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1. Introduction

The microwave cavity-chain beam amplifier to be discussed

is depicted in Figure 1. It is basically a traveling-wave tube with

provision for stagger-tuning the various cavities in order to widen

the bandwidth, which is inherently narrow because the passband of

the infinitely-long, periodic structure is narrow. Generator current

I excites the beam in the first cavity after it has entered unmodulated,
g

The beam, assumed longitudinally-confined , traverses the various

cavities and interacts with the axial electric field of each. The inter

mediate cavities may or may not be loaded externally; only the last

cavity must be coupled to a passive load. Note there are no field-free

drift spaces between cavities as in the conventional multi-cavity klystron.

In this report we discuss only 5- and 10-cavity tubes.

We first develop, in Section 2, the basic equations which describe

the excitation of the cavity fields by the beam and by the fields of the

neighboring cavities through the coupling holes. We shall also develop the

equations for the beam as driven by the electric field in each cavity and by

its own space-charge field. The assumptions in the analysis are tabulated-

In Section 3 we obtain the relations among all the parameters of a stagger-

tuned chain in terms of the coupling-hole parameter of one cavity and the

various resonant frequencies of the cavities. These may be adjusted either

by external susceptive loading or by collars on the outer circumferences

of the cavities. If collars are used certain of the coupling parameters

must be readjusted slightly from their theoretical values in order to

guarantee conservation of power throughout the amplifier. The expression

for input impedance is derived.

In Section 4 we present computed characteristics of the gain and

input impedance vs. frequency of several model amplifiers with zero

electromagnetic coupling between cavities and lossless intermediate

cavities. The output cavity is loaded to a Q, of 50. All cavities are

synchronously tuned. We find these amplifiers have tremendous gains

and gain-bandwidth products but virtually no bandwidths. Their input
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resistances are positive at all frequencies. The effect of adding loss

to the intermediate cavities is a large reduction in gain and a slight

increase in bandwidth. Computed performances of these tubes are

compatible with the experimental results of M. Chodorow and T.

Wessel-Berg and of H. Golde.

In Section 5 we study the effect of introducing electromagnetic

coupling between cavities and matching the output cavity to the growing

wave at the 3ir/4 "cold" circuit phase shift frequency. Invariably the

coupling causes the gain to fall sharply without a significant increase in

operating bandwidth. The input resistance often goes negative in certain

frequency ranges. If the generator resistance is not sufficiently positive

the amplifier may exhibit "cut off" oscillations at a frequency near the

ir-cutoff frequency.

In Section 6 we describe some models of stagger-tuned ampli

fiers with either zero or very slight electromagnetic coupling between

cavities. If coupling is present the output cavity is matched as described

in Section 5. In the absence of this coupling the stagger-tuned gains are

relatively low and the gain vs. frequency curves are jagged so that the

bandwidth is not increased. It appears there is no stagger-tuning scheme

which will increase the bandwidth by a reasonable amount, considering

the reduction of gain in such an amplifier. Then we consider various

stagger-tuned arrangements of the same tube but with very light electro

magnetic coupling between cavities and with the last cavity matched. The

gains are negative, implying negative input resistance, so that these

potentially unstable tubes are inherently narrowband even though the

input resistance may be only a few ohms negative in the frequency range

of interest. It is possible to taper the resonant frequencies of a tube so

as to eliminate the large negative input resistance near the w-cutoff fre

quency. However, in the tube described herein, even a larger magni

tude of negative input resistance developed near the center of the pass-

band and the untapered tube.

The computations enable us to specify, in Section 7, characteristics

of a model amplifier with both high gain and reasonable bandwidth.
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The amplifiers described in this report have very low bandwidths

primarily because the beam-circuit coupling coefficient is low and a

final drift space is not utilized; if these amplifiers are used as bunchers,

and the output kinetic voltage is allowed to drift into current which excites

the (broadband) output cavity, then performance is markedly improved

(Section 7). Electromagnetic coupling between the buncher cavities and/or

the proper stagger-tuning of those cavities can improve the overall perfor

mance. Drift spaces between the buncher cavities are not crucial, although

they undoubtedly would help to optimize the performance. Conventional 5-

and 7-cavity klystrons (with drift spaces but no coupling between cavities)

have gains in the range 20-30 db and bandwidths of 5-10%. Our compu

tations are compatible with these numbers, provided the output cavity is

optimized with respect to both gain and bandwidth and also the (co/co )

ratio is maintained high.

2. Assumptions and Equations of the Analysis.

In the amplifier of Figure 1 the beam enters the first cavity

unmodulated and is longitudinally confined by a large axial magnetic

field. The cavities are considered lossless (see remarks under assump

tion (4)), of a common length L, and tuned either by an external susceptive

load or by high-Q metal collars. No field-free drift spaces lie between

successive cavities although the beam equations could easily be modified

to include them. The ac magnetic field in the last cavity induces current

I to flow to the external load. The fields in each cavity are excited by
J_j

the beam, by the fields in neighboring cavities if the net electromagnetic

coupling is finite, and by the loop currents.

We will discuss the small-signal ac power gain and input impedance

as functions of frequency for various output loads and cavity parameters with

the following assumptions:

(1) There is only loop coupling via coaxial lines to the external loads.

(2) The longitudinal beam excitations are represented by the usual

fast and slow space-charge mode expressions, for kinetic voltage and current.
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We do not account for non-linear effects even if the gain is considerable.

(3) We represent the fields of each cavity by the two modes which

resonate when the coupling holes are covered by perfect electric and

perfect magnetic shorts, respectively. The first mode represents the

true fields at zero phase shift per cavity in an infinitely long chain; the

second mode represents the true fields at it phase shift. The operating

frequency always lies near the resonant frequencies of these two modes,

so that we can neglect the other weakly-excited modes. This assumption

implies that the first pass band of the infinitely-loag, unstaggered chain

of cavities is narrow compared to the width of thepassband between the

first and second pass bands.

(4) The intermediate cavities are assumed to be lossless unless

otherwise specified. This assumption is reasonable if the cavities have

unloaded Q»s of about 10 or more. If the external conductive loading

of these cavities is gradually increased the gain at first drops very

rapidly, then less and less rapidly, while the bandwidth increases slowly

if at all. This external loading improved none of the amplifiers summa

rized in Sections 4-6 to the extend of making the bandwidth > 1%.

(5) The dimensions of each cavity are uniform except perhaps for

the outer radius which may be varied by means of a collar to change the

resonant frequencies of both the "short" circuit mode (resonating

between electrically-shorted holes) and the "open"-circuit mode (reso

nating between magnetically-shorted holes). Alternatively, the cavities

are tuned externally.

(6) The cavity length L is presumed to be about three times the

center hole diameter so that the axial electric field within that cavity is

nearly uniform across the cavity. Figure 2 shows the e" - field pattern

in the beam region. The amplitude of this pattern is, of course, deter

mined by the beam current and fields on the center holes. This impor

tant assumption enables us to say that the e -pattern is essentially in

dependent of operating frequency.

(7) We assume a thin solid or hollow beam and neglect the radial

variation of e in any given transverse cross section- We take the

-4-
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space-charge reduction factor a> /co to be constant throughout the
tL it

amplifier. The space-charge electric field is taken to be proportional

to the ac beam current by the usual space-charge-mode factor

jZ w /u , Z being the ac beam impedance per unit area and u ,
•* o q o o ° r c o
the dc beam velocity.

(8) We neglect the fringing of the electric field near each center-

hole and simply say the axial electric field of one cavity acts upon the

beam right up to one centerhole, just beyond which the field of the next

cavity "takes over" and drives the beam further. This assumption is

reasonable because the cavities are long compared to the centerhole

diameter which measures the fringing-field region. The assumption

does not imply any discontinuity in power flow across each centerhole

if the neighboring cavities are not stagger-tuned; if they are stagger-

tuned there is a slight discrepancy between the estimated electromagnetic

coefficients at the common centerhole and the values chosen to maintain

continuity of electromagnetic power flow. Details of this statement will

be discussed later in this section.

(9) To keep the analysis as realistic as possible we work with

Maxwell's equations directly and do not introduce equivalent circuit

elements except for the input and output impedances, both of which are

well-defined in the coaxial waveguides.

Granted that these assumptions are reasonable for a good des

cription of the cavity-chain amplifier we shall now summarize the equations

for the fields and beam excitations in each cavity.

It is convenient to represent the solenoidal fields in the n

cavity (1 < n< N) with the open-circuit mode defined earlier. The field

pattern e(n) and h(n) of this mode, which represents the two fields at

ir phase shift per cavity in a periodic chain, are defined conveniently as

Vxe(n)= p(n) h(n) ¥(n)«n= 0 on holes (la)

Vx h(n) = p(n) "e(n) h(n)xn= 0 on holes (lb)

p(n) is the normalized resonant frequency of this mode. We let these

-5-



patterns have amplitudes v(n) and i(n), respectively. Maxwell's

equations modified for the presence of the beam then are

Vx [v(n)e(n)] =- jwu i(n) h(n) (2a)

Vx [i(n)h(n)] =J +jw€ v(n) e(n) (2b)

When we operate on these equations so as to obtain v(n) and i(n) by a
1

procedure described by Schelkunoff we obtain:

p(n) v(n)= -jwu i(n) (3a)

p(n)i(n) = \ e(n)xHnds+ \ J • e (n) dv+ j w€v(n)
T(n) ixoles T(n) ^

(3b)

th
Here <r(n) is the volume of the n cavity to which the field patterns
have been normalized*

j e(n)2dv= y TI(n)2dv= T(n) (4)
cav(n) cav(n)

n is the unit outward normal on the centerholes on which the magnetic
field is H, and J is the beam current density in the cavity. H is

given very accurately by the average of the solenoidal short-circuit

mode expressions for it on either side. For example, on hole (M- )
in Figure 2a, we have

Htan(M- >=\ [«* - 1) H(n - 1) +I(n) H(n)l (5)

for which we use the short-circuit mode of field patterns defined by
analogy with Eq. 1 as

S. A. Schelkunoff, "Representation of Electromagnetic Fields
in Cavities in Terms of Natural Modes of Oscillation, " Journal Applied
Physics, 26, 1233, October 1955.
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Vx E (n) = P(n) H (n) E (n) x n = 0 on holes (6a)

VxH(n)= P(n)E (n) H (n) ' n= 0 on holes (6b)

P(n) is the normalized resonant frequency of this mode. The amplitudes

of the electric and magnetic fields as given by this mode are V(n) and

I(n); for consistency with the fields as expressed by the open-circuit

mode in Eq. 2 we must take I(n)si(n).

A complete discussion of the use of these solenoidal and the

associated irrotational modes for expanding fields in cavities is given in the

reference .

By eliminating i(n) from Eq. 3 and with relation 5 we obtain the

basic equation for v(n) of an intermediate cavity (n =£ 1, N) as

(p(n)2 . k2 +SM f e(„)xH(n)- T ds] v(n) +P(n' 1)v(n- l) •
L T(n) J z J 2T(n)

M-

f e(n)xH(n-l)' T ds . P<n +Dv(n-hi) C e(n)xH(n+l)' (
b. z 2t^ M+

l
z

(k = 0) JX€ ).

ds + l^ii \ J ' e(n) dv = °
t (n) ^

7)

If the intermediate cavity is loop-coupled to an external load an additional

term appears, according to the discussion of the last cavity. For the

first or input cavity we must modify Eq. 7 as follows. We discard the

v(n - 1) term (with n= 1 now) because no cavity is present on the gun

side. And we must add a loop-excitation term to the right side of Eq. 7,

2
R. M. Bevensee, "Periodic Electromagnetic and Quantum

Systems," Annals of Physics, 12, No. 2, pp. 222-263, Feb., 1961.
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derived as follows. The loop term on the left side is, by analogy with

the beam term,

p<ou/T(l)llg J 3T- e(l)
loop

From Vx "e (1) = p (1) "K (1) we can write

& e(l)*d|s.| Vxe(l) •dA|= -p(l) jV (1) •TK£
loop loop

(8)

- - P(1)|E d)| °a
il

loop

A being the loop area inside surface S. of Figure 2b. These

expressions will imply continuity of power flow across the input

surface S.- Thus, Eq. 7 for the input cavity will have the .following term

on the right side: .
+i«Jl i P(i)te(i)| .a (9)

T<!> g ' 'loop "
For the last cavity N, the output cavity, we must modify Eq. 7

as follows. We drop the v(N + l)-term because there is no cavity on

the collector side of cavity N. Tangential electric field on coupling

surface SQ in Figure 2c does not excite the cavity mode because the
former is asymmetric with respect to h (N) = hfl(N). The loop
excitation of the cavity is, by analogy to the beam term,

fjcoji./ t (N)llT £ HT •e(N) =i^ I, P(N) |h (N)| A
L J Lc7loop t(N) ^ loop £N

(10)

Loop current IT can be related to the external load Y_ measured

on surface S as I - V Y . Lastly, VT is given by Faraday's
O A-j J_i J_i Jj

law for the loop,

-8-



V =h e•ctf = v(N) p(N) |h(N)| A (11)
uloop loop

All these statements tell us that Eq. 7 for last cavity (N) will add

the following term to the left side,

+ML Yjl rp(N) Ih(N)| A 12v(N) (12)
t(N) <- loop J

We now know the expression for the amplitude of the solenoidal

electric field, v(n), in each cavity, as "driven" by beam current

density J. The irrotational axial electric field in the beam region will

be represented by jZ (u> /u ) J , as mentioned earlier. We now
0 q o

must solve the longitudinal beam equations for J and kinetic voltage

V, in each cavity,

(JPe+ 3/3z) Vk(z)= vez +jzoPqJ(z) (13a)

(jpe+ 9/dz) J(z)= j YQ PqVk(z) (13b)
with

Pe =o/uo' Pq ="q/Uo U3C)
1 lJ I +

Y = -- °- " , V being the beam voltage.
o 2 ir °

v go
o q

Suffice it to say that these equations may be solved for V^(n + 1) and
th

J (n + 1) leaving the n cavity in terms of \C,(n) and J(n) entering
K

Deing uniform across

may be cast into the form

the cavity and v(n), e being uniform across the cavity. The results
z

VK(n + 1) = A1 VK(n) + A2 J(n) + A3v(n) (14a)

J(n.+ 1) = Bx VK(n) + B2 J(n) + B3 v(n) (14b)

+
A relativistic correction factor divides Z and multiplies Y

o r o

according to the appendix of Reference 2. This becomes more impor

tant at higher beam voltages above 50 kv.

-9-



The A.- and B.-coefficients are functions of 6 L, 6 L, k, and the
11 re rq-

other cavity parameters.

We can also obtain J(z) in each cavity n by solving Eq. (13b)

in terms of V^n), J(n), and v(n). Then we can integrate J(z) for

Eq. 7 and obtain an expression for v(n) in terms of V-,(n) and J(n).

This latter expression along with Eq. 14 furnish a set of 3 equations

for each cavity. It is convenient to cast these 3 equations into forms

which involve the following convenient normalized parameters:

<j>(n) = v(n)L, the "voltage"for cavity n.

L (n) = Z J(n), the beam current density in volts.

ir = P(n)/P , the normalized short-circuit mode resonant frequency

in cavity n. P is any convenient reference frequency (in

units of k = uW|ie').

p = p(n)/p , the normalized open-circuit mode resonant frequency.

/C = k/ P i normalized operating frequency,
r

m =+_L__ \ e (n) x H(n)-T ds = - \ e(n)xH(n)-
1 rTW M- rrT\~i M+

a

• i d s, < 0, the normalized self--coupling coeffi-
z

cient of cavity n.

n,ZlA PT(n+l) ^
m A. \ e(n + 1) x H(n) • i ds, < 0, a normalized

n,r1,1 ^r(n+l) iA, Z
r ' M+

cress-coupling coefficient.

\ "e (a) x H(n + 1)" T .ds < 0, another cross-couplingm
n+l,n _. . .

P T(n) J.*,
r M+

coefficient.

D - p(l) |h(l)| A / [P2T(l)\ , the loop parameter,
loop l l L r -1

-10-



lr = coul L, normalized input loop current.

/p(n)|h(n)L Aa \2
YT = i^J±- : iooP *n \ YT , normalized load admittance.

Ln r(n)V Pr / L

>

In terms of these variables the complete set of equations for the

cavity-chain beam tube is given in Table 1. Cfi is a parameter which
measures the coupling between the beam and circuit field; it is given by

_ wiie A- Y coue , ll I 0c'= I 7 °g , % Ii-£l-£, (16)
B PrVT Pr2P.2T 2 V0 9q

A. being the beam area. There are 3N-2 equations in terms of the

3N-2 variables <J>(n), V*K(n), and Ib(n), excluding V"K(1) and 1^(1)
entering the first cavity, which are zero.

3. Relationships Among the Parameters

If we wish to stagger-tune the various cavities with external

susceptive loading, the expression for a in Table 10-1 shows that

the effective normalized resonant frequency p ' differs from the
n

non-loaded p by

2 2(p ' ) = p - B, B , normalized susceptive load. (17)

Thus a capacitive load lowers the effective resonant frequency. On

the other hand we may wish to stagger-tune by staggering the radii

R., . . . , R^_ of the various cavities. In this section we shall

develop the relations between the parameters of different cavities in

such a chain in terms of the ratios of their normalized short-circuit

mode resonant frequencies.
• , th

Since the short-circuit mode resonates in the n cavity such

that J fP(n) R 1 = 0, J being the Bessel function, we have
P(n+l°/P(n)=^+1/un=°Rn/Rn+1

-11-



To obtain relations among the m's we first observe the

short-circuit mode patterns in the n > cavity near the small

centerholes are

E(n) =T^TH JQ [P(n) rj £f T^ 1-93 (18a)
r< < R

H(n)= i0 sfTn Jx [P(n)r|~ iQ 1.93 P(n) r/2 (18b)

The factor si3.71 normalizes the mode pattern just as e(n) and

h(n) are normalized by Eq. 4. We see that HQ(n+ 1) / H (n) at
a point on the hole between cavity n and cavity (n + 1) is

P(n + 1)/ P(n)=ir .i/it • Now, the open-circuit mode pattern e (n)

is a perturbation of the nearly-uniform lS(n) -pattern near the holes,

thus: |"e(n)| = |e(n+l)| = |¥(n+2)| = • • • at the same transverse
point on the various holes. From the definition of m in Eq. 15 and
r nn

the fact that t(tl) varies only with radius R as t(ii.+ l)/r(n) =
2 n

= (it /t .,) we find that
* n n+1

n+1, n+1 n+1 n nn

From the definitions of the other two m's we learn they are related as

m„, n+l =<*n+l/lr/ mn„ (20a)

mn+l.n= <'n+l/lrn> mnn (20b)

Therefore a choice of all the radii R will determine all the
n

normalized short-circuit mode frequencies ir and all the coupling

coefficients m.. in terms of just one of the m . Any one of these
ij J nn

is determined by the (fixed) size of the centerholes and R •

We now must ascertain the open-circuit mode normalized

frequency p - It is related to ir and m through Green's theorem,
^ ' rn n nn °

-12-



f(I'VxVxB-I-VxVxA)dv=J (BxVx A- AxVxB)-ds
V S (21)

By substituting ~Kzz ^(n) and B = E(n) we obtain, with the mode

relations of Eq. 1 and corresponding ones for E(n) and H(n),

|p(n) - p(i)l \ E(n) •e(n) dv =2P(n) \ e(n) xH(n) -^ds (22)
V M-

For small centerholes, \ll(n) • ^(n) dv^r T(n), the cavity volume to

V

which each pattern is normalized. With P(n) ~ p(n) we obtain,

appr oximately,

P(n) - p(n) =-i- Ce(n)xH(n)' id
_/„\ J z
T(n) M-

(23a)

and upon dividing by reference frequency P we have

ir - p = m (23b)
n rn nn

This relation determines each p after the ir 's and m 's have
rn n nn

been specified.

The foregoing relations determine all the cavity parameters in

terms of iust one m and all the radii R . Unfortunately the rela-
•* nn n J

tions for m ,. and m are not quite right to guarantee conser-
n, n+1 n+1, n

vation of electromagnetic power flow across each hole of a stagger-

tuned chain ! With Eq. 5 the power flow out of cavity n into cavity

(n + 1) is

Pav= i Real \ v(n) e(n) x- fl(n) H(n) +I(n +1) *
M+

•H(n+ I)"]' Tz ds, (24a)

-13-



which, with the relation pv= -jwjii for each cavity, and i = I, is

just

*

t-» 1 r» i V(n)p(n+1) V(n+1) C —. » r== . . „. -r- , *-«»P„ = T Real /r* ^ *— \ e(n)xH(n+l)' 1 ds (24b)av 4 .w|i J x ' x ' z
3 M+

Likewise the power flowing into cavity (n + 1) can be expressed as

p =1 Real v(n+l)p(n)v(n)* Ce(n+1) xH(n) •Tds (25)
av 4 .o)(i J z

M+

Upon conjugating this expression we see it will only equal the preceding

one if

i. e. , if

p(n+l) t (n)mn+1> n= p(n)r (n + 1) m^ n+J (26a)

n+1 / n+1 i /-»£i-\t = m . (26b)
n+1, n n, n+1

rn \ n

This last relation is somewhat incompatible with the preceding equations,

and so we must readjust each m ,. and m ,. slightly in order to
J n,n+l n+l,n y,° J

guarantee Eq.26 and therefore continuity of power flow. There is no

unique way to do this; we have changed one about as much as the other

for the computations.

Our description of the cavity fields is therefore not perfect, and the

ambiguity in these coupling coefficients is greater for a greater disparity

in resonant frequencies of cavities n and (n + 1). However, the small

errors in the computed power gains and input impedances would not change

our conclusions about the amplifiers we shall describe in later sections

of this report.

We have included in the computer program a power-check compu

tation, whereby the power flowing into the first cavity may be compared
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to the load power and beam power leaving the last cavity. By means

of this computation we are certain the errors in the computed gains of

various amplifiers are negligible.

The input impedance of the amplifier is given, with the aid of

Eq. 8, by

Zm =Vg/Ig =^ e(1) •dT/Ig =4> (1) p(1) |h(1) | A^ ^(IgL)
loop loop

= <MD P(1)|M1)| A^ cou /IG (27)

To know the constant of proportionality between Z. and <|>(1) we

must know both loop and cavity parameters. A particular tube of

interest had the parameters c*> = 2tt(3 kmc), |h| =1, loop diameter
loop

1cm, t ^ 10"4m3, and L^ 0. 7". We chose IQ =p(l) |h(l) |
loop

* A. .(0|i so that Z. = ${l)- Then it follows that the loop excitation
£ 1 in

parameter DIG in Table 1 is 0. 48.
All of the computed results in this report are for this value of

DL,, such that Z. s <b(l) for this reference tube.
G in x

4. Performance Characteristics of Model 10-Cavity Power Amplifiers,

Synchronously-Tuned and with no Electromagnetic Coupling Between

Cavities

In this section we shall tabulate the frequency response charac

teristics of typical model 10-cavity tubes with the parameters

9 = coL/u = 2.24 and 6 = co L/u = • 235, for various values of
e o q q o

beam-circuit coupling coefficient, CR. Reasons for this choice of
0 and 0 are given in the next section. The output cavity is loaded

to a QT of 50 without the beam and the high-Q intermediates are

treated as lossless. Zero electromagnetic coupling between cavities

-15-



can be effected by cutting slots or holes into the outer portions of the

partitions between cavities so as to cancel the centerhole coupling.

The gain and input impedance characteristics of three such

amplifiers with the practical CR -values of .028, .0707, and .100
are tabulated in Tables 2-4. The gain G is.defined as

G= ^ad power (2g)
power into first cavity

and is negative if the input resistance is negative. G is.distinguished

from the transducer gain G™ defined as

G = load power ^
available source power

The relation between these two gains is

4R |R. |
GT= |G| 8 12, R +R. >0 (30)

1 (r + r. r , gx g in7

where R is the generator resistance. The generator reactance is

chosen to cancel the tube reactance in the definition of G—,.

The fact that

QL=(k/Pr)2/GLn= l/GLii (51)

in terms of the normalized load YT = GT + jBT may be verified
Ln Ln * Ln 2

from the expression for load P.. - 1/2 Re Y | V. | , V, given by
Eq. 11, together with the expression, for Q,

coW . 7
QT = = coi € |v(n)|^T(n)/P_ (32)

L p 2 L
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This loaded QT is essentially the external Q defined without the
3

beam since the cavity Q by itself is usually well over 10 .

We see from the tables that input resistance Rin is always

positive and gain G is very high at a frequency near the cutoff

frequency (K= 1) where the input impedance is on the order of

hundreds of ohms Naturally, the operating bandwidths of these tubes

are virtually zero. It is perhaps surprising that the gains are so high

with the cavities merely stacked together without optimized drift spaces

between them.

The theoretical performances of these and similar tubes is

consistent with the experimental results obtained by Chodorow and
3 4Wessel-berg and by Golde . Golde, in particular, obtained remarkable

performance with a 5-cavity tube, each cavity being ,a full electronic

wavelength section of ring-bar helix. He obtained a synchronous small-

signal gain of 53db and a fractional bandwidth of 0. 9%- By stagger-

tuning the cavity resonant frequencies he raised the bandwidth to 2. 0%;

the gain dropped to 50db. Each of his cavities was loaded to a Q^ of
45.

In order to verify qualitatively our small-signal analysis we

analyzed a model of Golde's tube with essentially the same parameters

but with cavities of uniform "e -field and 0 = it instead of 2-ir .
z e

Therefore we designed the model with ten cavities instead of five and

with C_, adjusted accordingly. If the intermediate cavities are lossless

the gain of the model tube was 85 db at midband and the bandwidth was

0.2%. Upon increasing the external loading of the intermediates, with

3
M. Chodorow and T. Wessel-Berg, "A High-efficiency Klystron

with Distributed Interaction," IRE Transactions of the PGED, S, No. 1,

p. 44, January, 1961.
4

H. Golde, "A Stagger-tuned Five Cavity Klystron with Distributed

Interaction," IRE Transactions of the PGED, 8, No. 3, p. 192, May, 1961.
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the output cavity Q of 50, the gain decreased rapidly to 40db at

0.7% bandwidth for an intermediate cavity Q of 100. We judge on

the basis of these figures that an amplifier which employs the helix-

type of cavities each of 0 = 2ir has better small-signal gain and

bandwidth than does an amplifier which employs twice as many cavities,

each of 0^ = ir-
e

5. Performance Characteristics of Model Synchronously-Tuned Tubes

with Various Degrees of Electromagnetic Coupling

For these 10-cavity amplifiers we also specify 0 = 2. 24 and

0 = • 235, as well as various values of fractional passband width m

(refer to Eq. 23b) and coupling coefficient CR. We chose those values

of 0 and 0 so the beam would be nearly synchronous with the 3ir/4-

phase-shift frequency of an infinite chain, near which many tubes are

operated for gain. In the range 0 < C_ £ . 10 the growing wave is

about optimum with respect to both rate of growth and real power flow

per unit amplitude |v| .
First, let the electromagnetic coupling between cavities be very

light: m= -. 01, with the output cavity matched to the growing wave at

the 3ir/4-phase-shift frequency. Table 5 presents the frequency

characteristics for C^ = .028, and Table 6, the characteristics for
15

C.Q = . 10. Note that these two tubes perform quite differently. The

tubes with intermediate values of CR are not particularly interesting.

The effect of this small amount of electromagnetic coupling is to change

the tube performance drastically from that given by Table 2 to that

given by Table 5; in particular, the input resistance now goes abruptly

negative in the tube of CR - .028 and is wholly negative in the tube

of:CR = .10. Thus, these tubes could only be operated for high stable

gain in a very narrow frequency range about that frequency where

R + R. (> 0) is a minimum,
g in

Now let the coupling be increased so that m= -.04. This has

a profound effect on the tube of CR = 028; now its gain is only 20

or so throughout the frequency range near cutoff. For C_.= .0707
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we have the curious characteristics listed in Table 7. There is

absolutely no way to predict such performance on the basis of

simple theory. Comparison with Table 3 indicates a completely

different impedance behavior due to the coupling; whereas the

decoupled-cavity tube should be operated at a frequency very close

to cutoff with a matched generator resistance of about 100 ohms the

tube of m= -.04 must be operated near K = .986 with a generator

resistance of at least 13 ohms to prevent oscillation at other frequen

cies. An increase of CR to .10 changes the performance to that of
Table 8; the tendency to oscillate is somewhat increased, as expected.

If we now increase the coupling to m= -. 07, and keep the tube

matched at the 3ir/4 -phase-shift frequency, the response is given by

Table 9 for C-, = • 0707. There is an abrupt transition from positive
B

to negative input resistance at a frequency near the cutoff.

Lastly, we present the response of one of the tubes in the

m=-.10 class, with C_= .10, in Table 10. Unexpectedly, the effect
li

of increasing both | m| and CR results in a minimum R. of only
-28 ohms, as compared to -300 ohms for the preceding tube.

The information in these tables proves that, even though the tubes

are matched at the 3w/4-phase-shift frequency, the input resistance

can go sufficiently negative at frequencies near cutoff to allow trouble

some cutoff oscillations observed in many tubes. The load required

for match to the growing wave changes rapidly with frequency near the

cutoff.

A few remarks about the transducer gain-fractional bandwidth

(GTFB) product may be of interest. The CpFB of a tube with nega
tive input resistance can be made as large as desired by making

(R + R. ) sufficiently close to zero, whereupon the bandwidth also

approaches zero. The Gr-FB products for the uncoupled-cavity tubes
2 7of Tables 2-4 range from about 10 to 10 . But the best tubes for

both good gain and reasonable bandwidth have products at the low end

of this range. The GTFB product of Golde's tube, previously des
cribed is about 2 x 10^ and the product of a 30 db tube of 10%
bandwidth is 10 .
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The cavity-chain tubes with synchronously-tuned cavities and

either zero or finite electromagnetic coupling tend to have huge gains

and minute bandwidths. We now discuss the effects of stagger-tuning

their resonant frequencies.in various ways.

6. . Performance Characteristics of Model Stagger-Tuned Amplifiers,

Both with Zero and Finite Coupling .Between Cavities

In these tubes there are no field-free drift spaces between

cavities,and the intermediate cavities remain unloaded and lossless.

We can summarize all the computed results as follows. If the cavities

are.decoupled the stagger-tuned gain is reduced considerably and the

bandwidth is not increased. If they are coupled slightly the gains go

negative so that the high-gain bandwidths are necessarily small.

We chose to describe the tube with the parameters .0 = 2-36,
2 e

0 <= 0.40, C_ = .010. With no electromagnetic coupling between

cavities the last cavity was loaded to a QT of 50. With the light
coupling of m= -.01 the last cavity was matched to the growing wave

at the unstaggered 3n7 4-phase-shift frequency.

First, let us consider a 5-cavity tube with no coupling: m = 0.

The unstaggered tube has a transducer gain GT = 44 db, a fractional

bandwidth of 0.15% and an input impedance of 132+j 51 ohm at the

center frequency. Performance for two typical stagger-tuning

arrangements is summarized in Tables 11 and 12. Obviously the tube

gains are low and vary erratically with frequency.

Now, when we consider various stagger-tuned arrangements of

the same tube with the light coupling of m = -.01 and the last cavity

matched as before we compute negative gains of low magnitude on the

average; i. e. , potentially unstable tubes. The performance of two

representative stagger-tuned 10-cavity tubes is given in Tables 13

and 14, to be compared with the synchronously-tuned uncoupled tube

of gain 110 db and fractional bandwidth 0.10% (output cavity QT =50).
L

If the stagger-tuned tubes are to be stable the generator resistance R
6
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must be chosen so (R + R. . ) > 0, in which case the high-gain-
x g in, mm

bandwidth product will be necessarily rather small.

We have verified by a particular example the fact that it is

possible to avoid a large negative input resistance near the ir-cutoff

frequency by tapering the resonant frequencies of the cavities. To

be specific, we tapered the short-circuit mode resonant frequencies of

the amplifier of Table 10 from . 885 p5 in the first cavity (p of the
fifth cavity is reference) to .918 p5 in the tenth cavity by means of
collars. As open-circuit mode resonant frequencies increased mono-

tonically from .98p,- to 1.024p_. m ,.= -»10 was reference, whereupon

m, ,= -.095, m,rt1rt= -.106 and the other m.. were calculated as
1,1 10,10 ij

outlined in Section 3. The values of m .. and m . were re-
n, n+1 n+1, n

adjusted a few percent each to guarantee conservation of power by Eq.

26 b. The result of this tapering is a change in the minimum value of

R. from -^-30 ohms at relative frequency K= 992 to - -55 ohmsin -a /

at K = .967. This untapered tube has a fractional passband width of

about 10%. As frequency increases in the tapered tube above this

value of K R- increases to about zero at li- 1«0. Thus, the tapering

has essentially only lowered the frequency at which we must operate the

tube for high gain without oscillation.

7. Remarks about the Characteristics of an Amplifier with Good Gain

and Bandwidth

The computed performances of these various synchronously

tuned and stagger-tuned model amplifiers with no drift spaces between

cavities and low beam-circuit coupling indicate clearly that one cannot

hope to obtain both reasonable gain and reasonable bandwidth in the

same tube. Reasonable performance figures measured for 5- and 7-

cavity tubes lie in the range of 20-30 db maximum gain and 5-10%
5

bandwidth. For example, L. Smullin reports on the behavior of

5
L. D. Smullin and D L. Morse, "M. I.T. Quarterly Progress

Report, " Microwave Electronics Section, Research Laboratory of

Electronics, M. I. T., January 15, 1960.
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a 5- cavity multicavity klystron called a "skirtron" (Litton Industries)

which has a 30 db gain and a 10% bandwidth. A. Bers describes

the performance of a 7-cavity hollow beam multicavity klystron with

small-signal 30 db gain and 8.75% (power out/power in)-bandwidth.

These klystrons have drift spaces between the cavities and no electro

magnetic coupling between them.

Our computer program does, in fact, describe tubes in the above

performance range if we insert a drift space between the optimized output

cavity, and its neighbor. The computations summarized below indicate

that drift spaces between the other cavities are not required for good gain

and bandwidth, although they undoubtedly help to optimize the performance,

but an output cavity of low Q and high R , is indispensable. Electro

magnetic coupling between the cavities can augment either the gain or

the bandwidth with little or no reduction of the other quantity but too large

a coupling can have a net detrimental effect. Stagger-tuning the cavities

can be very beneficial if it is done correctly. The computations also

indicate the desirability of a large (u>/a> )-ratio for good gain.

We conclude with a summary of the computations for various

decoupled and coupled, synchronously-tuned and stagger-tuned model

tubes used as bunchers. The bunchers analyzed were:

la) a 5-cavity decoupled tube (m = 0), synchronously tuned,

lb) The same decoupled tube with the cavities stagger-tuned

in 3 different ways.

2a) The same tube but coupled to m = -.04, synchronously

tuned.

2b) The same tube of m = -.04 but stagger-tuned in the same

three different ways.

L. B- Anderson and A. Bers, "A Broadband Megawatt Hollow

Beam Multicavity Klystron, " lecture delivered at the 4tn International

Congress on Microwave Tubes, Scheveningen, Netherlands, September

3-7, 1962.
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3a) The same tube but coupled now to m = -.10, synchronously

tuned.

3b) The same tube of m = -.10 but stagger-tuned in the preceding

three different ways. We studied these tubes both for 0 =— and —-,
y e 2 4

with C„ = 0.10 and 0/0 =0.10. Each model was externally loaded
B q e '

so that each cavity had a QT of 50 without the beam. Lastly, we
L

considered

4) The 4-cavity skirtron tube, with the decoupled intermediate

cavities synchronously-tuned, and also stagger-tuned in 3 different

ways. 0 = tt/2, C„ = 0.20, and 0 /0 = 0.11. Each cavity had a QT
e a 9. e c L

of 25 in accord with the experimental parameters.

We computed the kinetic voltage V*K and current leaving the

last cavity, as well as the input resistance R. , as functions of fre

quency. Assuming the output cavity is located 90 space-charge

degrees beyond the last buncher cavity the beam current Y V-^.

entering the output cavity gap is known, and the output power can be

computed. For a study of the bandwidth it is sufficient to consider the

relative transducer gain GT .

IV I 4R R
GT ^l = K> °Ut g ln ? (refer to Eq. 30). (33)

1} rei R. (R +R. r
in g in'

The bandwidth of each model tube was optimized without sacrificing the

maximum relative transducer gain by a suitable choice of R .
©

About half of the first group of tubes examined had bandwidths

in the range 5-10%; the skirtron had a bandwidth exceeding 10%.

In order to estimate the magnitude of the maximum transducer

gain associated with each of these models we let the parameters have

the values

V = 85 kv
o

I = 100 amp

Perveance = 4 x 10

-23-
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-3
GT =^ G , t of output cavity =1 / V = 1. 2 x 10

L shunt r 7 o o

Q of the output cavity =10
L

whereupon the maximum transducer gain was on the order of l(oo/co )'

for all of these tubes. Since (co/oj )'
q

20 db gain we see the need for

as large an (a>/a) )-ratio as possible. As this ratio increases C_ of

Eq. 16 also tends to increase, whereupon the transducer gain rises and

the bandwidth can be maintained, perhaps.with a readjustment of R .
6
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Table 1

Equations for the Stagger-tuned Beam Amplifier

au4>(l) +̂ P2m21<|,(2) - jDIG= 0

"nn *<*> +\ Pn-lmn-l,n *^ +\ Pn+lmn+l, n*<n+X> +fVK<n> +«Vn>B °
a VK(n)+ cynj +bcj)^) - VK(n+l)= 0

c VR(n) + a I^n) + d<j>(n) - Ib)(n+ 1) = 0

°NN*(N,+I PN-lmN-l,N*(N-1) +f V)+gIb(N)=: °
in which these abbreviations have been introduced.

a = p -ft+pm +q+jY
nn rn *n nn n J Ln

q= -K |ez| [jSe (l- c e(cos0q+ j-£ sin 0q) j
eq

r -j0 0 0 -
+S J+€ e (sin 0 - j — cos 0 ) + j — ! + 1

q I q e q e J

•P.f=K f(cos 0 +j— sin 0 ) € e - ll
L q ft q J

-i®g=jK f(sin0-j — cos 8 )£ e+je^/0
l q q q e

-tt,
a = cos .0 €

q

i r-z' ! " e " e

c = j sin 0 e

d= |ez | f-Se sin 0 g "+ jSncos0ne ""JS

"jGe -Jeeib= |ew| |-jS^ +jS^cosGq€ e-Sqsin0q6 eJ

-jee . . g « " e
q q "~q

-J©
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S =0 /(© 2-0 2),
e e * e q '

S 0 '

K= --^e

Kl

S =0 /(0 2-0 2)
q q e q '

B
given by Eq. 16.

Table 2

Response of the Synchronously-tuned, UnciDupled 10-cavity Amplifier

m= 0, CB = .028, Y___ = .02 +
LN

JO (QL = 50)

K (normalizeid fr« jquency) G (power gain)

18

Z. (ohms)
in

.9960 1.0+ J60.5

.9965 24 1.3 + J69.2

.9970 34 1.7+ J80.9

.9975 54 2.5 + J97.2

.9980 100 3.9 + J122

.9985 246 7.0+ jl63

• 9990 1.1 x 103 16.1 + j 247

.9930 5.7 xlO3 33.6 + j356

. 9995 3.6 x 104 67.8 + j503

.9997 l.OxlO6 199 + J846

1. 0000 2.1 x 107

Table 3

3,050-j 1507

Response of the Synchronously-tuned, Uncoupled 10-cavity

= .02+ j0

Z.

Amplifier, m = 0, Cfi = . 0707, Y
LN

K in

.9930 2.5 xlO3 2.0 + j35

•9950 1.2xlO4 3.9 + J50

.9960 3.7 xlO4 6.2+ j62

.9965 7. 7 x 104 8.2+ j72

.9970 1.9 xlO5 11.3 + j84

.9975 5.9 x 105 16.6 + jlOl

.9980 2.7x10 26.6 + jl27

.9985 2.3 xlO7 48.8 + jl69

.9990 5.9 x 108 113 + j 242

1.0000 1.2 xlO8 508 - j 251

K = 1 corresponds to operating frequency at the resonant

frequency of each cavity.
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Table 4

Response of the Synchronously-tuned, Uncoupled 10-cavity Amplifier

m = 0, CB = •10, YLN = . 02 + j 0

.9930 1.2 xlO5

.9950 1.0 xlO6

.9960 4.7 xlO6

.9965 1.2 xlO7

.9970 4.1 xlO7

.9975 1.7xl08

. 9980 1.1 x 109

.9985 1.1 x 1010

.9990 1.3 xlO11

.9995 2.0 xlO11
1.0000 2.2 xlO8

Table 5

z.
in

4.1+ j:36

8.3+ j 51

13.3 + j64

17.6 + J73

24.4 + J84

35.8 + jioo

56.7 + J121

98.9 + J147

188. -t• J155

308 + ;)51

254- ;J126

Response of the Synchronously-tuned 10-cavity Amplifier with

m = -0. 01 and C_. = . 0285. Output cavity is matched to the

growing wave at the 3ir/4 "cold" circuit phase shift frequency.

+
AC G++ Z.

in

. 9968 1400 31.4+ j638

.9971 244 21. 4 - j 235

.9974 95 14.7 - J108

.9980 94 19-6 - J32.6

• 9985 153 87.3 - jl.5

/C= 1 corresponds to the open-circuit mode resonant frequency

which, in this synchronously-tuned chain, is the ir-cutoff frequency.

Negative gain means negative output power, R. < 0.
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Table 5, Continued

K G
Z.

in

.9989 243 118 + j0.2

.9990 407 202 + J62.2

.99906 889 540 + j 187

.99908 1611 1204+ J58.4

•99909 2801 1661 - j954

.99911 -5166 -252 - J1039

.99912 -2083 -282 - j683

.99916 -587 -158 - j 289

.99920 -329 -99.2 - J196

.99950 -67

Table 6

-18.8 - J82.4

Response of the Tube of Table 5 but for cB=.io

K G
Z.

in

•9968 -229 -21.8 - j4L0

.9980 -440 -18.6 - J37.2

.99820 -1287 -19. 7 - j 37. 5

.99832 -4176 -21.1 - J39.0

•99837 -8207 -21.8 - J41.0

.99840 -13,170 -21.7 - j43.1

.99842 -18,440 -20.8 - J45.0

.99845 -29,810 -17.5 - J47.1

.99848 -39, 340 -13.2 - J46.2

.99850 -38, 280 -11.6 - J44.3

.99860 -11, 360 -12.2 - J38.3

.9988 -2,442 -14.2 - j37. 0

.9992 -575 -14.1 - J37.3
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Table 7

Response of the Tube of Table 5 but for m = -.04, C„ = . 0707

z-K G in

.983 23.9 3.6 - J9.3

.986 -114 -12.5 + J30.3

.988 -726 -3.7 - J55.6

•990 205 3.0 - J19-6

.993 334 15.3+ jO.3

.995 448 9.0 - J6.4

.996 -1374 -4.8 + J7.3

.998 -59 -7.3 - J18.0

1.000 -18

Table 8

-5.4- J13.2

Response of the Tube of Table 5 but for m= -.04, C_ = . 10

Z.
K G in

.983 -152 -2.7 - j3.3

.986 -58 -21.6 - J15.1

.988 -240 -5.4 - J20.6

.990 -1869 -0.8 - J12.7

•992 -2284 -2.3 - j 3.0

.993 -5014 -10.0+j 16.7

•994 + 3016 11.3 - J20.6

.995 -14, 300 -0.5 - j7. 7

.996 -473 -8.0 - j7.4

•998 -105 -6.6 - J13.7

1.000 -28 -4.3 - J12.6
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Table 11

Response of the Stagger-tuned, 5-cavity Tube with the Parameters 0

= 2.36, 8 = 0.40, C =.10, m= 0. The output load Y = .02+ j 0,

for a loaded QT = 50. The normalized resonant frequencies p.

p are 1.0, 1.003, 1.0, .993, 10.

JC G
Z.

in

.990 442 4.1 + j 25.1

• 992 1130 6.5 + J31.4

.994 333 11.8 + J41.5

.9955 50 21.3 + J53.8

.997 19 46.3 + J71.7

.998 120 87.5 + J78.2

.999 386 148.9 + J35.4

1.000 417 101.1 - j 75.2

1.002 127 39.4 - j 68.2

1.005 3

Table 12

9.1 - J36.7

Response of the 5-cavity Tube of Table 11 but with the Resonant

Frequencies 0.997, .994, 1.000, 1.006, 1.003.

K G
Z.

in

.988 108 5.1+ J28.0

•990 230 8.6+ J35.9

.992 646 17.3+ J49.2

.994 718 46.6 + j 71.8

•9955 166 119.5 + J67.2

.997 16 134.0 - j 56.0

•998 27 73.2 - J78.5

.999 143 39.5 - J68.2

1.000 19 Z 18.8 - J51.1

1.002 90 10.7 - j 39.7

1.003 34 6.9 - J32.1

1.005 1.4 4.2 - J25.5
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Table 13

Response of the 10-cavity Tube of Table 11 but with m= -0.01 and

» the Output Cavity Matched to the 3ir/4-phase-shift frequency. The

3 normalized resonant frequencies are .996, .9965, .9970, .9975,

.9980, .9985, .9990, .9995, 1.000, 1.000.

+
G

Z.
in

.9960 -262 -5.0 - J30.4

.9968 -736 -3.7 - J29.0

.9976 -459 -2.4 - J27.4

.9984 -1033 -1.5 - J25.7

.9992 -1270 -0.8 - J24.1

1.0000 -955

Table 14

-0.3 - J22.6

Response of the Tube of Table 13 but with the Resonant Frequencies

.996^ .9965, .997, .9975, .998, .9985, 1.000,1.000, .9995, .9990.

K G
Z.

in

. 9960 -1420 -5.1 - J30.3

• 9964 -3648 -4.5 - J29.9

.9968 -2711 -3.6 - J29-2

.9972 0 -2.9 - J27.9

.9976 -177 -2.4 - J27.3

.9980 -16 -1.9 - J26.5

.9984 -42 -1.5 - J25.7

.9988 -117 -1.1 - J24.9

.9992 -187 -0.8 - 24.1

.9996 -238 -0.5 - J23.3

1.000 -288 -0.3 - J22.6

K = 1 corresponds to the open-circuit mode resonant frequency of

the last cavity. This would be the ir-cutoff frequency in an infinite chain

of such cavities.
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