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THE DESIGN OF CIRCUITS FOR PERFORMING OPERATIONS

AND COMPUTING FUNCTIONS OVER FINITE FIELDS

t
Jean-Paul Jacob

I. SUMMARY

This paper is intended to partially bridge the gap between the

theory of finite fields and some of its applications, such as circuits for

coding and decoding, nonlinear modular sequential circuits, etc. The

basic idea is the design of a circuit which multiplies two elements of a

Galois Field (as per the rules of this field) in one clock pulse. In

other words, the circuit contains no delay components.

Special attention is focused on binary Galois Fields. After we

discover how to design a circuit which multiplies any two elements of

a finite field, we also know how to design a circuit which realizes any

polynomial expression of the elements of the field. Any mapping from

a finite field into ( or onto) itself can be represented by a polynomial

expression. Particular cases of importance are permutation mappings

and homomorphisms (automorphisms and isomorphisms).

If we are given p Boolean functions of q binary variables, we

can realize them by considering an incompletely specified mapping of

G. F. (2 ) into (or onto) itself, where n is such that

n > max (p, q)

This work was supported (wholly or in part) by the Joint Services
Electronics Programs (U. S. Army, U. S. Navy and U. S. Air
Force) under Grant No. AF-AFOSR-1 39-64.

+
The author is on educational leave from IBM Nordic Laboratory,
Sweden.
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The reader is assumed to be familiar with the theory of finite

fields (Galois Fields).

II. INTRODUCTION

In algebraic coding schemes, decoding and possibly error-

correction (Ref. 1) is usually performed by a circuit which, among

other operations, has to multiply two elements of a Galois Field (Ref.

2). In this sense, an algebraic decoder may be though of as an arith

metic unit which sums and multiplies as per the rules of a certain

Galois Field. Our aim is to design such a unit which sums or multi

plies in one clock pulse, i.e. , with no delay.

Let us designate by G. F. (p)/[c(x)] the field of polynomials,

with coefficients from G. F. (p), modulo an irreducible polynomial

c(x) of degree n (see Ref. 1, Chapters II and VI). This field has p

elements which can be represented by the set of all polynomials of the

form

a-. + a, x + a0x + • • • + a , x
0 1 2 n-1

where a.e G. F. (p), i.e. , a. is an element of a Galois Field of order

p. Notice that G. F. (p)/[c(x)] is isomorphic to any finite field of the

same order. The particular problem with which we will be concerned

in this paper is to design a combinational network, i. e. , a network

containing only logic gates, which will multiply two such polynomials.

This multiplication problem has been solved, so far, only by circuits

employing delays (Ref. 1, Chapter VII).

Besides coding applications, one possible utilization of our

circuit is in a nonlinear modular sequential network (Ref. 3), where

the normal operation of the circuit is based on delays and one would

not like to interrupt the main circuit in order to have multiplication

done in a secondary circuit also employing delays.

This paper will only be concerned with circuits where p = 2,
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although the same method can be extended for nonbinary Galois Fields,

Over G. F. (2)/[ c(x)] ;) addition is very simple; c(x) is not

involved in this operation, since the addition is coefficient-wise. For
2 5

example, over G. F. (2)/[l+x +x ], we have

2 4
1 + 1 • x + 1 • x + + 1 • x

i 2 . 3
1-x+l'x+l-x

1 + 1•x3 + 1•x4

i. e. , the addition of the polynomials 1 + x + x + x and x + x + x
3 4gives 1 + x + x . Addition, therefore, can be performed by circuits

which are similar (the carry-over connection omitted) to those for

conventional parallel binary addition.

Let us now observe the mechanism of multiplication, by work

ing out an example. We shall now multiply the two polynomials

1 +x +x2 +x4 and x + x2 +x3 over G. F. (2)/[ 1 + x2 +x5] :

Step 1

1 +

X

-1-

+

2
X

2
X

+

+

4
X

3
X

3
X +

4
X +

5
X +

7
X

2
X +

3
X +

4
X •

6
X

, 2
X + X +

3
X +

5
X

X +
3

X +
6

X +
7

X
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Step 2

2 _,_
x + x

_L 2 -L 5 ~\/ J. 3 J. 6 _L 7+ x + x Vx +x H-x +x

2 j. 4 ^ 7X + X + X

x + x2 + x3 + x4 + x6
J. 3X 6X + X + X

x2 + x4

Therefore,

(1 +x +x2 +x4)(x +x2 +x3) = x2+x4 (over G. F. (2)/[ 1+x2 +x5]),

Notice that Step 2, i.e. , the "reduction" through division by

the irreducible polynomial can also be written as:

,3,6,7 ^3 , 5 ^5 2
X + X+X+X =X + X+X • X + X 'X

3 2 2 2
= x + x + (1 + x ) • x + (1 + x ) • x

3 3 2 4 2 4
= x + x+x + x+x+x =x+x

In what follows we shall formalize the mechanism of this type

of multiplication and reduction.

III. BASIC PROPOSITION

n-1 n-1

Let the polynomials /_, a.x1 and /_, b.xJ represent two
i=0 j=0

n

elements in the field G. F. (2n)/[c(x)], where c(x) = /_, c.x1,
i=0

c = c« = 1, is an irreducible polynomial. Then
n 0

-4-



n-1 n-1 n-1

j=0 / k=0i=0

where D. = d. + d C" B.
1 1 —l

with d = ) a.bk ; t =0, 1, 2, .. . , 2n-2
j+k=t

d = (dn' dn+l> ••• ' d2n-2>

C =

n-1

i=0

1 0 0

c 1n-1
1 0

C 9n-2 c in-1
1

. 0 0

B.
—l

c2 c3 C4 Cn-1 1

—~

c.
1

ci-l

cl

co

0

,

IV. PROOF OF BASIC PROPOSITION

n-1 2(n-l)

I a.x1 )• (£ b.xJ 1= Y, ^ <where dk =I aibj>
j =0 / k=0 i+j=k

n-1

z
k=0

-5-
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Now consider the relations derived from the irreducible polynomial:

n-1

*n =I vp (2)
p=0

n-1 n-2

n+1
x = x • x

P (-> P
p=0 p=0

n=ZCpxP+1=ZCpxP+1+Cn-^ <3>

n -3

n+2 n+1 V^ p+2 n+1 , n ...
x = x • x => cx^ +c,x +c ,x . (4)

/ . p n-1 n-2
p=0

In order to reduce x , x , ... , x * " ' to polynomials with

degree less than n, we must substitute (2) into (3), (2) and (3)

into (4), etc.

In this way, we obtain

n-1

*n =E v? (2,)
p=0

p=0 p=0

-6-



n -3 n-1 n-2 n-1

n+2x = y c xp+2 +c 7y c xp +c . y C/Kn, y ^</_, p n-2 /_, p n-1 /_, p n-1 ^ p
p=0 p=0 p=0 p=0

(4')

Expressions (2'), (31), ... , (2(n-l)'), are now substituted

in (1) and, by grouping together coefficients of equal powers of x, (1)

becomes

n-1

E aixl
i=0

n-1

Evj
U=o -J

= (d0 +dnc0 +dn+lCn-lC0 +dn+2 <C„-2C0 +cn-lc0>

+dn+3 [<cn-3c0 +cn-2cn-lc0) +cn-l(<in-2c0 +cn-lc0)] +-"}

+x|d1+<inc1+dn+1(c0+cn_1c1) +dn+2 [^^cj +c^^+c^cj)]

+dn+3 [Cn-3C1 +cn-2 <c0 +cn-lcl> +cn-l (Cn-2C1 +cn-l (c0 +Cn-1 cl0.

I •«* \ * ••• (5)

i .
One now must note that the coefficient, say D., of x in this

expression is a linear combination of the d.'s,

2(n-l)

d. = y 9. . d.
j=o

-7-
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where each 0. . can be thought as being an element of a nx(2n-l)

matrix:

M =

1 0 0 ... 0

0 1 0 ... 0

0 0 ...

•v

n columns

and, from (5),

0,n = C0 = l

0,n 0,2n-2

n-1, n n-1, Zn-2

(n-1) columns

0,n+l
= c ,cn = c ,8A

n-1 0 n-1 0,n

(**)

0,n+2
= c ->crt + c -.c ,0^ = c 09A + c , 3n _ Ll

n-2 0 n-1 n-1 0 n-2 0,n n-1 0,n+l

'0,n+3 " cn-390,n + cn-290,n+l+ cn-l90,n+2

80,2(n-l) " C2°0,n+ C390,n+1 + "• + Cn-l90,2n-3

This system of equations can be written in matrix notation,

Define 8Q = col(80 80>n+1 ... 80> 2n.2)
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n-1

A. = Cn-2 cn-l

c2 c3

!<) = A90 + B0

c , 0
n-1

In the same way we can determine 9,

1,n
= c,

; lo =

9-, ,, =c , c, + cn = c ,9, +cn
l,n+l n-1 1 0 n-1 l,n 0

9, , -> = c 0 9-, + c ,9, .,
l,n+2 n-2 l,n n-1 l,n+l

In matrix form

ai = All + —1

where B1 = coI^Cq 0 ... °)(n-l)xl

More generally

9. = A 9 . + B . , i = 1, 2, . . . , n-1
— i i —i

where B. = col(c. c. , . . . cn 0 . . . 0). ,. ,
— i x l l-l 0 '(n-l)xl

-9-
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(note that B , = col(c , ... c^c,)).

We now rewrite (6)

(I - A) 9. = B.
^_ _' _ i _ i

where I-A=A-I =A+I^C

(Note that det C = 1)

Therefore 9 . = C" B .
— l — —i

n- 0 0

n-1 J 0

where 1 = c ->
n-2 c in-1

1

c2 c3 C4 "• Cn-1 V (n-1) x (n-1)

Finally substituting (7) in (*) (also observe (**)) we obtain

D. = d. + d C"1 B.
i i —i

-10-
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V. COMMENTS ON ABOVE RESULTS

1. First circuit interpretation of the basic proposition.

n-1.

n-1

multipliers

and adders

over G. F. (2)

(independent

of choice of

irreducible

polynomial)

m

n

2n-2

n-1

adders and

scalors

(dependent on

choice of irred.

I I polynomial)

Fig. 1

-11-
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Fig. 1 pictures the block configuration of a circuit which will

multiply two polynomials, none of which is known a priori. Note that

box 1 contains only multipliers and adders over G.F. (2). A multi

plier over G.F. (2) is simply an AND gate and the modulo two adder

is an "exclusive OR" circuit (e.g. , two AND gates and one OR gate).

" o

o 5—o
y o

AND gate

x o o x'

inverter

x o

+ o
y o

OR gate

K 0 1

0

1

0 0

.0 1

x X1

0

1

1

0

\ X
0 1

0

i

0 1

1 1

X 0 1

0

1

0 1

1 0

exclusive OR
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Box 1 is modular in the sense that it is composed of standard

circuits which produce dn, d,, d2, etc.

d0 = a0b0

• 1

dl = albO +blaO

•

•

1—
0 •

1

dl

Given the highest degree n of the input polynomials we just

need to place in box 1 the circuits labelled d^, d,, • • • , d . Each
u l n

of these circuits is a standard unit which does not depend on the

irreducible polynomial or degree of input polynomials. Also for some

i £ j we will have a common circuit which can be labelled d. or d..
i J

Box 2 is a box which only depends on the particular choice of

the irreducible polynomial. Once this has been selected we compute

i = 0,1, • • • , n-1

Remember that a. € {0, 1}, which means that the multiplication by

a scalor is done either by a simple connection or none at all.

a. = C'1 B.
—i — —i
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D, d0 + d4
\

Example s:

I-a. In G.F • [Z* ] / (1 +x +x4) (see Fi

c0
= 1 c2 = c3 = 0

cl = 1 c4 = 1

/l 0 °1
C =

0

1 o = c-1

\° 0 >/

c"1 -° =. lo = col (100) =0

c-1 ll = 5i = col (110) =t>

c"1 §2 = *2 = col (Oil) =0

c'1 ®3 = B,
— _/

= col (001) =t>

D,

D.

dl + (d4 + d5)

d2 + (d5 + d6)
/(a)

D. d3+d6
)

I-b. In G. F. [24]/(l +x +x2 +x3 +x4) (see Fig. 3).

c0 " Cl ' C2 " c3 " c4 " l

-1

C"1 B0
C"1 Bj

2"1 B2

C"1 B3

col (110)

col (101)

col (100)

col (100)

Dn = dn + (d. +d,) \

D, = d, + (dA + dj

D. d2 + d4

D. d3 + d4

-14-
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It is important to note that Figs. 2 and 3 are only possible

realizations of the canonical forms (a) and (b). Wc call them the

standard realizations because they use standard circuits dg, d^, • • • , d^
Obviously the canonical forms (a) and (b) may possibly lead to simpler

circuit designs. One could think, for instance, of rewriting in (b)

d. + d- = a, bo + a? bo + a3 b, + a2 b, + ao b2

= a, bo + a2 (b2 + b.,) + ao (b, + b2)

d. + d, = a. bo + a2 b2 + a3 b, + a3 bo

= ax b3 + a2 b2 + a3 (bj + b3) .

We may think that due to common factors on both the above

expressions, this manipulation will lead to a more economical realiza

tion of the canonical form. This is not the case here or in a few other

examples we have worked out. Apparently, in most cases the standard

realization has the double advantage of simplicity and economy.
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II. Second circuit interpretation of the basic proposition (multi

plication by a fixed polynomial).

adders and

scalors over

G.F. (2)

(dependent only

on choice of

b(x) )

n-1 <k-»,

n-1

E

4n

ld2n-2

adders and

scalors (depen

dent on choice

of irreducible

polynomial)

0

Fig. 4

-18-
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When b (x) is a fixed polynomial, which is the case when

decoding an algebraic code, the internal structure of box 1 is different

from case I. Now the expressions

d0 = a0 b0

dl = a0bl + alb0
d2 = a()b2 + a1b1 + a2b0

become only linear combinations of the inputs a., the coefficients

being the known b.'s.

Notice that now boxes 1 and 2 have the same type of

structure; they simply perform several binary linear combinations

of their inputs.

Box 2 is, for a given irreducible polynomial, exactly the

same as we use in case I. For example, suppose we want to multiply

by x over G.F. [ 24 ] / ( 1+x + x4) .

b2 = b3 = 0
= 1

= 0

a0bl
albl
a2bl
a3bl
0

0

= a.

= a

= a.

= a.

From example I-a:

D
0

= d0 + d4 = a-

Dl = dl + (d4+d5> = a0 + a3
D2 = d2+ (d5+d6) = a.1

D3 = d3 + d6 = a2

-19-
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Canonical form (c) can be realized by a standard circuit. By

redrawing it one obtains

0*
D,

!••
D

'2 • • D.

D.

4 4
Fig. 5. Multiplication by x over G.F. [2 J /(1 + x + x ).

Observe that if we reverse the direction of all arrows, hence

considering the input at the right hand side and the output at the left

hand side, then the circuit of Fig. 5 will perform the division by x

over G. F. [ 2 ] / (1 + x + x ). This is a consequence of properties

of linear binary transformations (Ref. 4).

One can also use canonical form (c) to compute

2 3 2 3(an + a, x + a2 x + a3 x ) • x = DQ + D, x + D2 x + D~x
0

2 3= a3 + (aQ 4) a3) x + a, x + a^ x

-20-



For instance

(1 +x +x3) • x = 1+x2 over G. F. [ 24 ] / (1 +x +x4) .

VI. CONCLUSIONS

In this first part, a method was presented for designing a

circuit capable of multiplying two Galois Field elements in one clock

pulse. Since any finite field is isomorphic to a Galois Field, our

results apply to the multiplication of any two elements of a finite field
provided one designs the hardware which realizes the isomorphism.

The algebraic conclusions which we reached also present a way

for the analytical multiplication of two polynomials as per the rules of

a Galois Field. Friedland and Stern (Ref. 5) have shown that to

multiply two polynomials a(x) and b(x) modulo a polynomial c(x),

one may define

Ln-1

a =
n -2

0

, b =

b
n-•1

b
n-• 2

•#

•

b0

D =

n-1

D
n -2

D
0

n-1

Q =
n -2

1 0 • • -0

0 1 • • -0

0 0 • • • 0

where if D (x) = a (x) , then

D = a (Q) • b = b (Q) ' a_ .

D is therefore given by a matrix polynomial expression and one is

required to elevate matrix Q to the power m where

m = min { degree of a(x), degree of b(x)}.

The result of our basic proposition, (8), is an alternative way
to obtain D. In our result, the number of matrix multiplications is a

constant, independent of the degree of the polynomials involved. To

rewrite Eq. (8), i.e.,

-21-
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D = 1
o

D. = 0, i = 1, 2, . . . , n-1

we obtain

I =Ab +B' C''1 A* b (10)

where the prime indicates transposition and B is an (n-1) x n matrix

whose columns are B .. I is the nxl column matrix col. (1, 0, ..., 0)
— l —

From (10), supposing it has a solution for b_,

b = (A +B'C'̂ A*)"1 I_

This expression determines the combinational network which

produces the coefficients b. of the inverse element of a (x) in

G. F. (2n). Observing the particular structure of I, we conclude that
~~ -1 * -1

the right hand side represents only the first column of (A + B' C' A ) .

One should once more remember that matrices B and C are entirely

determined by the irreducible polynomial c (x).
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VII. APPLICATIONS OF THE STANDARD REALIZATION TO
NONLINEAR MODULAR SEQUENTIAL CIRCUITS

In the preceding sections, it was shown how we can build a

combinational circuit which multiplies in one clock pulse two elements

of a Galois Field, denoted G. F. (2 )/[c(x)] as per the rules of this

field.

In the following sections we will show how, by properly com

bining together standard realizations, one can perform any nonlinear

function mapping G. F. (2 ) into or onto itself. An important particu

lar case is the group of automorphisms of a finite field onto itself.

Isomorphisms will be discussed and it will also be shown how the syn

thesis of Boolean functions can be performed using finite field mapping

techniques.

Firstly, we will show how our basic standard circuit is simpli

fied when, instead of multiplying two different elements of G. F. (2 ),
tVt

we multiply an element by itself ( squaring ). The generation of the n

power of an element of G. F. (2 ) follows immediately.

Secondly, we will show that any nonlinear function mapping a

Galois Field into (or onto) itself can be represented by a polynomial

in an indeterminate which assumes the values from G. F. (2 ). Stan

dard circuits are then combined to perform a polynomial mapping, i. e. ,

any mapping can be practically realized. Particular cases of isomor

phisms and automorphisms are exemplified and an alternate way of

multiplying two elements of a Galois Field is suggested.

Vila. STANDARD REALIZATION FOR SQUARING

AN ELEMENT OF G. F. (2n)/[c(x)]

Referring back to our basic proposition ( see, for instance, page

4) for the case when a(x) = b(x) € G. F. (2 )/[c(x)], the following

simplifications are found:
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do " aobo " ao " ao
d.. = cl. b^ + a^b. = 3.1 a« + a^a* = 0

1 10 0 1 10 0 1

2 2

d2 = a0b2 + albl t a2b0 = a0a2 + a l + a2a0 = a 1 = al

In general:

do = a2 p
P F

d7 =0 p = 0, 1, 2, ... , (n-1)
P+l

These relations reflect as a considerable simplification in the

standard realization of our multiplying circuit ( Fig. 1 ) because they

entirely eliminate the need of box 1. In other words, no more logic

circuitry is necessary to generate dn, d, , do, . . . , d2 2. The

following examples should help to visualize this.

Example la.
4 4In G. F. (2 )/(l + x + x ), the squaring circuit will take the

3
form of Fig. 6 (compare with Fig. 2). If for instance, a(x) = 1 + x + x ,

i. e. , a_ = 1, a, =1, a2 = 0, a- = 1, we would obtain Dn = 1, D. = 0,

D-, = 0 , Do = 1, and conclude that

[a(x)]2 =1 +x3

It is interesting to notice that, in Fig. 6, if we reverse the direction

of all arrows leaving or arriving at terminals ( see Fig. 7) the circuit

will now find the square root of the input. The reason is that the

coefficients D. are obtained through an invertible linear transformation

from the coefficients a., as can be seen from Fig. 6.
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r

ao°-

a-o o30-*"

L

1

d4r—n

_J I I

®

—-e

€—e

^—6

4 4Fig. 6. Squaring circuit over G. F. (2 )/(l + x + x ),

1 o- ®

2 o-

4 4Fig. 7. Square root circuit over G. F. (2 )/(l + x + x ).

-26-

® D

•oD

-oD2

-o D.

®Z
^>Do

D,

C <°D2

oD3



Do

Dl

D2

_°3_

1 0 ;1 0

0 0 10

0 10 1

0 0 0 1

If, for instance, D(x) = x, i.e. , DQ = 0., Dj = 1, D2 = 0, D3 = 0,
we would obtain a0 = 1, . a. = 0, a2 = 1, a3 = 0, and conclude that

[D(x)]1/2 =1 +x2

Example lb.

In G. F. (2 )/(l +x + x +x +x), the squaring circuit will

take the form of Fig. 8 (compare with Fig. 3).

0 O—m 1 -D0

D]
D.

-•-

© 4 ^ o 2

d4 I 1

©

I

4 2 3 4
Fig. 8. Squaring circuit over G. F. (2 )/(l + x + x + x + x ).
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Vllb. STANDARD REALIZATION FOR HIGHER POWERS

OF AN ELEMENT OF G. F. (2n)/[c(x)]

From the results obtained in the preceding paragraphs, the

straightforward way of cubing an element a(x) of G. F. (2 )/[c(x)]

is to multiply a(x) by the output of a squaring circuit (Fig. 9).

Once more one should comment that simplifications may appear

after one specifies the two circuits appearing in the two main blocks

of Fig. 9-

The fourth power of an element can be obtained by cascading

two squaring circuits.

0

"1 °"

a2 °"

a3 °<

i
3—>

squaring

circuit

standard

multiplying

circuit

Fig. 9* Standard realization of a cubing circuit.
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It is not difficult now to realize how the other powers are ob

tained and how any polynomial expression with coefficients from

G. F. (2n) can be realized by conveniently connecting standard circuits,
We shall see, moreover, that in some important particular cases, the

polynomials we want to represent are of a simple form.

VIIc. REMARKS ON MAPPINGS FROM G. F. (2n)
INTO (AND ONTO) ITSELF

We now proceed to define the "indicating function" of an element

of G. F. (2 ). Let f (x) be a function whose domain is G. F. (2 ).
a.

1

n»
We say that f< (x) jj&s&ke•..indicator function of or. € G. F. (2 ) iff

fa (a.) = 1 and f^ (a ) = 0, j * i, aQ = 0

The indicator function f (x) of any element a. e G. F. (2 ) is a
i

polynomial in x of degree 2 - 1 defined by

2n-l

Vx)= JI lx'a'j) =
3=0

2n
x - x

.,. x - a.

I) f (a.) = 0, j * i, j = 0, 1, ... , 2n - 1

Proof: Immediate consequence of the definition above, since

one of the factors under the product sign is zero.

ID fa («i) = 1
i
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Proof: From the definition above.

2n-l 2n-l

j*l P=1
j =0

Use now the fact that the product of all nonzero elements of a finite

field is unity; indeed, as any a. e G. F. (2 ) satisfies the relation

we have

or

2,1 -na . - a. = 0
1 l

2n: - x = (x - a0)(x -ioil ) . . . (x - or n )
Cd — J.

2n-l
x - 1 = (x - or, ) . . . (x - or )

1 2-1

Comparing the coefficients of equal powers of x in this last relation

we obtain, for the constant terms:

2n-l

77»
P=JU

= 1
P.
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and, finally,

2n-l

f (a.) = II a =1
*t x > / P

>=1

Hence the indicator function of a. e G. F. (2n) is a polynomial of
degree 2 - 1 with coefficients from G. F. (2 ).

Example:
2 2

Find the indicator functions for the elements of G. F. (2 )/(1+x+x ).

Call:

ff0
— 0

al = X

<*z = 1 + X

a3 = 1

i) f, (y) =hf^ =y3 +l
ao y

2 3 2II) fa (y) =y(y - l)(y - x) =y[ y - (1 +x) y + x] =y + or2y +o^y

III) f (y) =y(y-l)(y-l-x) =y[y2 - xy +(1 +x)] =y3 +axy +a<2y
1

iv) f (y) =yv " X =y3 +y2 +y •
«o y ~ x

One may verify the properties of the indicator functions, such as
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f (oto) =a\ - 1 =ao - 1 =0aQ 2 2 3

f^ (or~) = Q?3 + Q?3 + Qf3 = Qf3 + Of* + Qfo, = or3 = 1
3

We next show how one can describe analytically any correspondence

from G. F. (2n) to itself which is given by a table «?(<*•)• It can easily

be verified that

2n-l

2n-l,(x) = > faW«k> = P x +... +P1x+(30 ,
£—i l i 2-1

i=0

where (3. € G. F. (2 ), has the property that

2n-l

^ai* = / fa ^i* ak =fa ^i* ak ="k ' j =0, 1, . . . , 2n-l .
J £—i i J i j j j

i=0

In the sequel, some particular types of mapping <p(x) will be

studied.

'•• VlId:T PERMUTATION MAPPINGS

If <p(x) represents a one-to-one mapping of G. F. (2 ) onto

itself it is called a permutation polynomial.

A permutation polynomial <p (x) has the property that
ST

<P (»t) * Vp(»j) iff i ^ j i =0, 1, 2, . . . , 2n-l
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7
It can be proved that a given permutation mapping corresponds

to one and only one polynomial. There are 2 ! permutation mappings

(including the identity) over G. F. (2n), n of which are given by the
very simple polynomials

21
<p (x) = x i = 0, 1, 2, ... , n-1

p

7
Dickson proves that

n-1

<p(x) =V P^2 , |3. €G. F. (2n),
i=0

is a permutation polynomial iff zero is the only solution of <p(x) = 0,

in G. F. (2n).
The circuit interpretation of these permutation polynomials is

2
quite simple. Indeed, the simplicity of a squaring circuit <p(x) = x

was illustrated in Fig. 6. The simplicity of this type of circuits is a

consequence of the fact that they represent nonsingular linear trans

formations. 7
2

By cascading two squaring circuits we obtain f(x) = x and
2?

the cascading of p identical squaring circuits gives us x . Note that

the cascading of two identical circuits sometimes can be represented

by a simpler equivalent circuit, mainly when one has in hands a com

ponent which can handle modulo 2 addition of more than two binary

variables, as described in Ref. 8.

Example:

Consider again Fig. 6, which is a squaring circuit over
4 4G. F. (2 )/(l + x + x ). If we designate the elements of this field as:
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a0 —
0

al - 1

<*2 = 1 + X

a3 = X

a4
= 1 + X + X

aS
= 1 +

2
X

"6
= X +

2
X

a7 =

2
X

TABLE i

2 , 3
Q?q = 1+X + X +X

2 3
o?q = 1 + x + x

ar10= 1+x3
«n=x

2 . 3

3

a, 2= x + x + x

a, «= x + x'

2^3a14=x +x

or, r= 1+x + x"

then the circuit represented in Fig. 6 represents the permutation:

(pica.) = au , where
i

TABLE 2

i
=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 5 7 6 3 4 2 13 12 9 14 15 11 8 10

We will show below that the mapping represented in Table 2 is

an automorphism. It will also become clear that all automorphisms
4of G. •F.. (2 ) can be read from Table 2, as well as their corresponding

permutation polynomials. Furthermore, if one isomorphism of
4

G. F. (2 ) can be found, all other isomorphisms will be obtained with

the help of Table 2.
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In Table 1, the choice of a particular i such that a. rep-
4 4resents a certain element of G. F. (2 )/( 1 + x + x ) was determined

haphazardly. There is, however, a more convenient way of naming

the elements of a finite field which leads to interesting conclusions.

If we call p a primitive root, i. e. , a root of the primitive polynomial
4 4 4 41+x + x in G. F. (2 ), then any nonzero element of G. F. (2 )/(l+x +x)

can be represented as a power of p, say p , and any power p of this

element p in the field is

4
Rpi ( modulo 2 - 1 )

More generally, in any G. F. (2 ), suppose we define

ai =pX

and realize the one-to-one mapping $ (a) = a , where by definition
i

a is the element
u.

i

n -1
a = a0 + a, x + . . . + a ,x

u. 0 1 n-1
i

whe re a^a, ... a , is the binary representation of i. Then, for any

or. t 0, a. 4 0,

i j \ i7 yj

where the dot over the addition sign represents the modulo (2 - 1)

addition of two binary numbers.

One should notice that this represents a completely different

approach to the problem of multiplying two elements, say a. and

a. of G. F. (2 ). We first map a. and a- into a' and a where
l y r i i u. u.j J l j
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the coefficients of a and a are the binary representation of i
u. u.

and j and then add modulo (2 - 1) these coefficients; finally we

realize the inverse mapping of the result.

Example:
4 4Let us consider once more G. F. (2 )/(l + x + x ). The pro

cedure described above leads to the following mapping:

"0 =
1

<*]= X

"2 =
2

X

"3 =
3

X

"4 = 1 + X

«S =
2

X + X

*6 =
2 x 3X + X

"7 =
3

1 + x + x

"8 = 1+x2

*9 =
. 3

X +x

<*10 =
2

1 + x + x

*11 =
^ 2 ^ 3X + X + X

0 0 0 0 —*a15

-^0 0 0 1 "0

0 0 10 —> o^

0 0 11 —*»4

->0 1 0 0 >c*2

*01 0 1 —^a8

-3-0 1 1 0 —*>or5

->0 1 1 1

-*1 0 0 0

-^10 0 1

-^10 10

-M 0 1 1

*10

"3

"14

a9

al
2 3o?l2= 1 + x + x +x »-l 1 0 0 —^q-6

2 3a13=l + x +x *-l 1 0 1 —>or13

<*14=l +x3 —M 1 1 0 —*<*!!
aic= 0 —M 1 1 1 OTi15" v "12

Notice that multiplication on the L. H. S. of the above table

corresponds to "binary" addition on the...R. H. S. The binary addition
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.n
modulo (2 - 1) may require some inqenuity from the designer: the

starting point is that a classical computer binary adder, with the last

"carry over connection" missing, realizes modulo 2n addition.

Vile. THE GROUP OF AUTOMORPHISMS. THE "AUTOMORPHISM
TRANSFORMER" OR "AUTOMORPHER"

We define an automorphism of a finite field G. F. (2n) as a 1 - 1
mapping <p^ onto itself, which is addition preserving and product pre
serving, i. e. ,

<PA («. + or.) = <pA (*.) + <pA (or.)

<PA (or. • a.) = <pA (or.) • <pA (a.)

7 21It can be shown that <p{x) is an automorphism iff <p(x) = x ,

i=0, 1,2, ...,n-l.

The set of all automorphisms of G. F. (2n) together with the
cencatenation operation for mappings forms a group.

The above ideas can better be illustrated by Table 3 below,
3 ^where all the automorphisms of G. F. (2 )/(l + x + x ) are shown.

TABLE 3: The Automorphisms of G. F. (23)/(l +x +x3)

or.

o? = 0 0 0

aQ = 1 0 0

aj = 0 1 0

o-2 = 0 0 1

«3 = l l °

a4 = 0 1 1

a5 = 1 1 1

«6 = 1 0 1

<pA (x) = x'
Al

0 0 0 = or.

1 00 = ff(

0 0 1 = or-

0 1 1 = a

1 0 1 = a

0 1 0 = a

1 1 0 = a

1 1 1 = or,

<Pa (x) = *

0 0 0 = or.

ioo = tt

0 1 1 = a4

0 1 0 = a

1 1 1 = a,

0 0 1 = or-

1 0 1 = or,

0

1

<pA (x) = x = x
A3

0 0 0 = or.

1 0 0 = or

0 1 0 = a

0 0 1 = a.

0

110 = 0-.

0 11 = a

111 = or.

110 =tt3 j 101=or
-37-



From Table 3 one can verify, for instance, that

%(a5 *"6> ss*,A1(a4) =Qfl

and

^A^S* ' ^K* =or3 ' «5 =orl

Since the automorphisms of a field are given by the successive
2

powers of x and since we can easily realize circuits to square x as

per the rules of G. F. (2 )/[c(x)], a circuit can easily be imagined to

produce in one clock pulse all automorphisms of an element of G. F. (2"),

as shown in Fig. 10.

,n»

input terminals

squaring

circuit

1

T squaring

circuit

2

n \

a

J

k k

•

!> <

...

!> o i (

-J

• • •

> ((
Taps 1

< )
Taps 2

squaring

circuit

n-1

k

•

k

> (

• • •

» 6Taps r1 <

Fig. 10. The Automorpher, an electronic circuit which produces,
in one clock pulse, all automorphisms of an element of a
finite field G. F. (2n).

-38-



Using the various ideas developed in this paper, we can design
3 3

the "automorpher" for G. F. (2 )/(l + x + x ).

c0 =l c1=l c2 =0 c3 =l

C =
1 0

0 1
= c-1 = I

C"1 BQ =BQ =col (10)
.-1C Bj = Bj = col (11)

C_1B2 =B2 =col (01)
' 1

Do =do + d B0 = d0 + (d5d4) .0

Dl = dl + f* .? l = di + (° a2)

= an + (0 a9)

1

1 =a2

D7 = d7 + (0 a7) = ax + a2

o—m—£ 1 s^ a2 . 1 -W *j
L a"

1

<

—4

!> <) i

c

!> <) <

—t

!> <! > <!> (\> o

Fig. 11. The automorpher for G. F. (23)/(l +x +x3).
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The automorphisms of a finite field determine an equivalence

relation on the set of elements of this field. The automorpher produces

at its several taps the equivalent class of any element of the field.

An alternative way of generating all automorphisms of a finite

field is pictured in Fig. 12. At each clock pulse a new automorphism,

of the initial element in the memory, is produced.

squaring

circuit

D

D

4—e o

Fig. 12. The generator of automorphisms.
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Vllf. ISOMORPHISMS BETWEEN TWO FINITE FIELDS. THE
"ISOMORPHER" AND "ISOMORPHIC GROUP GENERATOR"

Suppose two fields, F-, and F2, of the same cardinality, are

given. A 1-1 mapping £2 from F, to F? is said to be an isomor
phism iff:

n {cnl - a2) = n (o-j) * n {az)

n {ax + a>2) = to {a]) t ft (or2)

where

2=UPi}> *• t }F

Two finite fields of the same cardinality are isomorphic.

If we keep in mind that each field has its own rules of operation,

we still can represent each of their elements by a polynomial expression.

We first will show, for two finite fields generated by primitive

polynomials of same degree, how to find all isomorphisms. The main

problem, here, is to find any one isomorphism because then the others

will follow immediately, as we shall show at the end of this section.

Suppose we are given

F, = G. F. (pn)/[c(x)]

and

F2 =G. F. (pn)/[d(x)]

where c(x) and d(x) are primitive irreducible polynomials, as usual;
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c(x) = cn + C,X + . . . + C X
0 1 n

d(x) = dA + d,x + . . . + d x
* 0 1 n

and, for at least one i, c. ^ d..
11

Calling a. the elements of F,, and (3. the elements of F2,

our problem is to find a mapping ft (a.) = (3 , V i, which is an iso-
i

morphism. It is known that the additive and multiplicative unities (zero

and one) of F,, will correspond to the additive and multiplicative

unities, respectively, of F2. We write this as:

ft (0) = 0 (additive unity mapping)

ft (1) = i (multiplicative unity mapping)

Now, if we knew one more correspondence a —s»|3 , we could
P UP

complete the correspondence table by adding and multiplying elements

of each field. To obtain this one more correspondence, we remember

that a generator (call it a) of F, has to obey the relation

c(a) = 0

or

cn + c,or + . . . + c a =0
0 1 n

If we apply ft to both sides of this equation

ft[cn + c, + . . . + c orn] = ft (0) = 9
L 0 1 n J

and use the isomorphic properties described at the beginning of this

section, we get

Cgtcj * ft (a) t ••• t cn*[ft (a)]n = 0 (1)
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Calling ft {a) = (3 , where p is a generator of F2, our prob
lem is now to solve

cQ t c1 * pq | ••. t c^ * pH = 0

for q, given that

n

n

& -

LQ t dj * p i' . . . t dn * (3n =0

(!')

(2)

Since we are dealing with finite fields and we know that the above

problem has at least one solution (actually it has n solutions J ) the best

way to solve it is to start substituting in 1' all powers of |3 till we can

find one which reduces (1') to (2).

Example: Consider the two finite fields specified by Table 4

TABLE 4

Fl =G. F. (23)/(l +x+x3) F9 =G. F. (23)/(l +x2 +x3)

0 = 0 0 0 0 = 0 0 0

1 =
0

or = 1 0 0 1 = p° = 10 0

x =
1

a = 0 1 0 X = p1 = 010

2
x =

2
or = 0 0 1

2
X = p2 = 001

1 + X =
3

a = 1 1 0 1 + x2 = p3 = 10 1

2
X + X =

4
a = 0 1 1 1 + x + x2 = p4 = 111

2
1+x+x =

5
or = 1 1 1 1 + x = p5 = 110

l+x2 = 6
or = 1 0 1 X

2
+ x = p6 = 011
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We know a priori that

or

0 —> 0

or —> B

We now want to find the isomorphic of or, ft (a) - p , where

1 + a + or3 = 0

ft (1 +a +or3) =ft (0)

1+ft (or) +[ft {a)] 3 =0 (equation over F? ! ! \ ) (3)

Does p satisfy (3) ? Obviously not<

2
Does p satisfy (3) ?

i +p2 +(p2)3 =i +p2 +p6 =i +p2 +(P +p2) =1+p* 0

The answer is no.

Does p3 satisfy (3) ?

i +p3 +(P3)3 =1+p3 +p9 =1+p3 +P2 =0

3
Yes, it does, p is the correspondent of a under an isomor

phism. Now we can complete the table of this isomorphism by addition

or multiplication of corresponding elements of both fields. We will

obtain:
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Fl n F2

0 0 0 —» 0,0 0

a° = 1 0 0 -> 1 0 0 =p°

a1 = 0 1 0 —> 1 1 0 = p5

or2 =0 0 0 —> 1 0 1 =$3

a3 = l 1 0->0 1 0 =p
4 6

a = 0 1 1 —> 0 1 1 = p

5 <*« 4a = 1 1 1 —• 1 1 1 = |.

a6 = 1 0 1 —> 0 0 1 =p2

In order to obtain another isomorphism between F, and F2

observe that if <pA(x) is an automorphism of F, and $ , (x) is an
isomorphism from F, to F2, then ^ (pAx) is also an isomorphism
from F, to F9- In other words, given an isomorphism from F, to F2,
call it $ i(x), then $ .(x) is an isomorphism from F, to F2 iff

*i(x) =$10A. (x))
i

here <pA (x) is an automorphism of F,.

We use this result to obtain the general block diagram of the

isomorphic group transformer (Fig. 12), which produces all isomor

phisms of a field to another. The box labelled isomorpher is the

realization of a permutation-type-mapping determined by any particular

isomorphism (although the two fields are different, the hardware still

represents a permutation polynomial because of the convenient repres

entation of the elements of both fields).

A possible application of the isomorphic group transformer is

to match an encoder working in a certain field with a decoder working

as per the rules of a different field of same cardinality. This situation

may arise when the encoding procedure is straightforward in a certain

field but the decoding will be realized by a standard equipment.
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Fig. 13. Isomorhic group transformer. Each position
of the switch S corresponds to a different
isomorphism.

Vllg. THE SYNTHESIS OF BOOLEAN FUNCTIONS

Suppose one is given p Boolean functions f,, f2, ... ,

Boolean variables x,, x2, ... , x . Call n = max(p,q).
When n = p > q, one may consider the n-truple (f,, f2

as an element of G. F. (2n). So is the n-truple (x, x2, ... , x *, 0, . . .
For each collection of values of (x.., x?, ... , x ), say (x] , x2 , . . .

there is one and only one value of (^ , f2 , . . . , f )• We shall define
a mapping of G. F. (2n) into itself by corresponding all n-truples of
the form (x, , x2 , ...

f of q
P

• V

x x ,,,..., x ) to the n-truple
q+1 n'

(f
*2 , ... , fn ), for any values of x ^ ... . n
If p is strictly greater than q this is definately a many-to-

one correspondence.

x

When n = q > p, we define the mapping to correspond (x^
x? , . . . , x ) to the n-truple (f, , f2 , . . . , f , 0,
other n-truple whose first p components are f, , f2 s
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mapping is incompletely specified and the last n-p components may

be used to simplify the circuitry involved, i. e. , to simplify the poly
nomial describing the mapping.

The problem of synthesizing Boolean functions can, therefore,

be thought as a problem of mapping a Galois Field of 2n elements

into itself. We have constructed, in the preceding sections, the whole

mechanism which is needed for this. This method may be of help when

p and q are big numbers and the Boolean expressions are not simple.

STEPS FOR THE SYNTHESIS OF BOOLEAN FUNCTIONS

Given p Boolean functions £., f2, ... , f , of q binary vari

ables x,, x0, . . . , x :
12 q

1) Write a table listing the values of the p-truples f,, f2, . . . , f for

each of the 2" different values of the q-truple x,, x2, ... , x .

2) Define a mapping of G. F. (2n) into, or onto if p = q, itself which
inbeds Table 1; n = max(p,q).

3) Find the indicator functions for all elements of a finite field G. F. (2 ).

Note that the indicator functions of the elements of a finite field
n 9G. F. (2 ) can be precomputed and listed once and for all, like

the irreducible polynomials.

4) Determine the polynomial <p (x) which represents step 2.

5) Realize this polynomial by standard realization techniques.
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