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ABSTRACT

In this paper the covering problem, examples of which can be

found in many fields of study, is first defined. . This problem is equivaletit

to the following integer program: find P.e {0, 1} , such that

Va..P. >1 (D

j=l n

for i=l, 2, . . ., m, and such that ^/_c.P. = Z (min), where a. .€ {0, 1} .
j-i j j y

The purpose of this paper is to look into various procedures for reducing

the number of inequalities and variables in the system of constraints (I)

prior to solving for the optimal solution. A new procedure for combining

sets of inequalities, called proper replacement reduction, is outlined.

Theorems dealing with the properties of (I) and the proper replacement

system are presented, along with two synthesis procedures and a partial

table of pair-wise proper replacement systems. A correspondence be

tween (I) and Boolean threshold switching functions is shown.

The research herein was supported by the National Science Foundation
under Grant GP-2413.
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THE COVERING PROBLEM

Given a set V of m elements V = (v,, . . ., v } and a set P
^ 1 mJ

of n sets P = {p,, . . ., p }, where for each v.€ V there exists a p.

such that v.e p.. Associate with each p. a constant cost c.

The covering problem consists of a) finding a set P' such that

P1 Q P and where for each v.€ V there exists a p. such that v. € p.

and p.e P', b) and where the costs associated with the elements in P1

minimize some linear objective function.

There are numerous examples of covering type problems. For

example, let the v. represent demands and the p. represent resources.

Then it is desired to schedule the use of the resources such that each

demand is met and the total cost is minimal. Also, the minimization of

Boolean switching functions is a covering problem.

The covering problem will now be formulated as an integer linear

program (I. L. P. ), which can thus be solved by employing Gomory's

algorithm.

Let a.. = 1 if v.€ p., otherwise a.. = 0. Associate with each

element p. a bi-valued variable P.e {0, 1} , where P. = 1 implies that
J J J

p.e P\ and P. = 0 implies that p. 4 P1. The necessary and sufficient
J J J n

constraints for the I. L. P. are P. < 1 and y~a..P.>l, for i = 1, 2, ..., m,J jti XJ J
n

One possible objective function is 2_c.P. = Z (min). In matrix notation
j=l J J

we wish to find a P with integer components which satisfies

P <_1 (la)

AP >l (lb)

c -P = Z (min) (lc)

lumnwhere A = [a..] is an m x n (0, 1) matrix, P = (P,, . . ., P ) is a co
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vector where the variables P.e {0, 1} , £ = (c^ . . ., cn) is a row vector,
and 1 = (1, . . ., 1) is an m/1 column vector. In all that follows, we

will assume that c. > 0 for all j. Our primary interest will be to sim-

plify the system of inequalities (lb) prior to employing Gomory's I. L. P.

algorithm. This is desirable in order to 1) reduce the size of large

problems so that they will fit the bounds imposed by the I. L. P. routine,

and 2) decrease the computation time. We will first review a few system

properties and elementary simplification techniques, after which the

concept of proper replacement reduction will be introduced.

A. SYSTEM PROPERTIES

Theorem: In the optimal solution of the L. P. defined by (lb) and

(lc) with all c. > 0 we have 0 < P. < 1 for all j. Therefore the inequalities

(la) are not required.

Theorem: All integer solutions to (lb) and (lc) are vertices of the

convex hull defined by (lb) and (la).

Finally, through examples it can be shown that all optimal solutions

to (1) are not always integer solutions.

B. ELEMENTARY SIMPLIFICATION TECHNIQUES

1. If a.. = 1 and a., = 0 for all k 4 j, then P. = 1. Hence the

j-th variable can be deleted from the system, as well as all inequalities

q for which a . = 1.

2. Let r Q. A c. {l, 2, . . ., n} . If a . = 1 iff je T and ac . = 1

iff je A, then the 6 -th constraint in (lb) may be deleted without affecting

the results.

3. Let^cncfl, 2, ..., m} . Let a.ft =1 iff ieiO} and a. =1
— — J 10 ico

iff ie £3 . If c. > c , then P = 0 in all optimal solutions. Hence the
9 co 0

variable PQ may be deleted from (lb) and (lc).
0
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If cn = c and^cft, we set P_ = 0 since P "does more for
0 co 9 co

us" than Prt does. If ^ = ^, either PQ or P may be deleted.
2 9 co

Cobham has shown that the end result after exhaustively applying

these simplification procedures results in a unique system, independent

of the order in which the procedures are applied. A new proof of this

fact is obtained here, as a result of corollary C-5.

At this point, the system may be solved by employing I, L. P.

However,, it is possible to still further reduce the number of constraints

by making use of the fact that for all j, P.e {0, 1} in all solutions of (lb)

and (lc).

C. PROPER REPLACEMENT (P.R.) REDUCTION (THEORY)

This section deals with new procedures for combining linear in

equalities.

Definitions:

1. Matrix A is said to be in reduced form if the application of

the elementary simplification techniques 1 and 2 leadt, to no further reduc

tions. Note that a necessary and sufficient condition for a matrix A to

be reduced is that

a) every row of A contains at least two l's.

b) for each possible pair (L, i_), i, 4 i^, there exists a j,
i^ such that a. . = (1 - a. . ) = 1 and
2 \h 'zh

and a

a. . = (1 - a. . ) = 0.
X1J2 1zh

2. The i-th row of a matrix, say A, is denoted by a. = (a. ,i ix
a , . . ., a ).

1Z n

In the following definitions and theorem, we have P = (P,, . . ., Pn)s
where P.e {0, 1} only.
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3. Definition of Proper Replacement (P. R. ): Given the a

system BP > b, where B = [b. .1 is an m' X n constant matrix
— — lj

ii ii
( or = m'), b = (b,, . . ., b .) is a constant column vector, and

(X= {P|BP> b} is the solution space associated with a. Similarly let
the 6 system be DP>d, where D= [d..] is an m"xn constant

matrix ( || 6 || = m"), d = (d,, . . ., d ,,) is a constant column vector,
and let £) ={P| DP> d} . Then the 6 system is said to be a P.R.
system for a iff || 6 || < \\a\\, and <# =2) • Note that the P. R. rela
tion is transitive.

All of the systems considered will either be of the form given by

AP >J. (lb)

or a P.R. to some system given by (lb), where A is in reduced form.

For example, the 6 system

P1+P2+P3>2 (2)

is a P.R. for the a system

p1 + p2 >i

p2 + p3>i

px +p3>i.

Note that for the objective function

c P. + c2P2 + c-P3 = Z (min) (3)

with 0<c, <c2<c3> tne vector P = (2, 0, 0) is an allowable optimal
solution to the L.P. defined by (2) and (3). Hence,- to ensure that for

all j, P. < 1, upper bounds are used in the simplex computational procedure,
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3
as outlined in Chapter 18 in Dantzig. This procedure is not difficult to

implement, does not significantly slow down the computation, and

eliminates the necessity of including in the system the constraints

P < 1, for j = 1, 2, . . ., n.

Two systems of inequalities are equivalent if they have identical

solution spaces. Note that if 6 is a P.R. system for a, the a and

6 systems need not be equivalent. For example P, = P? = P, = 1/2
does not satisfy the 6 system (2), but does satisfy the a system.

Some properties of the a and 6 systems are now derived.

Theorem _L Let P» = (P^, ..., Pn') and P" = (P^1, ..., Pn")
be two constant vectors, with P. • = 0, P. " = 1, P.1 = P." for all j 4 jn
Then P'e 2)^P"e£:.

This result is a direct consequence of the fact that the 6 system

is a P.R. for some a. system of the form (1. ).

Theorem 2: Let A be the matrix A with the i-th row of A

deleted. Then for the systems AP >_1 and A P->1_> we have

(X d (£ - tj?l A*P >l} • This result follows from the fact that A is
reduced.

Theorem 3: If 6 is a 'P.R. to some system of the form (lb),
a be d

then there exist no vectors F^, P , P and P and no i such that

d.-Pa<d. (4)
—l—i

d.'Pb<d. (5)
—l—i

DPC > d, i.e., PCe D (6)

DPd > d, i.e., Pde S (7)

and PC + Pd<Pa+Pb. (8)
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Proof: Assume 6 exists, and that (4) through (8) are satisfied. Ad

ding (4) and (5) gives d. •(Pa + P ) < 2d.. Adding the i-th rows of (6)
and (7) we have

d.'(PC + Pd) > 2d.. (9)

Now 6 is the P.R. system for some system a of the form (1). Hence

PC and Pd are elements of & and 3D . If P.a + P.b > P.c + P.d then
c _d ,, , , J , i J Jby Theorem 1, P. or P. or both can be changed from 0 to 1. We

J J c d
again call the new vectors formed by this change P and P , and they

are still solutions to the a and 6 systems. By repeated application

of this operation we can construct the new vectors such that Pa+ P = PC + P ,
hence d. •(PC + Pd) = d. •(Pa + Pb) < 2d. which contradicts (9). Hence
if 6 exists, no such set of vectors Pa, P , P and P exists.

Definition: Let the single inequality 2_ d,.P. > b, be the 6 system for a.

Then this system is said to be minimal integer if there does not exist

n

another 6 system for a of the form J d'P. > b ' where b,, b',j=y lj j 1 r 1

n

d and d^' for j =1, ..., n are all integers, and | b ' | +Xldr'l

<|b1|+f|d |.
J=l J

Theorem 4: Let a consist of the two inequalities

P1 + p2+... +Ps +Pt+1+--- ^u^-1 <10»

Ps+1+... +pt+pt+1+... +pu>! (11)
where u < n.

Inequalities (10) and (11) represent the most general form of a pair of
inequalities from AP > 1_, except for the labelling of the variables.
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Case 1. If s + 1 = t, then a minimal integer P.R. exists, and it is

Px+ P2 + ... + Pg + sPt + (s + l)Pt+1 + (s + l)Pt+2+ ... + (s + l)Pu>(s + 1)

Case 2. If s > 2 and s + 2 < t, then no P.R. exists.

n

Proof: Assume the P.R. to be of the form 5a.P. >
j=iJ J

a

Case 1. We require 3" a. < b, since the evaluation P. = P- = . . . = P =1,
£-i J 12 s
J=l J

P. = Pf.ii = • • • = P =0 does not satisfy (11). However, we require that

a . + a. > b, for je {l, 2, . . ., s} , and also that a . < b. Therefore
S+l J S+1

these a. cannot be zero, and it is seen that for a minimal integer solu

tion, a. = 1 for je {l, 2, . . ., s} , hence b ~ s + 1 and a ,, = s, Also
j J *• J s+l

a. = b = s + l for je {t + 1, . . ., u} and a. = 0 for je {u + 1, u + 2, . . ., n}
J J

Case 2. We require a, + a < b and a , + a < b. .Adding we have

a. + a + a . + at < 2b. We require a, + a ,, > b and a + at > b. Adding
1 s s+l t n 1 s+l s t °

we have a, + a + a ,. + a > 2b which contradicts the previous statement.
1 s s+l t r

Henci the P.R. is not realizable.

Theorem 4 states that in a system of the form (1 ),a pair of in

equalities will not have a P.R. iff they are of the form

+ IP. + . . . + IP. + . . . + OP. + . . . + OP, + . . . > 1
l j k I —

. + OP. + . . . + OP. + ... + IP. +... + IP . + ...> 1.
l j k I —

(12)

Corollary 1: For a system a defined by (1), if there exists a set

of column indices J and two rows i. and i? such that for all je J,

. = a. . = 1 and } a. . < 11 J11 +1, then a P. R. system 6 exists
1J V jTl V
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The following theorem gives a lower bound for the number of

inequalities in 6 .

Theorem 5: Given the a. system AP > 1_. Let U ={i|\rk=/ i,
inequalities i and k in a do not have a P.R.}, where || U|| = K <m.
Then if a P.R. system 6 exists, we have || 6 ||>K.

Proof: It is obvious that if K < m, then a 6 exists. If 6 exists and

|| 6 || < K - 1, then by addition of a sufficient number of any of the inequal
ities in a, we can make || 6 || = K - 1. Hence, assume || 6 || = K - 1.
For each ie U let P1 = (Pi1, . . ., P X), where P.1 = 0 if a.. = 1, other-

— . n . j ij
wise P.1 = 1. Hence a. •P1 = 0 and P1 { f).

J -i - -

Now for all k 4 i, since inequalities i and k do not have a P.R.,

we have from Theorem 4 that there exists j, and j, such that
Kl K2

a.. = (1 - a. . ) = a.. = (1- a.. ) = 0. Hence a. •P1 > 2 for all k 4 i.
1Jk kjk 1Jk 1Jk ""* ~

Kl K2 1 K2

Now, since P 4 ZO, there exists an i "? d *P < d.. Now there are

K conditions of this type, corresponding to the K elements of U, and

only K - 1 choices for i. Hence there exist an i., i_ and an jL. such

that d 'P11<d/> and d/> 'Pl2<d . Relabel the variables P., P2,jlq jlq jlq jlq

..., P so that P11 = (1, 1, 0, 0, P,11, P,11, ..., P H) and
n — v5o n

P12 = (0, 0, 1, 1, Pc12, ..., P 12). Consider the vector PC= (1, 0, 1,
— d n —

0, PCU, ..., P n). Since P-,C = 0, we have a. •PC > 1 for all k 4 i,
5 n 2 —k —

C C C G~\
rather than > 2. But since P0 = 1, we have a. • P =1. Hence P e Ju .3 -ix -

Similarly, if Pd= (0, 1, 0, 1, P^2, ..., P^2), then Pde D. But by
construction, P^+P221^ +Pi and by Theorem 3 with i = i^, i. = a,

i. = b, 6 does not exist. Hence we have || 6 || >. K.
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Corollary 2: If K = m then a P.R. system 6 does not exist.

Proof: By definition || 6 || < ||a|| = m. From Theorem 5, || 6 || > K = m
which is a contradiction.

Note that K cannot equal m-1, since if U contains m - 1

elements, it also contains m elements.

Theoream 6: Assume a P.R. system 6 exists for the a system

given by (1), with U = {i} and hence K = 1. Then in the system there

exists a k such that if a.. > a.. , then d. . > d, . , and if d, . > d. . ,
ij2 xJi kJ2 kJi kJ2 kjl

then a.. < a.. .

^l" 1J2

Proof: Let P1 = (P,\ ..., P l) where P.1 = 0 if a.. = 1, P.1 = 1 other-
- • 1 n j . ij j

wise. Hence a. •P = 0 and for all k 4 i, fLk' — ^. 2 since A is reduced.
Since pV (X or £) we have that there exists a k such that d, •P < d,.
Let P' = (P ' . . ., P ') where P. ' = 0 for some j. such that a.. = 0,-In' jx Jl iJx

P,
\2 - ^j2

>. ' = 1 for some j-> such that a.. =1, and P.' = P. for all j 4 h

and j 4 j?. Now by construction AP1 > 1_, hence d, -P1 > d,. But

d. -P' - d -P1 = d. . - d. . > 0, hence d. . > d. . for (a.. = 1) > (a.. = 0)-k - -k - kj2 kjx kj2 kJ]L ij2 ijj_

Therefore, if d. . > d. . , we have that either a.. = (1 - a.. ) = 1, orkj2 kjj ij2 ijx

a.. = a. . = 1 or 0.
ijj u2

Theorem 7: For a given a system of the form (1 »,let the i-th

inequality in its P.R. I system be

>d..P. >d. (13)
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where d. > 0. Then
1

n

a) ? a.. <? a. (14)l) Vd..>d.

n n

(15)b) Yd.. - max (d..) = Yd.. > d.

where for all j, d.. > d...

Proof:

a) Let P' = (1, . . ., 1) which is a solution to a. Substituting

n n

into (13) we get Yd.. >d.. Assume Yd.. = d.. Since d. > 0, therex ' & %]_ ij ~ i £i ij i i
n

exists a j- such that d.. > 0. Hence ) d.. < d., and therefore
0 lh fi « x

P ° = (1, 1, . . ., 1, 0, 1, . . ., 1) 4jD- But PJ° €££ since every row in A
1 ... j0 ... n

has at least two 1 entries. Since j£) = (%. the assumption that

n n

) d.. = d. is contradicted, and hence J> d.. > d..
£-i ij i 4-^iji

b) Letting j~ = jy, the desired result is obtained.

Definition: A Boolean function £P(P,, . . ., P ) is said to be a threshold
x 1 n

function if there exist real numbers d.., d.-», . . ., d. , and d. so that
11 12 In 1

(tf> =l)^->JdIjPj>d1 (16)
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or equivalently

n

(<P= 0)^=»XdiiPi<di <17>
j=l J J

where P.e {0, 1} . The inequality in (16) is said to be the 1-realization

of (P.
Corresponding to the a system defined by (l^) one can associate

a Boolean function p having the solution space &. To construct such

a function, let the Boolean disjunctive clause w. = Via. .P.. Hence w.
J i J-l ij J l

is true (w. = 1) for all P satisfying the i-th inequality of a. Therefore

m

(P - /\w-' i'e-> (P is the common intersection (logical conjunction)

of the set of solutions satisfying the 1-st, 2-nd, . . ., and m-th inequalities

m n __

of A. Also, we have /p - \J w., where w. = Aa..P. (a barred variable
0 a i=i * 1 j=i y j

indicates logical negation).

Now (X is a subset of the vertices of an n-dimensional unit cube.

By definition a Boolean function is a subset of the vertices of an n-dimen

sional unit cube. Hence (p* = $.

Since fp is true for all P^ (X. it has the solution space (X,- {& - <X} >
where Q. is the entire space of (0, 1) n-tuples.

110 0

For example, corresponding to the matrix A = 1 0 1 1

_9 l ° L

we have J3 = (Px v P2)(P][ v P3 v P4)(P2 v P4) and pa = P1P2 v ^3^4 v P^-

It is seen that /P is a positive function and hence is unate. This

is a necessary condition for (P to be a threshold function. From the
a

definition of threshold functions and P.R. systems we have:
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Theorem 8: If a is of the form (lb) and has a P.R. system 6,

then || 61| =1 iff (P is a threshold function.
01 4

In Table II of Winder, all threshold functions of six or less

variables are listed. From this table, it is quite simple to find 6, with

|| 6 || = 1, if (p is a threshold function and n < 6. If J5 is not in the
table, then it is known that || 6 || > 2.

From Theorem 4 it follows that all functions of the form

/P = (P. v P, v . . . vP) P ,,vP ,0v... vP are threshold,
u a 1 2 s s+l s+2 u

Definitions: A Boolean function is negative if every variable in it ap

pears in its negated form. A clause is the logical conjunction of Boolean

variables. A negative Boolean function (p is in reduced normal form

m _
iff p - V w., and where there exist no two negative clauses w. and

i=l l xl

w. of /P where w. = w. w and where w is a negative clause not

identically 1. Note that if this condition is violated, then we have

W. V w. = w. (w V 1) = w. .
li 'z lz 'z

Theorem 9: If the ex system is of the form (1), then p is in

reduced normal form.

Proof: From condition b) of the definition of a reduced matrix we have

that for each pair of row indices (i., i~), i. 4 i->, there exists a pair of

column indices (j,, j7) such that P . is a literal in w. but not in w. ,
1 L Jl \ 1Z

and P. is a literal in w. but not in w. . Hence there exists no w

h lz h

such that w. = w. w.

h lz

Since the first condition of the definition of a reduced matrix is

not used in the proof of Theorem 9, most of the following results will

be true for the case where w. consists of a single literal.
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Theorem 10: If a negative (positive) Boolean function (p((P) is

in reduced normal form, then every clause is an essential prime

implicant (e.p.i. ).

m

Proof: The fact that (P - \j w. is in reduced normal form is equivalent
i=l

to saying that each clause in (p is a prime implicant (p.i. ). To show

that each clause is an e.p.i. we construct a minterm (vertex) v. such

that (v. = 1) =^(w. = 1) and (v. = l)=5>(w, = 0) for all k 4 i. If this can
IX IK.

_ n . .
be done, then w. is an e.p.i. Let v. = A P.1, where P.1 = P. if P.1 i j_\ J J J J
is a literal in w., and P. = P. otherwise. Hence (v. = l)=^(w. = 1).

i J J l ' x l '

Since all w.'s are p.i.'5, for all k^ i there exists a j. such that P.
k \

is a literal in w. but not in w.. Hence (v. = 1) -=Xw. = 0). Since such
k i i k

a v. can be constructed for all i, each w. is an e.p.i.

Corollary 3: If p is a negative (positive) reduced Boolean func

tion, then it has a unique reduced normal form.

Corollary 4: For the a system defined by (1), there exists no

matrix A' = [a^1] , a..'e {0, 1} , of dimension m'X n, where m' < m,
A'P > 1, and such that & = (Xx.

Proof: From Theorem 10, all m clauses of ^ are e.p.i.'s, and
therefore represent the fewest number of clauses which can cover the

elements of (X- Since each clause in /p corresponds to a row in A,
Corollary 4 follows.

Corollary 5: Let the a system be of the form (1). Let A' = [a..1]

be an m X n matrix, with a..re {0, 1}, A'P_>1_, and QC = 0L- Then
A' differs from A by at most an interchange of rows.
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Proof: Since A is a reduced matrix, (p is unique up to the order of

its clauses. Since (%} = &> every clause in (p corresponds to a row
in A1, and the result follows.

As a consequence of Theorem 1 or from the fact that (p is a positive

function we have:

Corollary 6: Let (pH [<f>\ (P. =1)] and (f.°= [P\ (P. = 0)] . Then
<P°C<p} J J J J

j j

Theorem 11: Let the ex system of the form (1) have a P.R. system 6

If there exists a d.. < 0, then there also exists a P.R. system HP > h,
ij

where H= [h..l is an m,,rXn matrix, m,M<m", and where h.. > 0
- ij !J

for all i, j.

Proof: For simplicity, assume d.. < 0. Construct a system D'P^d.',

where for i > 1 the i-th rows of D and D' are identical, and di = dJ.
Let the first row of D' be &,' = (0, d12, d13, . . ., dln), and set
d ' = d. + | d.. | . We now prove that *p' =35.

Let a1 ={P|AP >1), and P. =1} , and #.°={P|AP£1, and
J J J

P. = 0} . <=D. and JD. are defined similarly.
J J "" J

From Theorem 1 we have that (X. C.(jt. . Now 3*). = cX. and

%\° = a° because X.l^° =2), and S^HD.0 = 4> • The same holds
J J J J J J

for a Let £^=(1, P2, •••, PJ and P° =(0, P^ ..., PJ. Then
d.'P, > d. is equivalent to the inequality

X2Vpj-di+ Kl >di (18)

which is equivalent to the inequality <V-P. > d. + | d.. | . Also d^-P^ > d^
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is equivalent to the inequality

n

A,Vj - di (19)

while d '• P. > d. + | d,. | is equivalent to inequality (18). But (19) is
a weaker constraint than (18), and since 5D. C 3^. , we can replace (19)
by (18) without effecting the set of solutions in the solution space. Hence

£)' = £D. Now by construction, the number of negative elements in &1

is one less than that in iD. By repeating this process (i.e., by forming

££)", J)HI» etc.) a finite number of times, we finally obtain H and h.

We have h.. = d.. if d.. > 0 and h.. = 0 if d.. < 0, and h. = d. + 2 | d. .1U iJ iJ " ij iJ i i j ' ij'
where the sum is taken over only those j for which d.. < 0.

Note that if h. <. 0, then the i-th inequality may be deleted since

it is redundant, since for all P, h.*P > 0. Hence all P.R. systems 6

can be put into the form where for all i and j, d. . ^. 0 and d. > 0.

D. PROPER REPLACEMENT REDUCTION (SYNTHESIS)

In this section, various procedures for finding P.R. systems

will be presented. If 6 is the P. R. system for a, it would be desirable

if || 61| were minimal. If ||&|| =1, then finding 6 is the same
as finding the 1-realization of <P .

By employing I. L. P., it is possible to determine the 6 system

such that || 6 || is minimal. (Obviously if 6 exists, then it can be
written with all integral coefficients. ) However, the resulting system

required to be solved is much larger than the original system, and hence this

procedure will not be considered here.

We now present a very simple way for determining a 6 system

from p . This synthesis procedure is based on the following theorem.
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Theorem 12: If under the evaluation P. - P_ = . . . = P =0 and
12 s

, = P 2 = . . . = P = 1, the Boolean expression P is reduced to (P \

t-s terms

which is a threshold function having a 1-realization

n

d..P. >d. (20)
ij J i

j=t+l

then the inequality which expresses this condition is

n

d.[P. + . . . + P ] + ^d..P. >d..
i 1 sJ /_ lj j 1

j=t+l

(21)

Proof: Consider the inequality
n

di[p1+p2+...+p8+(i-p8+1)+(i-p8+2)+...+(i-pt)] +Xdijpj-di- (22)
j=t+l

Note that the term [ . . . ] in (22) is zero only for the evaluation of the

variables stated in the theorem. For this evaluation (22) reduces to (20).

For all other evaluations of the variables P. through P , the term

[ . . . ] > 1, and hence (22) is satisfied regardless of the value of the

variables P . through P . But by Theorem 11, inequality (22) may be

replaced by (21).

Synthesis Algorithm:

If P. = 0, then (p1 = [(P| Pi = 0] , else (p" = [<f\ P{ = l] . If
either (p1 or (px are threshold functions, then Theorem 1 can be employed.
If (px or (p" are not threshold, then the procedure is repeated on each
of the nonthreshold functions in turn. The evaluation (jP|Pi is chosen so
that P. is a variable appearing in p.
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Example: Let

A =

0 0 1 0 1

1 0 1 0 0

0 1 0 1 0

0 0 0 1 1

1 0 0 1 0

1 0 0 0 1

Then (? = (P,P0 v P-PJP.. v P.P-P. which is not a threshold function.
^a x 1 2 3 4' 5 134

If P5 = 0, then [<P | P5= 0] = P.P3P4 which is a threshold function with

a 1-realization P. + P, + P. > 3. Otherwise [ <P | Pc = l] = P.P., v P^P.
13 4 L a1 5 J 12 3 4

which is not a threshold function. If P. = 0, then [ <P | Pg = 1, Pj = 0] = P3P4

which is a threshold function with a 1-realization P, + P. > 2, Other

wise P. = 1 and [<P I Pc = 1, P, = 1] = P, v P.P. which is a threshold
1 L a?1 5 1 . 2 34

function with a 1-realization 2P~ + P. + P. > 2. Therefore, from
2 3 4

Theorem 12,we have the 6 system

+ P, + P. + 3PC > 3
3 4 5

2P1 + P3 + P4
2P2 + P3 + P4

> 2

> 2.

For the system AP>1, with A defined above, we can combine

rows 1 and 2, 3 and 4, and 5 and 6 according to Theorem 4, and

obtain the following 6 system,

2P,

+ 2P3 + Pc > 2

+ 2P4 + P5 > 2

+ P4 + P5 > 2.
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One procedure for determining a P.R. system 6 for a is to

select two inequalities from a and let them be an a1 system. If 6 '

is a P.R. system for a\ then by replacing ex1 by 6' in or we have 6.

The process can be repeated until no 6 * can be found. This procedure is

based on the concept of pair-wise proper replacement reduction, and is

implemented by using a universal table of pair-wise P. R. 's. The table

consists of pairs of constraints and their P. R., which is a single con

straint. By employing this precomputed table, the reduction of the number

of constraints in a system reduces to a table look-up or search process.

The P.R. may be determined by either graphical, analytic, or intuitive

means.

The analytic procedure for finding the 6 system is quite straight

forward. Let the ex system be 2 a..P. > b. for i=l, 2, . . ., m and
7 j=l iJ J i

n

the 6 system be Sd.P.>d. Then for all Pe# we have d- P > d, and
j=il J

for all Pe& we have d- P < d. We have 2 inequalities and only n + 1

unknowns, namely d,, . . . d , d. There are therefore a great number

of redundant inequalities. The minimal set of inequalities required in

order to solve for the unknowns can be found from the "worse case"

conditions; that is, from those cases where the number of P.'s equal

to one in P is minimal, and yet the inequality is satisfied, and from

those cases where the number of P.'s equal to one in P is maximal,

and yet the inequality is not satisfied. This information is determined

by inspecting the reduced normal forms of (p and (P' .*- In fact, each

clause in < > corresponds to an \ inequality. The P corresponding

\<Pa) UJ
# 4

This procedure is analogous to the one given by Winder (p. 75) for
finding the minimal set of inequalities for testing whether a function is
threshold or not.
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n

to the clause w! = A a! .P. in (P is P = (a', ..., a! ), and the P
. , u 1 a — * 11 in' —

n
""• A — — IT

corresponding to the clause w, = /\a,.P. in (p is P =(1- a,., . . .,
j=l J J a

1 - a, ), where a.. e (0, l}. These results follow from the fact that each
kn' ij J

clause is a prime implicant, and hence contains a minimal number of

literals.

Example: Find the P.R, system for

p1 + p2 >i

p2 + p3>i

Now <pa = P1P2 v PEP3 v P^ and <pa = P^ v P2P3 v P^. There-

fore the worse case test conditions in (% are (1, 1, 0), (0, 1, 1) and (1, 0, 1),

and in #. they are (0, 0, 1), (1, 0, 0), (0, 1, 0). If 6 is of the form

dlPl + d2P2 + d3P3 * d«

then we have

dl + d2 ~ d
d2 + d3 >d

dx +d3 >d

d, + 6j < d

d2 +62^d
d3 + «3<d
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where€,>0,e->0,c~>0.Let€=min(c.,€?,€,),andscalethe

problemsothat€=1.Hencewegetthesystemshowninthetablebelow.

(1)

(2)

(3)

(4)

(5)

(6)

1n

0

1

1

1

0

-IJJ0

-1

0

>0

>0

>o

>1

>1

>1

(7)=(1)+(4)01"00>l

(8)=(2)0rl-l>o

(9)=(3)+(4)0010>i

(10)=(5)0-l.01>l

(11)=(6)00-11>l

(12)=(7)+(10)001>2

(13)=(8)+(10)010>1

(14)=(9)or0>1sameas(13)

(15)=(11)0-1.l>1

(16)=(12)

(17)=(13)+(15)

>2

>2sameas(16)

Wehaved>2.Tryd=2.Substitutinginto(4),(5)and(6)we

have-d.>1,i.e.,d.<1.Letd.=1fori=1,2,3,thensince(1),

(2)and(3)aresatisfiedwehavethattheP.R.isPx+P£+P3>2.
ThetableofP.R.'sisgivenintermsofpairsofconstraints

havingaP.R.consistingofasingleconstraint.Thereplacement

indicatornotationN(X,|3)~*\statesthatthereareN(N<n)variables

inthetwoconstraintsbeingreplacedbyaP.R.suchthatthecoefficient
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of all N of these variables in the first constraint is X., the coefficient

of these variables in the second constraint is p, and y is the value of

the coefficient of these variables in the P.R. If X. = p = 0, then y = 0

and hence we do not mention such variables in the table. The notation

R(X-> P)—3>y refers to the constants on the right hand side of the con

straints. A P.R. can be completely described by a set of such replace

ment indicators. Note that if \ and |3 in each replacement indicator

of a set'describing a P.R. are interchanged, the result is still a P.R.

relation.

As an example of this notation, the P.R.

P, +P^+Pt. +P7 >n P.R.
\ > P1+P3+3P5+3P7+2Pg > 3

P5+P7+P8^lJ

would be indicated as

2(1,0)—M, 2(1,1)—^3, 1(0, 1)—>2, R(l, 1)—>3.

The set of replacement indicators defining a P.R. can easily be coded,

i. e., reduced to a number. With these numbers listed in numerical

order, and under appropriate headings, it is possible to take two con

straints from the system being solved, code them, and search the table

to see if a P.R. exists. If no P.R. is found, another pair is selected.

If a P.R. is found, it replaces the two constraints, and the process

continues. The process ends when no further P.R. 's can be found. Un
fortunately, the final system of constraints is not unique, and another

set of pairings of constraints may produce a final system of fewer con
straints. However, the integer solution set is the same as the original

system. Table 1 lists a few classes of P.R.'s.
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Example:

rr pi +p3

r2:
p +p
*2 ^3

r . P -LP
r3* 12

r4:

> 1

> 1 J

P4+P5 * 1 J

r5: P2 +P4+P5 > 1,

>P1+P„+2P,+P. > 3
12 3 4r

Case 1

i=l

P.R.

^ P1+ P2+2P3

+P„ > 1 ^ Case 1
i=2

> 2

=£> Pn+ P0+2P,+ 3P. > 3 J
12 3 4

P.R.

Case 10

i=l, j=2
—i>-

P.R.

Case 4

>3P.+4P0+6P^+4P/,+Pt. > 10
P.R/ 12 3 4 5

The system of inequalities r., i=l, 2, . . ., 5 can be replaced by the

inequality 3P + 4P + 6P- + 4P. + P > 10. The application of this

pair-wise P.R. 's procedure has been found to be quite successful in

reducing the number of constraints in a system.

TABLE I

Partial Table of Proper Replacements (all integer)

R(l, l)

1. i(l, 0)—»1, 1(0, 1)—>i, j(l, 1)—>i + l, R(l, 1) —>i + 1

All other inequalities of the form R(l, 1) do not have a P.R.

R(2, 1)

This case consists of all inequality pairs of the form

2P. + P. + P. > 2 and P. + P. + . . . + P. > 1.

xl x2 '3 h J2 'u

-22-
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2. 1(2, l)-^2(k + 1), 2(1, 0)-*k, k(0, 1)—>2, R(2, l)-^2(k + 1) where

if k is even, the values of the constants in the P.R. may be divided

by 2.

3. 2(1, 0)—>2k + 1, 2(1, l)->k+l, k(0, !)->!, R(2, 1)—>2k + 2. All

other pairs do not have a P.R. These pairs are:

a) 1(2,0), 1(1,0), 1(1,1), i(0, 1),' R(2, 1) for i > 1,

b) 1(2,0), 2(1, 0), i(0, 1), R(2, 1) for i > 2.

R(3, 1)

4. 1(0, 1)-*1, 2(1, 1)—>4, 1(1, 0)-^3, 1(2, 0)-^6, R( 3, 1)-^10.

R(2, 2)

We first give the results for all pairs of the form

2P. + P. + P. >2 and 2P. + P. + P. > 2.

xl X2 x3 Jl .J2 J3

5. 1(2, 0)—»2, 1(1, 2)-^3, 1(1, 1)—>2, 1(0, 1)—>1, R(2, 2)-^5,

6. 1(2,2)—*3, 1(1, 0)—*1, 1(1, 1)—^1, 1(0, 1)—*1, R(2, 2)—^3.

7. 1(2, 1) >1, 1(1, 2)—»1, 1(1, 1)—W, R(2, 2)—^2.

8. 1(2, 1)—*3, 1(1, 0)—»1, 1(1, l)-*2, 1(0, 2)—*2, R(2, 2)—»5.

9. 1(2, 2)—*4, 2(1, 0)-»l, 2(0, 1)-»1, R(2, 2)->4.

All other pairs do not have a P.R. These pairs are:.

a) 1(2,0), 1(1,2), 1(1,0), 2(0,1), R(2, 2)

b) 1(2,0), 2(1,0), 1(0,2), 2(0,1), R(2, 2)

. c) 1(2,0), 1(1,0), 1(1,1), 1(0,1), 1(0,2), R(2, 2)

d) 1(2,0), 2(1,1), 1(0, 2), R(2, 2).
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TABLE1(Continued)

Thepreviouscasescanbegeneralizedasfollows:

forcase5,replace1(1,1)—>Zbyi(l,1)—9-Z.

6,

itn7>

""8,

.,i.9>

R(3,2)

10.i(2,2)-

etc.

1(2,2)-»3

1(1,D-M

1(1,1)-*1

1(1,1)—>2

1(2,2)->4

i(2,2)—^3and

j(l,D-*l.

i(l,\)—>l.

i(l,1)—»2.5.*

i(l,l)->4.

•2,1(3,0)-*l,j(l,1)-*1,R(3,2)—*3
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