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ABSTRACT

A complete theory is given for the use of unsymmetric lossless

lattices with four elements in the cascade synthesis of transfer functions

and driving-point functions. The major results are a new lattice

equivalent for a Darlington-C section under specified constraints on the

driving-point impedance and a new, simple condition of applicability

for the Miyata Lattice. For both lattices explicit formulas for the

element values are developed in terms of the given impedance.
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1. Introduction

It has recently been shown that the Foster and Cauer realizations

of lossless positive real functions can be replaced by cascades of un-
1 2

symmetric four-element lattices and Miyata has shown that under cer

tain conditions a cascade of a Brune section and a Darlington section can

be converted to the unsymmetric four-element lossless lattice of Fig.

1(b). These results naturally lead us to ask two questions:

1. Are there any other unsymmetric four-element lossless

lattices which can be used to replace sections of more complicated

driving point or transfer-function realizations?

2. Is there a direct method of obtaining the Miyata lattice

without first realizing the equivalent Brune and Darlington sections?

The limitation to lattices of only four elements in question 1 is

a practically meaningful one, since it guarantees that the new realiza

tions are simple and hence economical. Question 2 is important since

it deals with the practical applicability of the lattices.

*The research herein was supported by the Joint Services Electronics
Program (U. S. Army, U. S. Navy and U. S. Air,Force) under Grant
AF-AFOSR-139-64.
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In this paper complete answers are given to both questions 1 and

2, and as a consequence the two major results are:

1. It is proved that the lattice in Fig. 1(c), which we will call

N-3, is equivalent to the network in the dotted box of Fig. 3 under cer

tain given restrictions. A direct realization method is given in terms

of the lattice.

2. A direct realization scheme is given for the Miyata lattice in

Fig. 1(b), to be called N?, and a condition of applicability is given in

terms of the driving-point impedance.

The approach used is to classify all four element lattices into

three nontrivial sets such that the lattices in a given set can be realized

by the same method. Conditions are determined under which the lattices

in each set can be used in a realization by determining the equivalents of

these lattices in terms of standard realizations.

Except for the trivial situation in which the lattice contains only

one type of element, the four-element lattices can be divided into three

sets and their duals as illustrated by typical lattices in Fig. 1; Type I,

used by H. B. Lee; Type II, used by F. Miyata; and Type III, which we

introduce, consisting of three elements of one kind and one of the other.

The single element (say a capacitor) can either be put in one of the two

series arms or one of the two shunt arms of the lattice. The remaining

arms then consist of the other kind of element. The two cases for the

single element in the series arm are the same so far as the synthesis is

concerned. The cases for the single element in the shunt arm, however,

are different. We thus have three different kinds of lattices in Type III.

In the paper a new method is given for the networks in Type II and the

representative network of Type III lattice, N^, is considered. The

synthesis of other networks in Type III is discussed briefly at the end of

section 2.

2. Synthesis Using a Type III Lattice

Let us first consider the circumstances under which a Type III

lattice can be used. Considering the lattice as a two-port network, we

see it always has a transmission zero at s = 6 , 6 real. This means,
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we may try to use the lattice to replace a Darlington-C section and thus

eliminate an ideal transformer under certain restrictions in the process

of synthesis. In addition, since in N3, there is one direct inductance

path connecting the input terminals, the driving point impedance to be

synthesized by the lattice must have a zero at s = 0 (corresponding to

L1 in Fig. 2). The lattice may be used to try to replace a section of

the form shown in Fig. 2, where the ideal transformer is introduced

to equate the degrees of freedom of N^ and the network in Fig. 2. L.

is introduced to give Z(s) a pole at oo .

We now proceed to show that the two port of Fig. 2 is equivalent

to N-3 under a set of restrictions to be developed.

The transmission matrix of the lattice N^ is:

2 1 3(L1+L4)(L3s +Tr) ^L1L3L4s + (L^

1

2 Ll
L3L4(S "C^L^~)

+ L.L- + L,LJ
1~3 ~3~4' C

(L1+L3+L4) s+^-L. (L1+L3)(L4s2 +̂ - )

The transmission matrix of the network in Fig. 2 is given by:

T =
C

MCs +1 !

- [(L« + M)Cs2+l]
o -' a

p[(L' +Lu) s + C (L1 L,
1 LX a b a b

; + ML + L'M)s ]
b a

, (L1+M)C C(L'L. +ML1 + MLJ 7
lr^.l.a' -1 rxab a b2
o[Cs+iL—+ L S] ^[ L S
ICC c

(1)

"1 +

K + LK 7+ -^—- + (Lb +M)Cs" + 1]
i (2)

•As will be shown, the shunt inductance cannot be arbitrary. Thus, in the
course of derivation, we find restrictions on Lc. We then try to obtain Lc,
the required inductance, from L' , obtained from Z(s), in the actual
calculation.
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Ifwelet

TL=Tc(3)
andequatecoefficientsoflikepowersofs,wehaveequations(4)-(12).

(4)

(5)

(6)

-Ll1

C1L4L3
MC

Ll+L4
L4

=-L^L'+M) pMa'

Ll+L41

L3L4C1
pMC

L3L4L3L4pM

11

L1+M

cl

ct^t;-lcpMC(8)

p(L'L,+ML+L'M)
»abba'

Li=-yr~^<9>

•L,L..p(L'+L,)
J+J+iL=L_Jv.(io) vL^L.,C,MC[' x34'1

L2+L3p(L^Lb+MLa+MLb)p(Lb+M)
TZ=ML+M 3c

L,+L,,(L1+L,+L)p
131abc'r

L-L,.'C,LMC
341c

Equations(4)-(12)canbereducedtosixindependentequations

whichcanbesolvedforC,,L,,L.,,L,,PandL'asin(13)-(18).
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and

ci = C (13)

Lc(Lb + M)
L4 = L. +L (14)

Lc(Lc-M)
Ll = L. +L (15)

M-L

L3 =M L, +°M d6)

M-L

P= L +V (17)

L. + L

L» = (-M) Tb c (18)
a x ' L, + M

In the equivalent Darlington realization M<0, L, + M>0 and thus C,, L„,
b 1*4

L,, L^ and L1 are all positive.

Since L,^, Lfe, C and M are found from the Darlington-C section, they
are all known. We thus can solve for C,, L,., L, L3 and P from equations
(13)-(18) once "L " is determined.

As shown in Fig. 3, L' = L + L.. From equation (18)
a a i

(-M)Lb (-M)Lc (-M)L
La =L,+ M + L, +M = La + Lu +M (19)

b b b

where L is the inductance required for the Darlington-C section.
a

We have

or

(-M)L

Li = LTTM <20>
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L. (-M)

I7-=L-+-M- <21'
c b

This equation gives us the constraint on the driving point function to be

synthesized by Type III lattice. As in equation (21), the ratio of L. to L

is required to be a fixed value. Thus to synthesize the driving point

function by N->, we can first obtain the network of Fig. 2. It is unlikely

that the ratio of L. to L' obtained directly from the driving point function

will be equal to the value as required by equation (21). We have the two

following different situations

M If VLc > TT-+-M- <22>
b

the quantity on the left side can be made smaller by

splitting L' into two larger inductors L and L" in

parallel while L is chosen to fulfill (21) with equality.

(2) If L./L' < :M , x- (23)
x ' i c L, + M x '

b

the method does not apply. (It can be shown that the

condition is the same if L. is first partially removed

to change all the element values, or if L. (or L ) is

moved to the other side of the Darlington-C section

and a new set of relations are is derived. )

The conditions on a positive real driving point function for the

realizability with a section N-, terminated in a positive real function can

be summarized as follows:

1(a) ReZ(6 ) = 0 with 6 real
v ' x o o

11(a) Z(s) must have a zero at the origin and a pole at

infinity corresponding to L' and L. as in Fig. 2.

-M
111(a) L./L

i' c "^ Lu + M
b
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Finally the calculations can be made directly in terms of the driving
3

point impedance if we use Youla's results to obtain M, C, and L, directly

in terms of Z?(s), the impedance after removing L. and L' . (22) then
becomes:

Z2<6o>
L. 6

1 o

+ Z' (6 )
2 v o'

L' ^ Z.(6 )
c 2X o

6
o

- Z' {6 )
2 o'

We also have,

(24)

u-t^tl (25)
2X o'

F^ " Z2<6o>
o

2

c =7 ,«\ °— (E6)Z2(V
o

Z9(6 )
2* o

L, =•
*T^ (27)

b " Z2<*n> Z 2' 2 ° - (ZU6J)2• ~ V~2X o
\ o

The systematic method of synthesis is given below:

(1) remove L1 and L. from Z(s) to obtain Z->(s).
x ' c i ^

(2) test the applicability of the method by (24) and calculate

L defined by
c 3

Z2<*o>
H^ " Z2<*o>

L = L. ^-Z~ (28)
c i Z,(o )

-^ +Z2<6o>
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(3) use (25)-(28) and (13)-(17) to compute L^ C , L3, I,
and p.

3
(4) from Z^(s), using equation (10) of Youla , obtain Z*(s),

the impedance before the transformer in Fig. 3, and get

W(s) from

W(s) =p2Z*(s) (29)

We can claim now that conditions 1(a) - 111(a) on a positive real

function are necessary and sufficient for the removal of N^. They are
necessary because if 1(a) or 11(a) is not satisfied, transmission matrices

T of (1) and Tc of (2) will not have the same form; if 111(a) is not satisfied,
L" in Fig. 3 will become negative. They are also sufficient for if they are

all satisfied, the lattice can be pulled out by steps (l)-(4) as we have shown.

The dual lattice of N-, which contains three capacitors and one

inductor can be considered similarly, except L. and L here have to be
1 r 1 c

changed to C. and C .

The synthesis of other kinds of type III lattices, as mentioned in the

Introduction, can be treated in exactly the same fashion. Their equivalent

networks have the same form as in Fig. 3 and hence the transmission

matrices T~ are the same as equation (2). But the transmission matrices

of the lattices will be different from N,, as will be the formulas for the

element values.

4 3 2
„ , , T . „, » 2s + 3s + 7s + 6s , . . .Example 1: Let Z(s) = —* ^ having a transmission zero

5s + 6s + 4s +3

6 =1. Removing two inductors as in Fig. 4 we have

3 2 a. 27 x /-rS + —j-S + 6
Z?(S) = « r— .

4s +4. 5s + 2

Z2<0o) =Z2^)=iV Z2<°V =--S '
and
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Z9(6 )

^+Z2<*o> ,
o 1

o ,

Li 1 1Since j~r -~z >-oth.e method applies. L' is separated into two inductors
c

such that L = 4.
r.

Using equations (25)-(27), we have

M=-|

c -2° "4

L = 12
b

Substituting in (13)-(16) yields

and p is found by (17)

cl
3

4

Ll
4

3

L4
8"

" 3

L3
2

" 3

. 1

P=-3

7JM 32 J • , 1 32 32Z*(s) = -y and W(s) = _ . -^ = ^-

The result is shown in Fig. 5 . The equivalent Darlington realization is

in Fig. 6.
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3. Synthesis Using a Type II Lattice

As mentioned in the Introduction, Miyata has derived necessary and

sufficient conditions for the utilization of N2 in a driving point synthesis.

However, these conditions depend upon I, and I~, the values of turn ratios

in Fig. 8, which are not expressed directly in terms of the given impedance.

Thus, the network in Fig. 8 must first be found and then converted to the

lattice. We will derive necessary and sufficient conditions directly in terms

of the given impedance by finding conditions in terms of I. and I', two

quantities to be defined directly in terms of Z(s).

The type II lattice in Fig. 1(b), denoted by N?, has transmission

zeros at s = + ico , + co where
o — J o — o

co = - (30)

° 4/hL2ClC2

Suppose N? can be removed directly from a pertinent driving point

function Z(s); then at the transmission zero, s =s ,2(s ) is simply the

input impedance of N-, with the output terminals open circuited as in Fig. 7,

Thus at s = co

4 2

"oLlL2ClC2 +wo(LlC2 + W + lZ(co ) = 3
co (L, + LJC.C, + co (C. + C~ )

o v 1 2' 1 2 o 1 2

2+coQ(L1C2 +L2CI)
coo(Ll +L2)C1C2+coo(C1 +C2)

(31)

At s = jco
J o

2 - co2(L C + L C )
jX(co) =Z(jco ) =j 3 ° 1 i-i (32)

-oClC2<Ll + L2^ " wo<Cl + C2>
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We now have three independent equations (30), (31), and (32) that

Z(s) must satisfy. We thus need one more independent relation for Z(s)

to satisfy so we can determine exactly under what conditions the lattice

can be removed and so we have four equations to solve for L,, L?, C, and

C2-
In order to derive the fourth relation, consider a driving point

function Z(s) which is realized at the input terminals of a two-port ter

minated in Z*(s) then

Z(s) =AZ*<S> + B
CZ*(s) + D

where A, B, C, D represent the cascade parameters of the two port.

At a transmission zero s of the two port,
o c

B(s )
Z(s ) = ~. °v

x o' D(s )
o

If the transmission zero is of double order, we have

B(s)
Z'(s)

s = s v D(s) /
o v /

s = s

Having equation (35), we may go ahead to prove the fourth relation.

It is clear that any transmission zeros on the jco axis must be of

double order; thus (35) can be applied. It assures us that-3——— when

co = co is equal to the derivative of the right side of (32) for co = co or,

(co2C1C2(L1 +L2) +(Cj +C2))(co2(L1C2 +I^C^-Z)
X'(coJ = ^ 2

KCXJL. + L9) - co (C, + C9))
ovlv2x"l

(33)

(34)

(35)

-|-The transmission zeros are defined to be the roots of the equation
AD-BC •= 0.

-j-+A complete proof can be found, for example, in E. S. Kuh', E.. E.
241 Class notes, Ch. IV, University of California, Berkeley.
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X(coo) oA^C^+L^ +^+C,)
X'(w ) = 2 (36)

co coC^CJL, + L9) - (C, + C0)

3
The turnsratio of the Brune cycle removed from Z(s) as derived by Youla

is

X(co )

xi= xtrr <37>

Substituting (36) into (37) we get

Xl " uo —(c1 +C2) (38)

The transmission zeros on the real 6-axis can always be constructed by
2

augmenting the driving point function with the factor (s + 6) or (s + 6)

for a double transmission zero. , „. .
dZico )

o
By (35), we can say once more that -3 is equal to the

derivative of the right side of equation (31) or

Z(Mq) ^ClC2(Ll +L2) - (Cl +C2)
Z (co ) -- —^ ••

Wo co^C1C2(L1 +L2) + (Cx +C2)

If we calculate the turnsratio of the Darlington-C section removed from

Z(s), we have

Z(co )
o

^--Z'K>
ri = zi=i (40)

—£- +Z'K>>

Substituting equation (39) into (40).,
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T1 "oClC2<Ll +L2>
Li fc—rep— (4i

Comparing (38) and (41), we immediately see that

Jl = Ii (42)

or in another form

Z(co ) X(co )
- Z'(co ) X'(co ) -coq o' x o' co

zftT) = xOo~T (43)
° J. 71/.. \ ^1/ K , O'+ Z'(co ) X'(co ) +

U> o' X O7 CO

This equation can be simplified to

Z(coo)X(coo) =co2Z'(coo)X'(coo)

Note that 1^ and 1^ are turns ratios of sections both removed directly
from Z(s). It is this fact which enables us to improve Miyata's conditions.

We will next prove the following theorem:

Theorem. Lattice N2 can be used as a section in realizable driving point
synthesis of Z(s) if and only if

1(b) ReZ(s) = 0 at s = + ico , co real
— J o o

11(b) Condition (44) is satisfied.

The proof consists of two parts, and we proceed as follows.

Miyata has shown that the lattice is equivalent to one Brune cycle and
one Darlington-C section cascaded together (Fig. 8).

As s goes to infinity, the capacitors in N2 become a short-circuit
path. This amounts to a direct but reversed connection between terminals

1-1' and 2-2'. To let the cascade sections have the same behavior, we

must have

rri2 = i (45)

-13-



where I. and I2 are absolute values of the turns ratios of the Brune cycle
and the Darlington-C section respectively.

The first part of the proof shows that the condition for the lattice

to be pulled out is equivalent to condition (45) which can be proved by

writing two port parameters of the lattice and the cascade section and setting

them equal. The detail of the proof is given by Miyata and will not be

repeated here.

The second part, which is given below, is to prove that condition

(44) is exactly equivalent to (45).

Equation (45) can be written in another form

or

X(co ) Z,(MJ
X'(co ) °_ _L_2_ . z!i (co )

O CO CO 1 o

xj^T *z,(°w ) =* (46)
X'(to ) + — l ° + Z'(o )

O CO CO 1 o
o o

ZWco ) X(co )
lx o' . x o'

zttst + Tdr— =° (47)1 o' co X1 (co )
o x o'

where Z, is the remaining impedance after the Brune cycle has been pulled

out from the given impedance Z(s), as in Fig. 8.

The relation between Z(s) and Z,(s) can be represented in terms of

L , L , M and C as follows:
p s

(L Cs2 + l)Z(s) - (L + L - 2M)s
Zl<s> =—! r ~

-Cs Z(s) + L Cs + 1
P

We differentiate equation (48) and substitute Z,(s) and Z'(s) into equation (47).

The result can be simplified to

[co2Z'(co )X'(w ) - Z(co )X(coJ][co2X'2(co ) - X2(co )]
L o * o x o * o' v oJL o * o' x o/J n IAnx

_ = 0 (49)
co X'(co )[X'(co )co - Z(co )] [Z(co )X»(co )co - X (co )]

o o L o o oJ L o o o o J

-14-



Equation (49) implies that at least one of the two numerator factors

is zero. Suppose (co2X,2(co ) - X2(to )) =0 or (co X»(co ) +X(co )) (co X'(co ) -
ff \ 0 * o o o o o o o

X(co )) = 0. (co X'(co ) + X(co )) = 0 corresponds to infinite turns ratio and

(co X'(co ) - X(co ))= 0 corresponds to zero turns ratio of the Brune cycle.

These are, of course, nonpractical. So the only possible equivalent

form of (45) is

co2Z'(co )X'(co ) - Z(co )X(co ) = 0 (50)
o o o o o

which is exactly the same as equation (44) and the proof is thus completed.

Suppose the given driving point function satisfies conditions 1(b),

11(b); we can solve for L,, L2, C, and C2 in terms of co , X(co )Z(coo)X'(coo)
and Z'(co ). This is done by solving equations (30), (31), (32) and (39).

The result is

where

rl " r2
^i-^^- (51)

r — r

L2=dT^f (52)

r (dr - b)
C =J—J—— (53)

1 rl " r2

r (b - dr )
C9 = — — (54)

2 r, - r^

2(Z(co ) + Z'(co )co )
b = £ 2—2 (55)

coo(Z%o) - Z'(coo)cooX(coo))

-15-



2coo(Z(coo) - Z'(coo)coo) (56)
d = 2

(Z (coQ) - Z'(coo)cooX(coo))

Z(co ) +s/Z'(co )w X(co ))2
r,,r2 ~ 5 (57)

co (Z (co ) - Z'(co )co X(co ))
o o o o o

Thus if the given impedance requires a Brune cycle in its realization

and if condition (44) is satisfied , the equivalent lattice can easily be found by

simply substituting the values of co , X(co ), Z(co ) and Z'(co ) into the above

equations.

Now the problem is that it is unlikely that a given driving point

function will satisfy condition (44). To overcome this problem, we partially

remove a pole or zero at the origin or infinity to adjust the coefficients of

the function such that (44) is satisfied. That is, assume the driving point

function to start with is Z (s), which requires a Brune cycle in its realiza

tion but which does not satisfy (44). For the time being, assume Z (s)

has a pole at infinity, corresponding to a series inductor. Assume L

henrys of inductance must be substracted from Z (s) in order to make the

remained function Z(s) satisfy condition (44).

We have

Z(co ) = Z (co ) - Leo (58)
o o o o

Z'(co ) = Z' (co ) - L (59)
x o' ov o'

X(co ) = X (co ) - co L (60)
v o' ox o' o

X(co ) = X'(co ) - L (61)
x o ox o'

Substituting the values of Z(co ), Z'(co ), X(coq), X'(toQ) into (44) and solving
for L, we get

-16-



Z (co )X (co )
7I#, iYI/ x O O' 0X O7
Z (co )X' (co ) - t

ov o' ox o7 c
co

L= xToi—zn^n • <62>
XU°0 + Z1 (co )

O O CO CO o o7
o o

Suppose Z (s) has a pole at the origin corresponding to a series capacitor

C. Similarly, we have

Z(co ) = Z (co ) - J-« (63)
o o* o7 co C V '

o

z'("o» = Z>o> + TT <64>
co C

o

X(co ) =X (co ) + -L~ (65)
x o7 ov o7 co C * '

o

X'(co ) =X'(w ) - -L- (66)
* o o* o 2_ x '

co C
o

Substituting these equations into (44), we get

Z (co ) X (co )
+ Z1 (co ) - X' (co ) -

co o o o o co

C = 2 2_ (67)
7 f X (u )Z (o> ) \

u,2 Z' (oo )X- (« ) - ° ° ° °
o V ox o7 ox o7 2 /

v co '
o

For the shunt inductor or capacitor case, we may apply our method to , i.

After getting the network, we then find its dual network which is our answer.

The complete method of synthesis is then as follows:

(1) Calculate co , Z (co ), Z' (co ), X (co ) and X' (co ) from Z (s)
1 ' o o o o o o o o o o

whose real part vanishes at s = +_ jcoQ.

-17-



(2) Calculate L or C from (62) or (67) and so Z(s) by
Z(s) = Z (s) - Ls or Z(s) = Z (s) - -rj— .

o o Cs

(3) Examine whether L or C is positive and whether they
are smaller than the corresponding residues of Z (s)

at infinity and zero respectively.

(4) Through equations (58)-(6l) or (63)-(66), we compute

Z(co ), Z'(co ), X(coJ and X'(co ) and solve for L., L0,
o o o o 12

C2 and C2 from (51)-(57).
(5) The remaining function Z*(s) is found by the equation

Z*'s> - DZ(s) - B ,A<nZ (S) " -CZ(s) + A <68'

where

A={s^l +̂ TT^Z +TUT > <69>
^ 1

L •LlIj2 L1'L2 L2

C=s(Ll +L2) +i_ +J^- (71)

D=(sLl+i^-XsL2 +7c7> <72>

A, B, C, D are the transmission parameters of the lattice.

Example 2. If

„ . . 2s3 + 5s2 + 5s + 8
0(S)" n 2 +?s + s + 2s

ReZ (s) = 0 at s = jl; Z (s) has a pole at s = 0 corresponding to a series

capacitor
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and

Z (1) = 5
o* '

X (1) = -3
o* '

X'(1) = 7
o

ZQ(1) = -3.5

Substituting into equation (67)

5 -3.5 -7+3 5
C =

-7x3.5 + 15 19

which is larger than the series capacitor of Z (s) = -^ and the method
applies.

Z(s) =Z (s) - 1 - 10s3 +6s2 +6s +2
° 5 _ .3 , _ 2 . . 'Yq s 5s + 5s + 10s

From equations (63)-(66)

Z(to ) =5 -ij- =1.2
x o7 5

Z«(co ) = -3.5 +±1 = 0. 3
o 5

X(coo) =-3 +-^ =0.8

X'(coq) =7-i^ =3.2
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having these data, the element values of the lattice follows,

First, we have b=^ ^ =2. 5

d=2(1'i2.i0,3> =1-5

(1.2 +• 0. 24)Z
rljr2= 1.44"- 0.24 = 2:38' °'4*

L2 = 1.05

L2 = 1. 82

C} = 0.23

C2 = 2.27

To compute Z*(s), we use the transmission parameters of the lattice by
equations (69)-(72).

A=<1-05s +^7?)(I-82s +^rr-)

B = 9. 12s +1 5.46
s

C = 2.87s + 4. 78-i
s

D=<1-05s+ tjW-,(1-828+ Trrrf
7A_DZ-B _ 19s + 3.8 ^ 0 ^ 1
*" " -CZ + A 9T55i C + 2.51s

The realized network is shown in Fig. 9. The corresponding Brune

realization is shown in Fig. 10.
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4. Conclusion

Since the completion of this paper, the authors have learned that
4

Yarlagadda and Tokad have independently considered the use of the

lattice N? in synthesis. However, their conditions are more restrictive

than ours since they require transmission zeros at + co , + jco whereas

we can achieve the zeros at T co by augmentation. Furthermore they

do not give formulas for the element values directly in terms of the

given impedance, as we do. Finally, the derivations are different and

we believe ours give more intuitive insight.
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Fig. 2. Two-port network equivalent to N,.
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Fig. 5. Realization for Example 1.
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2.51
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Fig. 9. Realization, using N^, for Example 2,
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Fig. 10. Equivalent realization for
Example 2.
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