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ABSTRACT

In this paper the covering problem, examples of which can be
found in many fields of study, is first defined. This problem is equivalent
to the following integer program: find Pje {0,1}, such that

n

a..P.>1 ' (I)
E ij" ] .
=1 n ;
for i=l1, 2, ..., m, and such that Cij = Z (min), where 3;5¢ {o,1}.

j=1
The purpose of this paper is to look into various procedures for reducing
the number of inequalities and variables in the system of constraints (I)
prior to solving for the optimal solution. A new procedure for combining
sets of inequalities, called proper replacement reduction, is outlined.
Theorems dealing with the properties of (I) and the proper replacement
system are presented, along with two synthesis procedures and a partial
table of pair-wise proper replacement systems. A correspondence be-

tween (I) and Boolean threshold switching functions is shown.

The research herein was supported by the National Science Foundation
under Grant GP-2413.
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THE COVERING PROBLEM

Given a set V of m elements V = {vl, ce vm} and a set P
of n sets P = {Pl’ ces pn} , where for each v;e V there exists a pj
such that v.e pj. Associate with each pj a constant cost cj.

The covering problem consists of a) finding a set P' such that

P'c P and where for each vie V there exists a p. such that v.e P;
and pje P', b) and where the costs associated with the elements in P'
minimize some linear objective function.

There are numerous examples of covering type problems. For
example, let the ] represent demands and the pj represent resources.
Then it is desired to schedule the use of the resources such that each
demand is met and the total cost is minimal. Also, the minimization of
Boolean switching functions is a covering problem.

The covering problem will now be formulated as an integer linear
program (I. L. P.), which can thus be solved by employing C}omory's1
algorithm.

Let a,; = 1 if Ve pj, otherwise a;; = 0. Associate with each
element pj a bi-valued variable Pje {0,1}, where Pj =1 implies that
pje P', and Pj = 0 implies that pj {§ P'. Th%necessary and sufficient
constraints for the I. L. P. are Pj <1 and jglaiij 21, for i=1, 2, ...,

n
One possible objective function is chPj = Z (min). In matrix notation
j:]_ ..

we wish to find a P with integer components which satisfies

P<1 (1a)
AP 21 (1b)
c+*P = Z (min) (1c)

where A = [aij] is an m x n (0, 1) matrix, P = (Pl, ooy Pn) is a column



*

vector where the variables Pje {0, 1}, c= (cl, .o cn) is a row vector,
and 1=(1, ..., 1) is an mX1 column vector. In all that follows, we

will assume that cj >0 for all j. Our primary interest will be to sim-
plify the system of inequalities (1b) prior to employing Gomory's I. L. P.
algorithm. This is desirable in order to 1) reduce the size of large
problems so that they will fit the bounds imposed by the I. L. P. routine,
and 2) decrease the computation time. We will first review a few system
properties and elementary simplification techniques, after which the

concept of proper replacement reduction will be introduced.

A. SYSTEM PROPERTIES

Theorem: In the optimal solution of the L. P. defined by (1b) and
(1c) with all cj >0 we have 0 £ Pj < 1lfor all j. Therefore the inequalities

(1a) are not required.

Theorem: All integer solutions to (1b) and (lc) are vertices of the

convex hull defined by (1b) and (la).

‘Finally, through examples it can be shown that all optimal solutions

to (1) are not always integer solutions.

B. ELEMENTARY SIMPLIFICATION TECHNIQUES

. 1. If 35 = 1 and a, =0 for all k # j, then Pj = 1. Hence the
j-th variable can be deleted from the system, as well as all inequalities
q for which aqj = 1.

2. Let T €ac<c{l, 2 ..., n}. If 2y = 1 iff je " and 353 = 1
iff jeA, then the & -th constraint in (1b) may be deleted without affecting

the results.

3. Let®icQc(l, 2, ..., m}. Let a, =1 iff ic¥® and a, =1
iff ieQ2. If g > C then Pe = 0 in all optimal solutions. Hence the
variable Pe may be deleted from (1b) and (lc).



If c. =c andHHCQ, we set P
0 w 0

us'' than Pe does. - If FH = Q, either Pe

Cobham2 has shown that the end result after exhaustively applying

= 0 since Pw ""does more for

or Pw may be deleted.

these simplification procedures results in a unique system, independent
of the order in which the procedures are applied. A new proof of this
fact is obtained here, as a result of corollary C-5.

At this point, the system may be solved by employing I. L. P.
However, it is possibie to still further reduce the number of constraints
by making use of the fact that for all j, Pje {0,1} in all solutions of (1b)
and (lc).

C. PROPER REPLACEMENT (P.R.) REDUCTION (THEORY)
This section deals with new procedures for combining linear in-
equalities.

Definitions:

1. Matrix A 'is said to be in reduced form if the application of

the elementary simplification techniques 1 and 2 lead: to no further recduc-
tions. Note that a necessary and sufficient condition for a matrix A to
be reduced is that

a) every row of A contains at least two l's.

b) fqr each possible pair (il, iz), i1 # 12, there exists a _jl

and a jZA such that a, . =(1-a, .)=1 and
h 1201
a, ., =(l-a. .)=0.
Y2 1232 |
2. The 'i-th row of a matrix, say A, is denoted by a = (a. ,
a; 5 -.en @y ).
2 n
In the following definitions and theorem, we have P = (Pl, ..y PO
where Pje {0, 1} only.



-3. Definition of Proper Replacement (P. R.): Given the «

system BP >b, where B= [bij] is an m'X n constant matrix

(llell= m"), b= (bl’ cens bm,) is a constant column vector, and

A= {P|BP>Db} is the solution space associated with . Similarly let
the & system be DP2> 4, ‘where D = [dij] is an m' xn constant
matrix (|| 6] = m"), d= (dl’ Cees dm,,) is a constant column vector,
and let ) = {P|DP>d}. Thenthe & system is said to be a P.R.
system for o iff |6 < ||, and d=iD . Note that the P.R. rela-
tion is transitive.

All of the systems considered will either be of the form given by
AP 21 (1b)

or a P.R. to some system given by (lb), where A is in reduced form.

For example, the 6 system

P.+P,+P

[+ Pyt Py22 (2)

3

isa P.R. for the a system

P +P, >1
P,+P;2>1
P, +P 21,

Note that for the objective function

c,P. +c, P, +c

1P+ ¢Pp + ¢3P3 = Z (min) (3)

3
with 0 < ¢ < <, < €3 the vector P = (2, 0, 0) is an allowable optimal
solution to the L.P. defined by (2) and (3). Hencey to ensure that for

all j, Pj <1, upper bounds are used in the simplex computational procedure,



as outlined in Chapter 18 in Dantzig. 3 This procedure is not difficult to
implement, does not significantly slow down the computation, and
eliminates the necessity of including in the system the constraints
Pj‘<‘1’ for j=1, 2, ..., n.

Two systems of inequalities are equivalent if they have identical
solution spaces. Note that if & isa P.R. system for «, the a and
6 systems need not be equivalent. For example P1 = P2 = P3 =1/2
does not satisfy the 6 system (2), but does satisfy the a system.

Some properties of the o« and & systems are now derived.

Theorem 1: Let P'= (Pl', ey Pn‘) and P"=(P,", ..., Pn”)
be two constant vectors, with Pj ‘=0, Pj =1, Pj' = Pj" for all j # jo.
Then P'e D=5 Pre L. 0 0

This result is a direct consequence of the fact that the 6 system

isa P.R. for some a system of the form (1').

Theorem 2: Let éi be the matrix A with the i-th row of A
deleted. Then for the systems AP >1 and éigzl_, we have
q c Qi ¢ {p| él_P_>1_} . This result follows from the fact that A is
reduced.

Theorem 3: If § is a:P.R. to some system of the form (1),

C

then there exist no vectors Ea, _Pb, P and _Pd and no i such that

a-P*<a (4)
4 P’ <a (5)
DP® 2 4, i.e., P D (6)
DP? > 4 ie., P% D (7)

and P +P <P +P . (8)



Proof: Assume & exists, and that (4) through (8) are satisfied. Ad-
ding (4) and (5) gives d.-(P*+ P°) <2d. Adding the i-th rows of (6)

and (7) we have
.1 =C d
4 (P +P)22d. (9)

Now & 1is the P.R. system for some system o of the form (1). Hence
P¢ and gd are elements of ( and 9) . If Pja + ij > ch + de, then
by Theorem 1, ch

or de or both can be changed from 0 to 1. We
again call the new vectors formed by this change EC and Ed, and they

are still solutions to the a and § systems. By repeated application

b d

of this operation we can construct the new vectors such that E’a+ P = _PC+ E ,
hence _qi-(fc + Ed) = gi-(fa + Eb) < Zdi which contradicts (9). Hence

if 6 exists, no such set of vectors Ea, Eb, _Pc and _ZEd exists.

n
Definition: Let the single inequality Z dlej 2 b1 be the & system for «.
=1
Then this system is said to be minimal integer if there does not exist

n

1 > 1 !

another 6 system for a of the form jZldlj Pj 2 bl » Where bl’ b1 )
L

t ] = 1 1 1

dlj and dlj for j=1, ..., n are all integers, and | b1 | +j;l dlj [

n
<|b| + ledljl .
J._
Theorem 4: Let a consist of the two inequalities"\

P1+P2+...+PS +Pt+1+...+Pu21 (10)

Ps+l+...+Pt+Pt+1+...+PuZl (11)

where u < n.

*
Inequalities (10) and (11) represent the most general form of a pair of
inequalities from AP 21, except for the labelling of the variables.



Casel. If s+ 1=1t, then a minimal integer P.R. exists, and it is

P +P +...+PS+sPt+(s+1)P +(s +1)P

>
1 2 +(s+1)Pu_(s+1).

t+l t+2+
Case 2. If s2>22 and s+ 2 <t thenno P.R. exists.

n
Proof: Assume the P.R. to be of the form Zaij 2 b.

j=1
s
Case l. We require Zaj < b, since the evaluation P1 = PZ =,.. = Ps =1,
J=1 x
Pt = Pt+1 = ... = Pu = 0 does not'satisfy (11). However, we require that
> i <
ac.) + aj >Db, for je{l, 2, ..., s}, and also that a1 b. Therefore

these a, cannot be zero, and it is seen that for a minimal integer solu-

= s, Also

tion, aj=l for je {1, 2, ..., s}, hence b= s +1 and asi)

a.j=b= s+1 for je {t+1, ..., u} and aj=0 for je {fu+1, u+2, ..., n}.

Case 2. We require a, + a <b and a_ T < b. Adding we have
a, +a +a +a_<2b. We require a

s+1 t + as

S .
1 2 b and a_ + a, 2 b. Adding

we have apta + a1 +a, 2 2b which contradicts the previous statement.

+1

Hencc the P.R. 1is not realizable.
‘Theorem 4 states that in a system of the form (1 ),a pair of in-

equalities will not have a P.R. iff they are of the form

.+1P.+ ... +1P. + ... +0P_+ ... +0P, + ... 21
i j k £

.. +0P. + ... +0P. + ... + 1P _+ ...+ 1P, + ... 21.
i j k £

Corollary 1: For a system « defined by (1), if there exists a set

of column indices J and two rows and i2 such that for all je J,

L

n . .
ailj = aizj =1 and jzlailj < |} 3}l +1, thena P.R. system & exists.



The following theorem gives a lower bound for the number of

inequalities in 6.

Theorem 5: Given the @ system AP>1. Let U={i[\{k# i
inequalities i and k in @ do not have a P.R.}, where || U] 2 K<m.
Then if a P.R. system & exists, we have | & |>K.

Proof: It is obvious that if K <m, thena 6§ exists. If 6§ exists and
| 6| < K -1, then by addition of a sufficient number of any of the inequal-

ities in o, we canmake | 6] = K -1. Hence, assume | 6] =K - 1.
For eac}} ie U let fi = (Pli, e Pni)., where PJ.i =0 if aij = 1, other-
wise le = 1. Hence E{EI =0 and El {D.

Now for all k # i, since inequalities i and k do not have a P.R.,

we have from Theorem 4 that there exists jk and jk such that
1 2
a.. =(l-a,. )=a.., =(l-a,. )=0. Hence -P'>2 for all k #i.
N Ky Ny Vi -
1 2 1 2
Now, since _1_319' D, there exists an £ O 22'_1:_’1 < d.é' Now there are

K conditions of this type, corresponding to the K elements of U, and

2k

only K -1 choices for £. Hence there exist an il’ iz and an lo such

that d -Pl<d and d, -P'2<d, . Relabel the variables P,, P.,
&y = 2 =) ] )
0 0 0 0
., P sothat Pl=¢(, 1 0, 0, P.', P, ..., P ') and
n = 5 6 n
P'2=(0, 0, L, 1, P,'2, ..., P '2). Consider the vector P2 (L, 0, L,
i) i) . c _ € .
0, P5 s ey Pn ). Since P‘2 = 0, we have 2 P >1 for all k#ij,
rather than > 2. But since P3C = 1, we have 2, -EC = 1. Hence Ecei) .
1
similarly, if P4 (0, 1, 0, 1, P,'2, ..., P_'2), then PY D. Butby

construction, _P_’ll + _1312 = _lfc + _l?d; and by Theorem 3 with i = { = a,

oo

i, = b, & does not exist. Hence we have | & > K.



Corollary 2: If K=m then a P.R. system & does not exist.

Proof: By definition |6 < ||e|| = m. From Theorem 5, le]l>K=m
which is a contradiction. .
Note that K cannot equal m-1, since if U contains m -1

elements, it also contains m elements.

Theoream 6: Assume a P.R. system 6 exists for the a system

given by (1), with U = {i} and hence K =1. Then in the system there

exists a k such thatif a.. >a.., then d,. >d,., andif d,. >d
i kj kj kj

b, 1) 2 1 2 K

1

then a.. <a,. .
) 1],

Proof: Let P' = (PI‘, Pnl) where P. = 0 if a, =L PJ1 =1 other-
wise. Hence 2, P = 0 and for all k # i, 2 P > 2 since A is reduced
Since P'¢ (T or i) we have that there exists a k such that d, - P p' < 4.

Let P'= (Pl', ..., P ') where P.'=0 for some j, suchthat a,. =0,
- n Jy 1 i),

P. '=1 for some j, suchthat a,, =1, and P, = P.' for all j;éj1
iy 2 ij, ] J

and j # j2' Now by construction AP'>1, hence dk P' > dk But

. L . i: - > > = > = .
ﬂkf (-i-k—I—) ka dkjl 0, hence dka dkjl for (aijz 1) (aijl 0)

Therefore, if d,. >d,., we have that either a,. =(1-a.,.)=1, or
ki k) p; !

a.. =a,. =1lorO.
14 15
Theorem 7: For a given a system of the form (1 ,, let the i-th

inequality in its P.R. ¢ system be

IV

(13)



where di > 0. Then

n

14
a) Zdij >d, (14)
j=1
n n
- = > 15
b) Zdij max (d;) ;dij >4, (15)
J=1 J J=
ity
where for all j, d.. 24d...
IJM 1]
Proof:
a) Let P'=(l, ..., 1) whichis a solution to a. Substituting

n n
into (13) we get Zldij > di' Assume Zldij = di' Since di > 0, there
J= j:

n

exists a jo such that d,. > 0. Hence d.. < d., and therefore
: lig SR i
. i#ig
J .
_130 =L 1L ..., 5,0 1...,10¢9. But gJer since every row in A

1 Jo n

has at least two 1 entries. Since :D = (X the assumption that

n n
Zld.. = d. is contradicted, and hence Zld.. > d..
. Tij i ij i
J= J=
b) Letting jO =»jM, the desired result is obtained.
Definition: A Boolean function (P(Pl, ..., P ) is said to be a threshold
function if there exist real numbers d,,, d,,, ..., d, , and d, so that
_ 11’ 712 1n 1
n
(P = 1)@2%11 >4, (16)
-

-10-



or equivalently

n
( P= 0)<=)j=zld1ipi <q (17)

where Pje {0,1} . The inequality in (16) is said to be the l-realization
of (P.

Corresponding to the a system defined by (1) one can associate
a Boolean function @ having the solution space a_.nTo construct such

a function, let the Boolean disjunctive clause w, & j\—llaijpj’ Hence w,

“is true (Wi = 1) for all P satisfying the i-th inequality of a. Therefore
m
000[ = /\wi, i.e., @ is the common intersection (logical conjunction)
i=1
of the set of solutions satisfying the l-st, 2-nd, ..., and m-th inequalitizs

m n
of A. Also, we have O_Oa =\ ;Vi’ where ;i = /\aij-lsj (a barred variable
i=1 j=1

indicates logical negation).

Now (I is a subset of the vertices of an n-dimensional unit cube.
By definition a Boolean function is a subset of the vertices of an n-dimen-
sional unit cube. Hence PQE -

Since ﬁa is true for all P¢ @ it has the solution space at{e -4y,

where Q is the entire space of (0, 1) n-tuples.

1 1 0 O
For example, corresponding to the matrix A= |1 0 1 1
0 1 0 1

we have ﬁ = (Plv P?_)(P1 v P3 v P4)(P2 v P4) and Pa = PIPZ v P1P3P4 v P2P4.
It is seen that ﬁ is a positive function and hence is unate. This
is a necessary condition for ODQ to be a threshold function. From the

definition of threshold functions and P.R. systems we have:

-11-
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Theorem 8: If o is of the form () and has 2 P.R. system 5§,
then | 6] =1 iff ﬁ is a thl;leshold function.

In Table II of Winder, = all threshold functions of six or less
variables are listed. From this table, it is quite simple to find &, with
6] =1 if @ is a threshold function and n< 6. If ‘Pa is not in the
table, then it is known that || 6 ” > 2.

From Theorem 4 it follows that all functions of the form

C@:' (PlvPZV vPs) P VP, ,v... VP are threshold.

Definitions: A Boolean function is negative if every variable in it ap-
pears in its negated form. A clause is the logical conjunction of Boolean

variables. A negative Boolean function @ is in reduced normal form

m
iff =V Ww., and where there exist no two negative clauses w, and
i=1 ! & o1

'\?ri of P where ;i = w, w and where w is a negative clause not
2 1 2
identically 1. Note that if this condition is violated, then we have

w., vw, =w, (wvl= w,

11 12 12 12

Theorem 9: If the a system is of the form (1), then (T)a is in

reduced normal form.

Proof: From condition b) of the definition of a reduced matrix we have

that for each pair of row indices (il, '12), i1 # iz, ‘there exists a pair of

column indices (j;, j,) such that P. is a literal in ;li but not in \_;vi ,
1 1 2

and f’j is a literal in _\{/i but not in -sz.l . Hence there exists no w
2 2 1

such that Qi = ;’i w.
1 2
Since the first condition of the definition of a reduced matrix is
not used in the proof of Theorem 9, most of the following results will

be true for the case where w, consists of a single literal.

-12-



4

Theorem 10: If a negative (positive) Boolean function @(‘(P) is
in reduced normal form, then every clause is an essential prime

implicant (e.p.i.).

m
Proof: The fact that 6_9 =\ V_Vi is in reduced normal form is equivalent
i=1

to saying that each clause in @ is a prime implicant (p.i.). To show
that each clause is an e.p.i. we construct a minterm (vertex) ] such
that (v, = 1) =>(§zi = 1) and (v, = 1)=>('\£,k = 0) for all k # i. If this can
- nooy i = _
be done, then Wy is an e.p.i. Let v, = /\Pj , where Pj = Pj if Pj
j=1
is a literal in -v?ri, and le = Pj otherwise. Hence (vi = 1)=>(§i = 1).

Since all _v;'zi's are p.i.'s,for all k # i there exists a j. such that T:’j
k

is a literal in ;’k but not in Qi' Hence (v, = 1) ==>(Qk = 0). Since such

a v, can be constructed for alli, each ;’i is an e.p.i.

Corollary 3: If ? is a negative (positive) reduced Boolean func-

tion, then it has a unique reduced normal form.

Corollary 4: For the o system defined by (1), there exists no

matrix A'= [a,ij T, aij'e {0,1}, of dimension m'X n, where m'<m,
A'P >1, and such that (1 = (.

Proof: From Theorem 10, all m clauses of ?a, are e.p.i.'s, and
therefore represent the fewest number of clauses which can cover the
elements of (. Since each clause in ?oz corresponds to a row in A,

Corollary 4 follows.

Corollary 5: Let the a system be of the form (1). Let A= [aij']
be an m X n matrix, with aij'e {0,1}, A'P>1, and @' = (L. Then

A' differs from A by at most an interchange of rows.

-13-



__Plo_c_:i: Since é is a reduced matrix, <Pa is unique up to the order of
its clauses. Since (@' = {, every clause in G—aa corresponds to a row
in A', and the result follows.
As a consequence of Theorem 1 or from the fact that (]9 is a positive

function we have:

Corollary 6: Let (P[] (P, = 1)] and @.0= [P|(P, = 0)] . Then
@0l j j j j
j i

Theorem 11: Let the o system of the form (1) have a P.R. system 6.
If there exists a di' < 0, then there also exists a P.R. system HP2h,
where H= [hij] is an m'" X n matrix, m'" <m", and where hij >0

for all i, j.

Proof: For simplicity, assume dll < 0. Construct a system D'P 2>d/,

where for i >1 the i-th rows of D and D' are identical, and 'di = di"
3 1 I =

Let the first row of D' be él = (0, dlZ’ d13,

d,' =4, + | d We now prove that 90' = ).

- dln)’ and set

ul -
Let Cf-jl= {P|AP2]), and P,=1}, and otj°= {PlaP21, and

Pj =0}. :Djl and ._ﬁjo are defined similarly.

From Theorem 1 we have that ajocﬁjl. Now ,_Cf.)jl = J,jl and

(g
J_‘rjO = ajO because Z]jllliﬁjo = 3, and $jlﬂ$jo = ¢ . The same holds

1 0_
for (. Let _1?1 = (1, PZ’ . Pn) and El = (0, PZ’ . Pn)' Then
_c_l_l‘Ell 2 d1 is equivalent to the inequality
n .
jzzdlj-Pj 2d + |ay| >q (18)

which is equivalent to the inequality _(_i_l‘-__f:"ll 2d;+ | d11| . Also 5‘—1.210 zd;.

-14 -



is equivalent to the inequality

';dlej 24 (19)
J._
while gl'-glo 2d, + | d};| is equivalent to inequality (18). But (19) is

a weaker constraint than (18), and since @joc :Djl, we can replace (19)
by (18) without effecting the set of solutions in the solution space. Hence
D' = PD. Now by construction, the number of negative elements in D'
is one less than that in ). By repeating this process (i.e., by forming
D" D', etc.) a finite number of times, we finally obtain H and h.

We have h..=d,. if d..,>0 and h,.,=0 if d.., <0, and h,=d, + Z|d,
ij ij ij ij ij i i j i
where the sum is taken over only those j for which dij <0.

J

Note that if hi < 0, then the i-th inequality may be deleted since
it is redundant, since for all P, hlf 2 0. Hence all P.R. systems 6

can be put into the form where for all i and j, dij 20 and di > 0.

D. PROPER REPLACEMENT REDUCTION (SYNTHESIS)

In this section, various procedures for finding P.R. systems
will be presented. If 6 is the P.R. system for «, it would be desirable
if ||8]| were minimal. If [16]] min = 1, then finding & is the same
as finding the l-realization of C/a.

By employing I.L.P., it is possible to determine the & . system
such that ||6]|| is minimal. (Obviously if & exists, then it can be
written with all integral coefficients.) However, the resulting system
required to be solved is much larger than the original system, and hence this
procedure will not be considered here.

We now present a very simple way for determining a & system

from J:;,‘ This synthesis procedure is based on the following theorem.

-15-



Theorem 12: If under the evaluation P, =P, =... = Ps =0 and

1 2 T
is'*'l = Ps+2 = ... = Pt = 1, the Boolean expression (¢ is reduced to ",

N
"t-s terms

which is a threshold function having a l-realization
n
d..P. > d.
PR (20
j=t+l

. then the inequality which expresses this condition is

n
di[Pl +... + Ps] + Zdijpj 2d,. (21)

Jj=t+

Proof: Consider the inequality

n
di[Pl+P2+. ctP_H1-P_ )H1-P_ o)+, .+’(1-Pt)] + Z diij 2d. (22)
j=t+l

Note that the term [... ] in (22) is zero only for the evaluation of the
variables stated in the theorem. For this evaluation (22) reduces to (20).
Fof all other evaluations of the variables P1 through Pt’ the term
[...] 21, and hence (22) is satisfied regardless of the value of the
variables P

t+1
replaced by (21).

through P_. But by Theorem 11, inequality (22) may be

Synthesis Algorithm:
If P, =0, then P = [Pl P, = 0], else (P" = [(PlP, =1 . If

either (P' or (P'' are threshold functions, then Theorem 1 can be employed.
If ;' or (P" are not threshold, then the procedure is repeated on each
of the nonthreshold functions in turn. The evaluation (P|P.1 is chosen so

that P, is a variable appearing in £.

-16-



Example: Let

o 0 1 0 1]
1 0 1 0 0O
A= 0 1 0 1 0
0 0 0 1 1
1 0 0 10
1 0 0 0 1
Then (Pa = (PlP2 v P3P4)P5 v P1P3P4 which is not a threshold function.
If P =0, then [CF’O,I Py= 0] = P|P,P, which is a threshold function with
a l-realization P, + P;+ P, > 3. Otherwise [@|P; =1 = PP, v P;P,

which is not a threshold function. If P, = 0, then [<Pa| P5 =1 P1 = 0] = P3P4

1
which is a threshold function with a l-realization P3 + P4 2 2. Other-

wise P, =1 and [(Pa| P,=1, P =1 =P, vP,P, whichis a threshold

function with a l-realization 2PZ + P3 + P4 > 2. Therefore, from

Theorem 12,we have the 6 system

Pl +P3+P4+3P523
ZPl +P3+P4 22
2P2+P3+P4 2 2.

For the system AP2>1 with A defined above, we can combine
rows 1 and 2, 3 and 4, and 5 and 6 according to Theorem 4, and

obtain the following 6 system,

P, + 2P, + Py 22
P, +2P, + P 22
2P, + P,+ P 22

-17 -



One procedure for determining a P.R. system & for a is to
select two inequalities from a and let them be an a' system. If §'
isa P.R. system for a', then by replacing a' by 6' in o we have §.
The process can be repeated until no &' can be found. This procedure is
based on the concept of pair-wise proper replacement reduction, and is
implemented by using a universal table of pair-wise P.R.'s. The table
consists of pairs of constraints and their P.R., which is a single con-
straint. By employing this precomputed table, the reduction of the number
of constraints in a system reduces to a table look-up or search process.
The P.R. may be determined by either graphical, analytic, or intuitive
means.

The analytic procedure for finding the & system is quite straight-

n
forward. Let the o system be Z a P.Zbi for i=l, 2, ..., m and

=1 1j7 ]
n
the &6 system be Z}din 2 d, Then for all ge & we have QB >d, and
j=1
for all _Pe-&, we have d-P <d. We have 2" inequalities and only n +1
unknowns, namely dl’ ce dn’ d. There are therefore a great number

of redundant inequalities. The minimal set of inequalities required in
order to solve for the unknowns can be found from the '"'worse case''
conditions; that is, from those cases where the number of Pj's equal
to one in P is minimal, and yet the inequality is satisfied, and from
those cases where the number of Pj's équal to one in P is maximal,
and yet the inequality is not satisfied. This information is determined

by inspecting the reduced normal forms of (Pa and ?a'*" In fact, each

. {0‘%
clause in

o

<

>

} corresponds to an[ } inequality. The P corresponding

2

This procedure is analogous to the one given by Winder4(p. 75) for
finding the minimal set of inequalities for testing whether a function is
threshold or not.

-18-



n .
to the clause w! = /\a!.P. in (P is P1=(a!

1= B @ = i +-+» 2}) andthe P

n
corresponding to the clause @k = /\akjﬁj in @a is E’k =(l-a
j=1

1- akn)’ where 3¢ {0,1}. These results follow from the fact that each

Kkl

clause is a prime implicant, and hence contains a minimal number of

literals.

Example: Find the P.R. system for

P +P, >1
P, +P;2>1
P, +Py 21

Now (Fa = PIPZ v P2P3 v P1P3 and P, = PIPZ v P2P3 v P1P3. There-

fore the worse case test conditions in (£ are (1,1, 0), (0,1,1) and (1, 0, 1),
and in (@ they are (0,0,1), (1,0,0), (0,1,0). If & is of the form

lel + dZPZ + d3P3 >d,
then we have

>d
d1 + d2 rd
>

d2 + d3 >d
>

d1 + d3 >d
<

d1 + § = d

dZ, + € <d

d3 + €3 <d
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-Oz—

Ju21013§900 3Yy3 3y} yons -Y-'d © £q paoeidex Juidq sjuleI}suod omj SYyj ut
se[qelieA (U > N)N oI 2I9y3 jey3 sajeis A<—(gd ‘)N itoge;ou Ioj3eoipul
jusweserdax ay], ‘jurlerjsuod 31Suls e jo Buiysisuod "Y'd e Sulaey
sjureajsuod jo sited Jo swad) ut usaid st s,"Y'd jo S1qel YL
7283 +%3+ g st ‘¥'d ows 1eys eaey am payspes sie (¢) pue (z)
‘(1) @duts uayy ‘¢ ‘2 ‘T =1 I0F T = !P T 1S !P et 1< IP- sa®y
am (9) pue (g) “(¥) ojut Bunmnisqng ‘Z =P AIL "Z< P PABYOIM

(91) se swes Z< 1 0 (e1) + (€1) = (L1)
Z< 1 0 (21) = (91)
1< 1 1- 0 (1) = (g1)

(1) se awes 13 0 [I 0 (6) = ($1)
1< 0 0 (o1) + (8) = (¢1)
2 < T 0 0 (o1) + (L) = (21)
1< I I- 0 (9) =(11)
1< 1 0 I""I‘ 0 (s) = (o1)
1< 0 1 0 0 (#) + () = (6)
0< 1- 1 LLI 0 (z) = (8)
1< 0 0 1 0 (®) + (1) = (L)
1< 1 I- 0 0 (9)
1< 1 0 I- 0 (g)
1< T 0 0 - (%)
0< 1- 1 0 [I (€)
0< 1- 1 I 0 (2)
03 1- 0 1 I (1)

€ i 1

‘MOTaq 9[qe} Y3 Ul umoys walsAs ayj 328 am 9dousy [ = ? 3Jey3 os warqoad

9y} ateds pue .(S, 5 ‘Ia) ulw =3 397 ‘0 < €s ‘0 < % ‘0 < [ saauym



of all N of these variables in the first constraint is A, the coefficient
of these variables in the second constraint is B, and y is the value of
the coefficient of these variables in the P.R. If X\ = =0, theny =0
and hence we do not mention such variables in the table. The notation
R(N, B)—Yy refers to the constants on the right hand side of the con-
straints. A P.R. can be completely described by a set of such replace-
ment indicators. Note that if X and B in each replacement indicator

of a set’describing a P.R. are interchanged, the result is still a P.R.

relation.

As an example of this notation, the P.R.

P.+P+P, 21

P +P,+P.+P 21} P.R.
577787

1 35Ty
—> P+P,#3P+3P +2Pg 2 3

would be indicated as
2(1, 0)—>1, 2(1,1)—>3, 10, 1)—>2, R(l,1)—3.

The set of replacement indicators defining a P.R. can easily be coded,
i.e., reduced to a number. With these numbers listed in numerical
order, and under appropriate headings, it is possible to take two con-
straints from the system being solved, code them, and search the table
to see if a P.R. exists. If no P.R. is found, another pair is selected.
If a P.R. is found, it replaces the two constraints, and the process
continues. The process ends when no further P.R.'s can be found. Un-
fortunately, the final system of constraints is not unique, and another
set of pairings of constraints may produce a final system of fewer con-
straints. However, the integer solution set is the same as the original

system. Table 1 lists a few classes of P.R.'s.
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r 1:"1 +P3 21 ?:aise 1
= p;t P2+2P3 22
T2 PotPs 21J) P.R. Case 10
i=1l, j=2
r.: P+P +P >1 Case 1 ’
3 172 4 i=2 P.R.
=—> P+ P,+2P +3P, > 3 )
>1] P.R 1 2 3 4
ry P4+P5 pd R
T, P +P +P_. > 1
5 2 475 Case 4
oo , ., ‘;—*;——73P1+4P2+6P3+4P4+P5 >10
|" 1+P2+ P:,’+P4 2 - R
e s e e i <
The system of inequalities T i=l, 2, ..., 5 can be replaced by the
inequality 3Pl + 4P2 + 6P3 + 413‘4 + P5 >10. The application of this

pair-wise P.R.'s procedure has been found to be quite successful in

reducing the number of constraints in a system.

TABLE I

Partial Table of Proper Replacements (all integer)

R(1, 1)

1. i(1, 0) —1, KO0,1)—i, j(,1)——i+ 1, R(L1)—i+1
All other inequalities of the form R(l, 1) do not have a P.R.

R(2, 1)

This case consists of all inequality pairs of the form

2P. + P, +P, 22 and P, +P, +... +P. >1.
h 12 13 Ul J2 Ju
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2.

12, )=>2(k + 1), 2(1, 0)—>k, k(0, 1)—>2, R(2, 1)=—>2(k + 1) where

if k is even, the values of the constants in the P.R. may be divided

by 2.

3.

2(1, 0—>2k + 1, 2(1,1)=>k + 1, k(0, 1)=—>1, R(2, )—>2k + 2. All

other pairs do not have a P.R. These pairs are:

a) 12, 0), U1, 0), KL,1), i(0, 1), R(2,1) for i>1,
b) 1(2, 0), 2(1, 0), i(0, 1), R(2,1) for i 2 2.

(0, )—>1, 2(1, )—>4, 11, 0)—>3, 1(2, 0)—>6, R(3, 1)—>10.

We first give the results for all pairs of the form

2P. +P., +P., >2 and 2P. +P. +P. 22.
- 2 13 b 32 J3

(2, 0)—>2, 11, 2)—3, I, 1)—2, 10, 1)—»1, R(2, 2)—5.
2, 2)—/>3, 11, 0)—>1, ‘1(1, 1)—>1, YO0, 1)—1, R(2, 2)—>3.
(2, 1)—>1, LI, 2)—>1, NI, 1)—>1, R(2, 2)—>2.

12, 1)—>3, KL, 0)—>1, YI,1)—>2, YO, 2)—>2, R(2, 2)—>5.

12, 2)—>4, 2(1, 0)—>1, 2(0,1)—>1, R(2, 2)—>4.

All other iaairs do not have a P.R. These pairs are:
a) 1(2,0), 11, 2), i1,0), 2(0,1), R(2, 2) .
b) 1(2,0), 2(1,0), 0, 2), 2(0,1), R(2,2)

c) 12, 0), i1, 0), X1,1), 1(0,1), 1O, 2), R(2, 2)

d) 12, 0), 2(1,1), 10, 2), R(2, 2).
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