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This correspondence deals with the use of integer linear program

ming in designing a combinatorial network of threshold gates capable of

evaluating a partially specified Boolean function.G. . Cameron uses

integer programming to find the N-realization of a Boolean function,

where N is minimal. This paper is meant as an extension to his work,

and much of the same notation will be used.

Unfortunately, due to such factors as tolerance limitations and

the fan-in and fan-out constraints, the minimal realization is usually

physically unrealizable. In the formulation to be presented, these factors

can be considered. The circuit will consist of R + 1 threshold gates,

where R > ||6 || ; || 6 || is the minimal number of n-dimensional hyper
planes required to partition the Boolean n-dimensional vector space such

that all of the true vertices (T) of G lie in one half space, and all of

the false vertices (F) lie in the other. The main problem to be solved

here is that of determining the R hyperplanes, from which the value of
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the weights in the network are readily ascertained. If no circuit limita

tions are imposed, then R = || 6 || . In Cameron's synthesis procedure,
the output of one threshold gate can be used, along with the original set

of input variables, as inputs to another threshold gate. Due to this ad

ditional versatility, we have that N < || 6 || .
Let the n Boolean arguments of G be a, € {0, 1} , k = 1, 2, . . ., n,

and let the j-th assignment of values to the a, be denoted by a

Boolean column vector A. = (a,., a,, . . ., a ), where art = 1. Then de-
—j * 0 1 n' 0

fine T = {A.|G(A.) = 1} , F = {A. | G(A.) = 0} , where G is not a function
r* t f t

of a~. Let w = [w.,] be an mx(n + 1) matrix, where w., = w., - w., .

The w., (i > 0) are the unknown weights in the threshold gates associated

with the Boolean variables, and the wm are the unknown threshold levels.
Ok

Let ||w|| be the number of rows in a matrix w,. and let t = || T|| .
The conjunction of n Boolean variables is a 1-realizable function.

Assume G is expressed as the logical disjunction of |3 conjunctive clauses,

where (3 is minimal. Hence G is at least (3+1 realizable. Let

m = p = ||6|| . We now wish to find a minimal w matrix, denoted by w ,
where w consists of a subset of the rows of w, and where the following

three conditions hold:

a) wM A. > 0^ ; -VA. e T (la)

b) wM A. < 0 ; AAA. € F (lb)
- -J - -J

c) ||w II is minimal (lc)

where 0. is the zero vector. We denote this minimal value of || w ||

by || 6 ||, and we indicate the i-th row of w as w. = (w«, w,, . . .,w ).
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Define the variable o\€ {0, 1} , where if <r. = 1, then the i-th row

of w is a row of w . Otherwise <r. = 0 and then the i-th row of w

is not in w . Hence ||6 || = 2. ,o\.

For all A.€ F we require that

w.-A. < K6.. < K + w.-A. (2*)
-i -j ij -i -J

for i = 1, 2, . . ., m, where 6. .€ {0, 1} , and where K is an upper bound

on |w. -A. | for all A. and w.. Therefore 6.. = 1 if w.-A. > 0; other-
'-i -J1 -J -i ij -i -J

wise 6.. = 0.
ij
For all A.€T we require the following conditions. Let v.. = 1

J J

if w.-A. > 0; otherwise v.. = 0. Let
-1 -J TU

J€T 1J

where T = {j|A.eT} . Then p. is the number of A.'s which satisfy
J J

the inequality w.-A. > 0. Let o\ = 1 if 6. = t , o\ = 0 otherwise. Note
^ 7 —1 —j 1 "i 1

that 6. < t .

The objective function is

m

z (min). (4*)
1=1

In order to ensure that condition b) holds, we require that

m

(1 - 6..)o\ ^1 (5)
ij 1

s—- m

^-i=l

The equations marked with an asterisk are part of the integer
program.
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for every j such that A.e F. To satisfy this inequality, for say j = j ,

there must exist an i(j ), such that o\,. . = 1 and 6... .. =0. This
o x(j ) *(j )jXJo XJo Jo

condition states that the i(j ) row of w is in w and that w.,. ?A. < 0
o' — — —1(1 )—1

o o
However, w.-A. > 0 for all A.e T.

-i -J -J
The inequalities required to define v.. are

w. • A. w. • A.

rW ±\j <J +tW • <6*>

cr. is defined by the inequality

<t.<P./t. (7*)

Finally, in order to convert (5) into a linear form, we let <j>.. be defined

by the inequalities

0.5[1 + cr. - 6..] > <|>.. > <r. - 6... (8*)
i ij XJ l lJ

Hence 6.. = (1 - 6..)o-. and we now require that
TiJ ij i

m

Z +::>! (9*)
i=l J

for every j such that A.e F.

This completes the integer linear programming formulation for

finding the w matrix, and hence the || 6 || +1 realization of G. The
implementation of G is shown in Fig. 1, where the indices are now

with reference to w rather than to the w matrix.
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Fig. 1. || 6 || + 1 realization of G.
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4— threshold logic gates
(output is 1 if sum
of inputs is > 0, other
wise output is 0)



M
Another procedure for finding w is the iterative approach of

Cameron. That is, one can assume a w system, where on the i-th

iteration ||w|| = s(i). If no feasible solution exists, the procedure is

repeated with s(i + 1) = s(i) + 1. Begin with s(l) = 1. The final w is
M

w .

We will now introduce a few circuit constraints into the formula

tion. In the following, it is assumed that the iterative approach is being

employed. Let w., < or., and -w., < at., . Hence |w-tJ ^-a-\r' I* is
usually the case that the sum of the absolute value of the weights associated

with a threshold gate must be less than or equal to some upper bound (UB).

This condition can be included in the program by the addition of the con

straints

n

X «ik^UB.
k=0 lk

Also, if it is desired to find the minimal integer realization of G, then

the objective function becomes

m n

2_ Z_ «:i. = z (min).
i=l k=0 ik

In the final solution we have a., = |w., | .
Finally, it may be desirable to restrict the number of inputs to

the threshold gates to p or less, where p < n. Note that Cameron's

N-realization uses n+N-1 inputs to the last gate.

Let

"ik^Vik^"ik/L

where L is an upper bound on <x.. . Then v., = 0 if a., = 0 (|wii.| = 0)
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and v., = 1 if a., > 0 ( |w., | > 0). Then the restriction of p or less
inputs is realized by the inequality

n

V
"ik

k=0
ZL v;t^P

If the i-th variable can be used as an input in q or less threshold

gates, then the inequality

m

Z_ v.,<q
fel lk

is required. Note that due to these additional constraints, it may be

necessary to use R + 1 gates, where R > || 6 || . Finally, the previous
conditions can be included, with some modification, in the noniterative

approach first presented. It may be necessary to take m > p .
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