > 0 for all co > 0

(5) , roo^ . -00
jzf ~Gt^^=7zJ «T(J«)d« =eT(o) =o

-00 ~-oo
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and since H(-jco) = H(jco), this implies ReH (jco) > 6 for all co.

Also p(T) is real, so

, /» oo ?

p(T)=-2W [ReH|eT|̂ - Re(F30T)]dco
-oo

1 Z*00 ? 1 _="2¥ J [ReH|0Tr-i(F3-5T+ F3eT)]dco
-oo

^ -oo\ x 2v/ReH/\

817./

2s/ReH/V VT 2,/ReH,

ReH

i r°° lF:
" 8tt y

-oo
ReH

dco

, /»oo

-OO 2,/ReH

dco

dco

1 A00 2<-k—c- / IFo(jco) I dco = C, a finite number independent of T,
-oo

Substitute Eqs. (32) and (33) in Eq. (34).

.oo

0

r°° 1J [erT(t) +qo-T(t) - ^eT(t)]eT(t) dt

/oo

T(t) -p6T(t)]0T(t)dt< C (35)

It is shown in appendix 1 that this inequality results in the inequality

rT , ro-(T)
/ [cr - =±<t>(a-)]cj>(o-)dt + q c|>((r)dcr < C*

J 0 J 0

where C* is finite and independent of T.

-14-
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From this point on, the proof of the theorem will follow closely

the proof of the Popov theorem given in [l] and consequently the steps

in the proof will not be given in detail. The following lemma will be

used [7] :

Lemma 1 . If the real valued function f(t) is bounded and uniformly continuous on

[0, 00), the continuous real valued function G(x) > 0 for all x 4 0 and

G(0) = 0 then

.00

G[f(t)] < 00 implies lim f(t) = 0
0 t-^00/

Because of the assumptions on c}>(cr), it follows that both integrals

in inequality (36) are nonnegative. Hence

»T

0

and

T

/ [<r - ^4>(<r)]4>((r)dt< C* (37)

ro"(T) x
J 4>(<r)d(r <-C*. (38)

Jo q

We now restrict the sector in which the nonlinearity cj>(cr) may lie from

[0, k] to [e, k). This additional restriction is eliminated in appendix 2.

It then follows from (38) that tr(t) is bounded on [0, 00) and

consequently |(t) and y(t) are also bounded on [0, 00).

Since C* is independent of T, using inequality (37) we may

write -oo
f G[<r(t)]dt < C=_ < 00

0

where

G(cr) = [cr - ^<M<r)]4>(<r)

which satisfies the conditions of Lemma 1,

-15-



From Eq. (17) it can be shown that cr(t) is uniformly continuous

on [0, oo) and hence from Lemma 1 we conclude that for all initial states

lim cr(t) = 0
t-?-oo

It then follows that lim £(t) = 0 and lim y(t) = 0 which completes
t-^-oo t-^oo

the proof of the theorem.

Examples

1. A particular case given by Aizeman and Gantmacher [l].

Consider the system with transfer function

2 b > 0, c > 0
G(s) = —--S 5 . (39)

(s + l)(s + c) b < c

Conditions for stability in the limit are satisfied [l] and the system is

stable for linear gains in the sector (0, c/b).

The Popov sector is found to be [e, 1/c] where e > 0 is

arbitrarily small and 1/c < c/b. From Eq. (39)

2 2m -. \ - co + b _ (co + b)(c - jco)
Cj(jco) - —2 —5 2 T '

(co - l)(jco+ c) (co -l)(oo + c )

Using Theorem 2, let

2

X= ReG =—2 ^~2 2"
(co - l)(co + c )

2 2eolmG _ co (co + b)
2 ~ 2 2 2 2"1 + (ico (co - l)(co + c )(1 + uco )

^ 'See Reference [7]. In the special formulation of Eq. (5), uniform
continuity follows immediately from the boundedness of cr(t).
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Then

v v (u + b)(c + C|j.u + qu) , 2X - qY = j- •*—!- where u = co ,
(u - l)(u+ c )(1 + [JLU)

Inequality (10) can be satisfied only for values of q for which

(c + cuu + qu) is divisible by (u - 1), that is, for q = -c(l + jx). So

for this value of q

y „v - c(u + b)
41 -

(1 + |iu)( U + c )

Choonsing
K —b

X - qY >
-be

u + c

= -

c
c(u

bu

v..

Now •=• > 0 for all u > 0 and hence
c(u + c )

X- qY +i >0 for ~>£, that is, for k<p

Thus the system is stable for nonlinearities with slope restriction

[0, c/b - e] in the sector [e, c/b - e]. If b = 1 and c = 10 then this

sector is 100 times greater than the Popov sector. For the commonly

encountered saturation-type nonlinearity, this increase is very significant.

2. Consider the system with transfer function

G(s) = = .
s(s + l)(s + 0.8s + 16)

The frequency response G(jco) is plotted for co > 0 in Fig. 2. This

type of frequency response is common in compensated feedback servo

systems. The system is stable for linear gains in the sector (0, 1.76).

-17-



In Fig. 3 the modified Nyquist plot (jjl = 0) and the Popov line [l]

are shown. The Popov sector is found to be [e, 0.65].

Using Theorem ^ an X, Y plot is made for several values of \i.

The plot for |i= 1 is shown in Fig. 3. It is found that for increasing

values of jjl, the intersection of the tangent line with the negative X axis

approaches the point -0.70.

Hence the system is stable for all nonlinearities with slope

restriction [0, 1.43] in the sector [c, 1.43], e > 0, arbitrarily small.

This shows a significant increase over the Popov sector, but not,

in this case, up to the linear limit.

Conclusion

It has been shown that in certain cases an improvement over the

Popov criterion can be obtained for monotonic nonlinearities with slope

restriction [0, k]. An example of the use of inequality (9) has not been

obtained and Yakubovitch [3] also did not give such an example. Thus

the value of this inequality remains questionable.

Many others have tried without success to improve on Popov's

criterion without further restricting the nonlinear function. Brockett [9]

has proposed a new stability inequality, but it has been shown that it is,

at best, equivalent to the Popov criterion.

Theorem 1 remains to be proved for negative q and for the

particular cases. Also the connection between these new inequalities

and the existence of Lyapunov functions similar to those used by

Yakubovitch [3] will be an interesting topic for future research.
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Appendix 1

Substituting for ©T(t) in Eq. (35)

*00

0
J [«rT(t) +q«rT(t)-^eT(t)+l{^e-rt][eT(t)- ^OJe^ldt

+»J[crT(t) -^eT(t) -Sg^e"0*] [eT(t) +̂(OJe-^ldt <C

J [o-T(t)-^eT(t)]eT(t)dt+yi [o-T(t)-ieT(t)]eT(t)dt

rT roo
+q J 6T(t)frT(t)dt+ qJ iT(t)6-T(t)dt

rT , . roo . .
+M.y [6-T(t)-^reT(t)]iT(t)dt+M.y i>T(t)- ^-eT(t)]eT(t)dt

e{0)y,°0e_at[2eT(t) -e(0)e-at]dt+ £(0) f°°*"*[*?&) +q*T(t)]dt
R

+M£l^)J™^ 2eT(t) +ai(0)e-at]dt -^t(0)/V"VT<t)dt

< C

that is
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/o k->r)]*(<r)dt +/~(^) £T<t)2dt

rT r°° 1 T 2+ q / +(<r)&(t)dt + q / ^(t) clt
J0 «/ 0

e_Qrt6-T(t) dt+6(0) f e'̂ o-^tjdt +(q - |iff)g(0)f
J 0 •* 0

+2u^i0)^°°e-c,t^(t)dt5C

The second and fourth through eighth terms in this equality are non-

negative and hence may be discarded. So adding to both sides the

nonnegative quantity

rcr(0) MO)
I c|)(cr)dcr and putting C + / cj>(cr)dcr = C,
Jo J 0

we obtain
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/ [<r - r<j)(<r)](j>((r)dt + q / <t>((r)d<r
J0 k Jo

<C1+ il^/°V*t|ST(t)|dt+ |g(0)||°°e-£rt|.T(t)|dt

- (q - |xar)g(0)t«r(0) +aJ e aT(t)dt]

<CX+ |q - nar|e(0)o-(0)

2,v «oo+|e(0)| (3+«|q-^| +2j£r^|/o e^l^tJldt

= C*.

Now a > 0 was arbitrary and from Eq. (28)

|<r_(t)| <a ekgmt, t>0.

Therefore choosing 00 > a > kg , the last integral is finite and hence

we obtain

,T , jt(T)
t [* - ^M]^M^t +qf 4>(o-)dcr <C* <

J Q K J q

where C* is independent of T.
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Appendix 2

In the proof of Theorem 1 the sector [0, k] was changed to the

sector [e, k). In order to eliminate this additional restriction, make

the transformation

cj).(o-) = <j>(cr) + ecr for e > 0 small.

Then the transfer function of the transformed system becomes

G< «»> =r^Sfo •

For € > 0 small, the functions G (jco) and G(jco) are not very different
€

and hence

Re 1 +

implies

Re 1 +

j<*>q

1 + |xco'

j^q

1 + [ICO _

G(jco)+^> 6 >

G (jco) +i> 6 >0(7)
€ J k o

(40)

In (40) it is possible to change k to k + 2e by reducing 6

sufficiently. Now for € > 0 sufficiently small, the transformed system

will be stable for cMcr) = 0. Hence the transformed system is also

__

1 'As in [l], it can be shown that the difference between the left hand
sides of these inequalities can be made arbitrarily small (uniformly
in co) by choosing a sufficiently small € > 0.
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a principal case and from Theorem 1 it is stable for <\>A(t) with slope

restriction [0, k+ 2e] in the sector [e, k+ 2e). This implies stability

for <j>j(<r) in the sector [c, k + e] and hence that the original system is

stable for <j>(cr) with slope restriction [-e, k + t] in the sector [0, k].

Thus the original system is stable with the simple slope restriction

[0, k] which was to be proved.
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Fig. 1. Nonlinear feedback system.
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oj=5 Re

Fig. 2. Frequency response for example 2.
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Popov line —

Fig. 3. Frequency plots for \i = 0 and p. = 1
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