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ABSTRACT

A complete theory is given for the use of unsymmetric lossless

lattice with four elements in the cascade synthesis of transfer functions

and driving-point functions. The major results are a new lattice

equivalent for a Darlington-C section under specified constraints on the

driving-point impedance and a new, simple condition of applicability

for the Miyata Lattice. For both lattices explicit formulas for the

element values are developed in terms of the given impedance.
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Office, Office of Naval Research) under Grant AF-AFOSR-139-64.



A UNIFIED THEORY OF SYNTHESIS WITH UNSYMMETRIC

FOUR-ELEMENT LOSSLESS LATTICES*

C. W. Ho and I. T. Frisch

Department of Electrical Engineering

Electronics Research Laboratory

University of California, Berkeley, California

SUMMARY

1. Introduction

It has recently been shown that the Foster and Cauer realiza

tions of lossless positive real functions can be replaced by cascades
1 2

of unsyminetric four-element lattices and Miyata has shown that under

certain conditions a cascade of a Brune section and a Darlington section

can be converted to an unsymmetric four-element lossless lattice.

These results naturally lead us to ask two questions:

1. Are there any other unsymmetric four-element lossless

lattices which can be used to replace sections of more complicated

driving point or transfer-function realizations?

2. Is there a direct method of obtaining the Miyata lattice with

out first realizing the equivalent Brune and Darlington sections?

The limitation to lattices of only four elements in question 1 is

a practically meaningful one, since it guarantees that the new realiza

tions are simple and hence economical. The second question is impor

tant since it deals with the practical applicability of the lattices.

The research herein was supported by the Joint Services Electronics
Program (Air Force Office of Scientific Research, Army Research
Office, Office of Naval Research) under Grant AF-AFOSR-139-64.



In this paper complete answers are given to both questions

1 and 2. In answering the questions the two major results of the paper

are:

1. It is proved that the lattice in Fig. 1(c) is equivalent to the

network in the dotted box of Fig. 5 under certain given restrictions. A

direct realization method is given in terms of the lattice.

2. A direct realization scheme is given for the Miyata lattice

and a condition of applicability is given in terms of the driving-point

impedance.

The approach to the problem, a detailed presentation of the

significant results and two examples are given below. The derivations

of the results are to be found in the paper.

Except for duality and the trivial situation in which the lattice

contains only one type of element, the four-element lattices can be

divided into type I used by H. B. Lee, type II used by F. Miyata, and

type III consisting of three elements of one kind and one of the other.

In the paper a new method is given for the networks in type II and the

representative network of type III in Fig. 1(c) is considered. The other

networks in type III can be treated in exactly the same fashion.

2. Synthesis Using a Type III Lattice

For the lattice in Fig. 1(c) to be used as a section in a driving-

point synthesis, conditions 1(a) - 111(a) must be satisfied.

1(a) ReZ(s) =0 at s = <r , tr real.
x ' x ' o o

11(a) Z(s) can be represented as in Fig 2(a) or 2(b) with Z->(s)

positive real. Z_(cr ) ,

111(a) Li T^~ +Z2(o"o) , dZ2(s)
TT > -r-T-; where Z2(cro} =""ds—

'c Z2<%>
O

Z9(<r )
2 x o

First split L1 into L + L" where L is defined by:
^ c c c c

Z2(%>
- Z',(<r )

o* 2v o

+ Z'(<r J

L = L. - ? . (1)
c x Z2((ro}

0" 2V" o'

s = <r
o



We may then proceed to find the lattice by following equations

V C

M - L

L3 =: MLK +M
b

where

M :
-2

Z (cr )

o

L (L - M)

<2> Li - IT7I (3)
b c

L (L,+ M)

<4> l4=ittt:— (5)
b c

2

6) C = = . -g (7)

- z? (Ocr 2 o'

Z2<%'
0"

^:-,Z.(o-y
° /

We tfeen calculate the remaining function and complete the synthesis.

4 3 2 .

Example 1: Let Z(s) = « •—a having a transmission zero
5s +6s + 4s +3

cr = 1. Removing two inductors as in Fig. 3 we have

3 2 27 , ,

ZJs) =
?v ' 2 16 4s + 4. 5s +-|

Z2(%) =Zz(l),i^ Z2(%)= "*'

and Z?(cr )
——- + Z'(cr )

Z ° 1
Z (cr ) 8 •
—i~- - Z'Jcr )

(T 2 o'
o

L. . ,

Since -=-7 = -r > •$ the method applies. L' is separated into two
C

inductors such that L =4.
c

Using (1) - (8) we have the realization in Fig. 4. The equivalent

Darlington realization is in Fig. 5.



^. Synthesis Using a Type II Lattice

A type II latice can be used as a section in a driving-point

synthesis if and only if:

1(b) ReZ(s) =0 at s = ja>o, wq real.

Z(co ) X(q )
- Z' (co ) X'(o) ) -

11(b) "o
Z(co) " X(o) )

2 + Z' (co ) X'(co ) +
co x o o CO

o o

where

Z(co ) =Z(s)| X(w ) = |z(jco )
x O ' S = C0 O J o

o

Z,(u)=dZ(s)| x,(u)=4XM|
v o' ds ' s=co o' dco 'co=

o

co

If condition 11(b) is not satisfied, removal theorems for singular

ities at zero or infinite frequency can be used to force the equalities to

be satisfied. That is for example for a given impedance Zq(s) an
inductor L can partially be removed. Where

Z (co ) X (co )
o o o o'

Z' (co ) X' co - ?
o o ox o c.

CO
o

L =

X (co ) Z (co )
X- (a, ) - -2-2- - -2-2^- + Z'(co)

O O CO CO o o

(9)

For the method to work, L should be smaller than the residue of Zq(s)
(Similar cases can be applied to shunt inductor or capacitors.) We can
thus pull out the lattice from Z(s) = Zq(s) - Ls. The element values of
the lattice can directly be calculated from the following equations where

L,, L , C and C, are defined by Fig. 1(b).
1 Lt .1 "



rl " r2 rl " r2L, = T A (10) L., = -± £ (11)1 b - dr? 2 dr, - b

r (dr - b) r (b - dr )
C=— (12) C7 = — (13)

1 r - r 2 r - r

where

K -

2

2[Z(co ) -I- co Z'(co )]
b = ° 2 ^_ (14)

co [ Z (co ) - co Z'(co ) X(co )]
o o o o o

2[ Z(co ) - co Z'(u) )]
d = ° 2 2_ (15)

co [Z (co ) - co Z'(co ) X(co )]

[Z(coo) + yZ'(coo)cooX(coo)]
r„ r_ =r 2" coo2[Z2(coo) - Z'(coo)cooX(coo)]

The remaining function can be found easily once the lattice is obtained.

Example 2: Let o ?
_ , . 8s + 5s" +5s + 2
Zo(S) = , 2+ +,2s + s + 1

ReZ (s) = 0 at s = jl.

Then, Zo(l) = 5, Z'(l) =7/2, XQ(1) =3, X^(l) =7. By Eq. (9) L=19/5 is
smaller than the residue = 4 and the method is applicable. With

Z(s) Z()(s) - 19/5 s,

Z(l)=-^, Z'(l)=-~, X(l) =--i, X'(l)=^.

From Eqs. (10) - (17) we have the realization in Fig. 6.

(16)
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