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Summary

This work is a generalization of Tsypkin's stability criterion

for a class of time-varying nonlinear sampled-data feedback systems.

Also some sufficient conditions for the response to any bounded input

sequence to be bounded are presented. In this paper, no assumptions

are made concerning the internal dynamics of the linear subsystem,

except that its input-output relation is of the form of convolution. The

essence of the proof is to consider the nonlinear system as a perturbation

of a stable linear system.
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On the Stability of Nonlinear Sampled-Data

Feedback Systems

Chi-Tsong Chen

*• Description of the System

The system considered in this paper is a sampled-data feedback

system of the type shown in Fig. 1. It is assumed that its linear and

nonlinear parts, G and N, are separated by an ideal sampler [6]. The

sampling period, T, is assumed to be constant. Since the theory of

distributions is well established, there is no difficulty in interpreting

expressions involving Dirac-6 functions. Thus, if the input to the sampler
oo

is x(t), its output will be x*(t) = Y x(n)6{t-nT). For brevity, {x(n)}
n=0

will be used to denote the sequence {x(0), x(l), ..., x(n), ...}. Using

z-transform, the behavior of the sampled-data system is characterized

only at the sampling instants. This is usually enough in practical applica

tions, because the hidden oscillation can be easily predicted and avoided by

changing the sampling period. Therefore, in this paper, only the performance

at the sampling instants will be considered.

N is a memoryless, time-varying nonlinear element, continuous

with respect to its two arguments; furthermore there are two constants

P1 and P2 such that {3, > 0, 0- > {3 and

(N.l) ^^SlZsJ^Kfy for H 0

<p{0, n) = 0, for all n (the set of natural numbers).
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G is a nonanticipatfve, linear, time-invariant subsystem; it

usually consists of a zero-order hold [7] and a linear plant. Let g(t)

be its unit impulse response, g*(t) its sampled impulse response;
co

then g*(t) i= Y g(n)6(t - nT). Thus the input-output relation of G is
n=0

given by

n

(G.l) y(n) =z(n) + ^ g(n - m)x(m)
m=0

where {x(n)} is the input sequence, (y(n)} its output sequence, {z(n)}

its sampled zero-input response.

It is assumed that {z(n)} satisfies the following condition:

? °° 2(G.2) For all initial states, {g(n)}€i , i.e., ]T |z(n)| <oo.
n=0

2 2It is noted that z(t)eL/Q » does not imply {z(n)}d . However,

we have {z(n)}€i if z(t)eL /n _/) L /A ." and is piecewise c'on-
(0, oo) (0, co) c

tinuous.

Definition

co

G(z)^x[g(n)]= X g(n)z"n
* n=0

-a pi + h

l+PG(z)
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h*(t) * r[H(z)] = X h(n)6(t - nT)
n=0

$>(<r, n) = ^((r, n) - ^c

oo

|Hlx* I |h(n)
1 n=0

(co \l/pIoU(n)|Pj . l<P<co, ||z||P< °°» IIzIIco = suPMn)
n

II. Sufficient Conditions for Stability

Recently, Tsypkin [l, 2] applied the famous Popov method to

establish the sufficient conditions for the stability of the system shown

in Fig. 1. Jury and Lee [3] extended his result to obtain less conservative

sufficient conditions by adding restrictions on the slope of the nonlinearity.

Though not stated explicitly, Tsypkin considered only the linear subsystem

with rational transfer function. In this paper we remove this restriction

and present a different proof which is analogous to that of Sandberg [4],

Theorem 1

In the sampled-data system shown in Fig. 1, N is a memoryless,

time-varying nonlinear element satisfying (N. 1), G is a nonanticipative-

linear time-invariant subsystem satisfying (G. 1) and (G.2). If

.co

(i) {g(n)}€i\ i.e., T |g(n)|<oo
n^O

(ii) inf |l+ j3G(z)| > 0, £or'p,<P<p2

(111) y = — max
2 ^ir<wT<Tr

G(e )

1+?G(eiwT)
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then for any input {u(n)} €4 , and for any initial state, the output

sequence {y(n)} is an element of £ , hence is a bounded sequence which

tends to zero as n—^oo.

Remarks

co

(a) G(z) = £ g(n)z"n with {g(n)} e i , in general, cannot be
n=0

put in a closed form nor is it a rational function of z. Although G(z)

is analytic for |z|> 1, nothing can be said about the singularities inside

the unit circle; for example, the singularities need not be isolated,

therefore the residue theorem is generally not applicable.

(b) It is interesting to note, if (ii) is not satisfied, a non-

anticipative linear part G may result in an anticipative closed loop

system. For example, let the nonlinear part N be linear, let the

slope of its characteristic p be 1, and let G(z) = -1 + z" ; then the

closed loop transfer function is H(z) = -z + 1, i.e., H(z) is anticipative.

(c) If the system is linear, then y = 0 and the condition (iii)

drops out; conditions (i) and (ii) are then the necessary and sufficient

conditions for the linear system to be stable.

Proof of Theorem 1

Before we start to prove the theorem, we cite some well-known

facts. Consider the linearized sampled-data system as shown in

"&Q( z)
Fig. 2; then the closed loop impulse transfer function is H(z) = ^ .

l+pG(z)

OO CO

Since 1+ |3G(z) = (1 + 0g(O)) + ]f Pg(n)z~n =]T g(n)zrn, and since
n=l n=0
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{g(n)}€ i implies {gtn)}c I , it follows that 1 + |JG(z) is analytic for

|z|> 1- and continuous for |z|= 1. Thus, condition (ii) implies that

(1 +*J3G(z)) is analytic for |z|> 1 and continuous for |z|= 1; there-

oo

fore it has a Laurent expansion of the form 2_ b(n)z valid for
n=0

|z|> 1. Wiener's result [5] implies that {b(n)}c I . Because the

convolution of two i sequences is an i sequence, it follows that

{hfntfei!1.

Let $(n) be the output of the linearized system; then

n

t(n) =z(n) + Y. h<n " m)Cu(m) " z<m)] • (1)
m=0

Since {h(n)}€i1, if {z(n)}ei2 and {u(n)}ei2 then {^(n)}€i2.
Introducing y(n) and <p, it is easy to see that (G,l) can be

written as

1 ny(n) =f(n) +— ^ h(n - m)#[u(m) - y(m), m] . (2)
P m=0

Let o-(n) = u(n) - y(n), ^(n) ^ u(n) - -y(n), then Eq. (2) becomes

1 no-(n) =#(n) --£- V h(n - m)<p[(r(m), m] . (3)

Given the sequence {^(n)}, (or(n)} may be calculated through

the recursive equation (3). The more interesting interpretation of

Eq. (3) is to consider it as the equation of a feedback system shown in

Fig. 3: {ih(n)} is the impulse response of the linear subsystem, ('cr(n)}

is its zero-input response and {(r(n)} is the output of the entire system.
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Let us show that if condition (ii) is satisfied, the sequence

{or(k)} is such that cr(n) is finite for all n. The only possibility for

or(n) to be infinite for some n is that —h(0)£[<r(n), n] = cr(n). Since
P

h(0) =lim H(z)= lim JE9&L s _JsL9i_, it is equivalent to
z-»oo z->oo 1 + •pG(z) 1 + |3g(0)

_—£[cr(n), n] = -cr(n), or g(0) = ~ —. Since
1+Pg(0) ~$>i>(n), n]

H oTnT

l^[^l<^4^, it implies zL<g(0)<^. for ^>0; g(0) <
1 *-2 A* r2

for p = 0; and g(0) > ~, g(0)<i^=- for p, < 0. But these cases are
1 Pi Po ^

ruled out by condition (ii) when z-»oo (lim |l + f3G(z)| = |l + j3g(0)|> 0
z->co

for p. < |3 < (3?), therefore |cr(n)|< oo for all finite n.

Define {orN(n)} as the sequence {or(n)} truncated after its N-th

term, and S^z) its corresponding z-transform, i.e.,

o- (n) = o-(n) if n < N

= 0 if n > N

and

oo N

SN(z)~ I^N(n)z"n= I^)z"n-
n=0 n^0

Similarly for ^N(n) and XN(z). Multiplying z"n and taking the summa

tion from 0 to some fixed N, (3) becomes
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or

where

N N

£ cr(njz~n s £ ^(n)z
n=0 n=0 pL

-n 1
oo , n

T ( T h(n - m)£(<rM(m), m)) z"n
n=Ovm=0 iN '

oo , n

- X (X h(n - m)^(crK(m), m)\ z"n
n=N+lVm=0 w /

SN(z) =^N(z> *=H(z)fN(z) +V(z)

^ 00

^N^z) = X ^n*11)' n)z"n
n=0

V^)=i X ( X h(n-m)£((TN(m),m))z-n.
j3n=N+lVife0 iN I

V(z) is the z-transform of the zero-state response [starting from

(N+l)-th sampling instant] as a result of {^(crN(m), m)} being applied

to a system whose impulse response is<—h(n)> . Since {cr^in)} is of
U J

finite length, S-Jz), S(z), and ^^(z) are polynomials, hence are all

convergent for | z | > 1. V(z) is also convergent for | z | > 1, since it is

the z-transform of the convolution of two i sequences. It is convenient

here to change the variable z to e and apply Minkowski's inequality

to Eq. (3); then

r;"iv^,.v,^,ivY"« (/^iSrfJ-V*.)1"

+i(r'TiH(.'»x,.i"V'>«)1'2.
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Using Parseval's equality, the fact that S^z) and V(z) have

no power of z" in common, condition (iii), and the fact that

, h'h, ,J<p{v, n) I< Jor j, we obtain
2

(I WM\2) =(l kN(n)|2 4 I kN(n)|2+ I |v(n)[2
\n=0 / \n=0 1N / \n=0 n=0 /

/co J\l/2 p«-& . _ /oo -\l/2=(lQ| ^N(n)-v(n) |2J <l2AmaxI H(elwT) |Qnir^a)^

/oo ~\l/2 /N Al/2 /N A1/2

Hj.1*-1"") nSo1*") nSc191-") •
2 2 2

Since 'cr(n) = u(n) - y(n), therefore {u(n)}ei and {y(n)>€i imply {G(n)}e£. ;

thus
/N ~\l/2 , /N Jyl/2 , /oo Al/2

C?ok(n>l) £4S*(n)1) ^(lo1^1) <m <4)
i.e., {cr(n)}€j22. But y(n) =u(n) - cr(n), it follows that {y(n)}ei ; hence

{y(n)} is a bounded sequence which tends to zero as- n—>co. Q.E.D.

In case G(z) is a rational function of z, the condition (i) in the

theorem can be relaxed.

Corollary 1

In the theorem, we replace (i) by (i');

(i1) G(z) is a rational function of z

then the same conclusion holds.
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Proof

(i') and (ii) imply that the rational function H(g) ~ PG^Z)
l-fpG(z)

is analytic for |z|>a where a is a number < 1; then {h(n)}ci1,

as can easily be seen from the residue theorem. The rest of the proof

is the same as in the theorem. Q.E.D.

Remarks

(a) It is easy to see that if G(z) is a rational function of z,

condition (ii) is equivalent to the Nyquist criterion. More precisely,

if G(z) has q poles outside the unit circle, then 1+ £G(z) 4 0, &<p<p for

|z|> 1, if and only if the Nyquist plot of G(z) [8] does not go through the

critical interval N~j^ 0J, (-^ Ôh andencircles it q times in the clockwise direction.

Let G(z) in Fig. 1 be a rational function of z with q poles

outside the unit circle, and let P2 > p > 0, then the Corollary says: if

the Nyquist plot of G(z) [8] lies outside the disk with center at

( ~2^1~ +$2 )• °) and radius 2(Pi"1 " ^2" '̂ and encircles the disk
q times in the clockwise direction, then the system is stable, i.e., the

output sequence is bounded and tends to zero as n-^co.

(b) The boundedness of ||y|L can De given in terms of the norms

of the input sequence and the zero-input sampled response. From Eq. (4),

we obtain

-9-



Since ||<r||2> ||y||2 - ||u||2, [|fr |[2 < ||u||2 + [i?i|2> and from

Eq. (1), ||y|l2< [|z||2+ Bh|l1l»|j,+ llhlljlzl^ Eq. (5) becomes

M2- Mz^r^n* M^ihh* M2)
or

2- Y+ ||h|| 1+ ||h|| •
Mz± i-v M2 + i-,v W*h- <6>

If h(n)>0 for all n, then ||h|L =max || H(eiwT) || =J^-< Tr^TC'
1 a) p2"pl p2"pl

In this case, Eq. (6) becomes

II yh

2

<

- Y

1

+ 2PY

- Y
||u

<

(1 - Y)(P2 -"*V

The<orem 2

ull2 + 1-v l|z|[2

,(0uB2+ B«H2)-

In the sampled-data system shown in Fig. 1, N is a memoryless,

time-varying nonlinear element satisfying (N. 1), G is a nonanticipative

linear time-invariant subsystem satisfying (G.l). If for all initial

states, {z(n)}€i°°, i.e., || z || < oo, and if

(i) {gfn)}^1

(ii) inf |l + j3G(z) | > 0, for & < p < p,

(iii) a, = ~±——i ||li|[ < 1
2|3
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then for any (u(n)} €i , and any initial state, tjie output sequence

{y(n)} is an element of £ (the response to any bounded input

sequence is bounded).

Remarks

(a) This theorem is the discrete analog to the one in [9] .

(b) Except for some special cases, it is not easy to obtain the

frequency domain interpretation for condition (iii).

(c) This theorem may be stated more generally, i.e., if

{z(n\} €iP, 1< p < oo, for all initial states, and if (i) (ii) (iii) hold,

then for any {u(n)} e iP, and any initial state, the output {y(n)} e ip.

Proof of Theorem 2

Since condition (ii) implies that {h(n)} is nonanticipative, and

since <p is memoryless, from Eq. (3), we have

i 41cN(n) =<i*N(n) - = 2_ h(n - m)£(>N(m), m] . (7)
P m=0

Since {h(n)>€i, {u(n)}€i°° and {z(n)}€je°°, it follows that

{^(n)}€ i . We have shown that cr(n) < oo for all finite n, therefore

we may take the norm and apply Minkowski's inequality to Eq. (7),

N" oo " Nuoo -x " rNlloo

Then, from

-11-
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n

h^N'loo= ?upI Z n(n-m)^(cr (m), m)|< sup
n m=0 n

n

.»)H£ |h(n-m)|[^(orN(m)
m=0

£^i.«p^Jo|h(n.«)| l^mJl] <f0.||<rN|oo||h||1
and condition (iii), we obtain

«'rNlloo^r4Fll*'NL^rTFl^lloo<00- Q.E.D.

Corollary 2

In Theorem 2, we replace (i) by (i!)

(i1) G(z) is a rational function of z

then the same conclusion holds.

III. C one lu s ions

Stability criteria for a class of time-varying nonlinear sampled-

2data systems are obtained. In the I case, because of Passeval's

equality, we are able to obtain the stability criterion in the frequency

domain. The impulse transfer function of the linear subsystem is not

assumed to be a rational function; therefore these criteria are applicable

to a very broad class of systems.

2
In the i case, if G(z) is a rational function of z, the stability

region in the G(z)-plane is the same as in [2], though the analytic

form is different. In this paper we use the linearized closed-loop

sampled impulse response and some well-known facts about linear

systems. Therefore, we can apply Minkowski's inequality directly to

-12-
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the z-transform of the convolution equation which characterizes the

system.
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Fig. 1. Time-varying nonlinear sampledr-data
feedback system.

Fig. 2. Linearized sampled-data feedback
system.
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