

Copyright © 1962, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

<S

Electronics Research Laboratory-
University of California
Berkeley, California

TOPICS IN THE USE OF LINEAR PROGRAMMING

IN THE MINIMIZATION OF BOOLEAN FUNCTIONS

by

M. A. Breuer

Supported in part by the Air Force Office of Scientific Research
under Contract AFOSR-62-156.

December 1, 1962

ACKNOWLEDGMENT

The author wishes to thank Professors Harry D. Huskey

and E^ -Eisenberg for their helpful suggestions and constructive

criticism offered during the preparation of this material.

M.A. B.

-11-

ABSTRACT

This report deals with topics related to the use of linear

programming in the minimization of Boolean functions [1].

(1) An algorithm is presented for determining the optimal factors

in both MAND-AND-ORM and restricted "AND-OR-AND-OR"

gating.

(2) A procedure has been formulated for taking into consideration

"don't care" conditions in the minimization process.

(3) A method is given for simplifying functions in maxterm form,

without converting these functions to minterm form.

(4) An algorithm is presented for determining all the factors a

set of functions may have in common. These common factors are

then introduced into the linear program in order to obtain the

optimal minimal cost form.

(5) The dual of the original linear program is derived, and some

pertinent theorems and physical properties are discussed.

(6) The quadratic program, derived from letting the fan-in factor

be a variable, is discussed.

-in-

DEFINITIONS AND SYMBOLS

1.) Linear Program:

n

i) objective function: 7 C.P.' = Z (min.)
Lj J J

n

b) constraint inequalities: / a.. P.1 > b. i = 1, 2, • • • ,
Lj lJ J "" x

3=1

c) non-negative variables: P.1 > 0 j = 1, 2, . . ., n
j

The C.'s are positive cost coefficients.

2.) n^.: Boolean variable

3.) x an(l 5E: Literals contained in n....

4.) £.: General literal

5.) P.: Boolean product (prime implicant) P. =7 / I.

6.) B.: Generalized Boolean product, defined where used.

7.) F,: k'th Boolean function F, = > B. or F =J7*B.

8.) G, : Minimal form of F,

9.) B.V e (0, 1): Bivalued variable, where
j

B.1 = 1 =$ B. is a term in G,
3 J k

B.!= 0 =>B. is not a term in G.
J 0 k

10.) 3: Contained in.

11.) r\z Intersection.

-IV-

m

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. FACTORIZATION 2

HI. REDUNDANCIES 11

IV. MAXTERM REPRESENTATION 13

V. COMMON FACTORS 17

VI. DUALITY 23

VII. FAN-IN CONSIDERATIONS 36

REFERENCES 46

-v-

I. INTRODUCTION

In Part I of this report [1], a method was presented

for minimizing Boolean functions, by employing linear program

ming. The classical model of a Boolean function in vector space

was presented. Each product term was shown to be equivalent

to a set of vertices in the vector space. From this model, the

linear program was formulated for minimizing the Boolean

functions in prime implicant form with arbitrary constant cost

coefficients. Variable nonlinear cost functions, derived from

the fan-out problem, were then considered, as well as lead

length, loading and fan-in restrictions.

To supplement this work, the following topics, dealing

with the use of linear programming in the simplification of

Boolean functions, have been investigated.

1. Factorization: The restriction to "AND-OR" logic has been

removed. "AND-AND-ORV and restricted "AND-OR-AND-OR"

gating is now possible. An algorithm is given for determining

the optimal choice of factors for minimal cost.

2- Redundancies: A procedure has been formulated for taking

into consideration "don't care" conditions in the minimization

process.

3. Maxterms: Two analogous methods have been developed for

simplifying Boolean functions in maxterm form using linear

programming. The second procedure is unique in that it is based

entirely on the maxterm representation.

4. Common Factors: When many functions are minimized

together, and common factors are used, the minimal cost form

need not contain only prime implicants. An algorithm is given

for determining all product terms to be considered in the

minimal form.

-1-

5. Duality: The dual of the linear program used in the minimi

zation process has been analyzed, and additional insight to the

simplification process has been obtained. Theorems, pertaining

to the simplifications of primal and dual linear programs prior

to solution, have been derived.

6. Fan-in considerations: The problem of letting the fan-in

factor be a variable has been attacked. The objective is to have

the program determine the optimal value for the maximum

number of inputs to an "OR" gate.

It is hoped that this work will be a step forward in auto

matic logical design and simplification.

II. FACTORIZATION

In Part I of this report [1], only two level "AND-OR"

gating,was considered. A procedure is now presented for

determining the optimal factorization of product and sum terms

from the prime implicants. Both "AND-AND-OR" and

restricted "AND-OR-AND-OR" gating will be discussed. Two

important'motivations for factoring are a realization of greater

savings in the cost of implementation, and a solution to the fan-

out problem. The fan-out factor F . is defined to be the
* out

maximum number of inputs to an "AND" gate.

A few basic definitions will now be given, after which the

linear program formulation of the.Boolean simplification process

will be given.

A factor is defined as f =£...£, where f 3 P. for
a a e* a — j

one or more j. Recall that the P.* s are prime implicants, and
j

the V s are literals. A general product term, which need not

be a prime implicant, will be represented by B (B =JJft.). The

two types of factorization will be discussed separately.

-2-

A. "AND-AND-OR" logic:

In implementing P., a sub-set of its factors are first

formed in separate "AND" gates, and the results are "ANDED"

together along with any other terms of P. which were not

explicitly considered as factors. The problem is to determine

the correct sub-set of factors for each P. so that the total cost

of implementing the logic is minimal.

Lemma 1:

If f ~)f« ~) P.» and if all costs are positive, then f
a P — • j °

and f« are not both in the minimal cost implementation for P..
P J

Proof: Since £ Df , (fft = 1) => (f = D
a p p a

Since fft DP., (fft = 0)=>(P = 0)
P — J P J

If f _ is used in P., f is redundant with a positive cost, and

hence can not be in the minimal cost implementation.

If the factor f exists in m different prime implicants,

where m > F ', and where Fn' is the maximum number of
o 0

times a factor may be used without the necessity of an amplifier,

then three different implementations are possible. First, an

amplifier may be used. Secondly, the factor maybe formed

more than once. Finally, f may be used as a factor in m' = Ffi'
of the prime implicants, and no factor used in the remaining

m - m' prime implicants. This will usually be the case when

m - m' = 1, since it does not pay to use a factor only once, unless

it is used for fan-out purposes.

The general algorithm for the linear programming

formulation is as follows.

1. From the prime implicant representation of the function to

be simplified, determine a set of product terms to be considered

as possible factors in the minimal form of the function. This

set need not be the entire set of product terms available as factors.

-3-

2. For each prime implicant P. in F, determine a set of

product terms {P.}, each of whose elements B are logically

equivalent to P., but which contain a different combination of

factors. All combinations of factors need not be considered. To

each element B in {P.}, assign a new variable B ' e (0, 1).

3. Determine the constraint inequalities in terms of the original

prime implicants P.1.

4. For each P.' in step 3, substitute the set of product terms

{P.1} determined in step 2.

Due to Lemma 1, each inequality in step 3 containing only

one entry may be represented as an equality in step 4. Note that

the inequality in step 3 could have been changed to an equality,

since

P! > 1 => P! = 1 for C. > 0 .
J- J J

5. Construct the objective function by determining the cost for

each B . The cost of implementing each factor must also be

included. The cost associated with factor f is Cf if f is
a i a.

a

used, and is zero otherwise. To formulate this statement into

the linear program (L. P.), let

\ - 1 Br °=l' 2
where r is summed over all G containing f

Now, if N, > 0 let 6 = 1
' f a

a

if Nr < 0 let 6 = 0
i a

a

Consider the inequality

N, < 6 M (1)
f — a a

a

-4-

where M = Nr (Max.)
a f

a

For 6=0, (1) gives Nf < 0
a

and for 6 = 1, (1) gives Nf < Mq
a

Therefore, 5C, is the cost associated with implementing the

factor f . In the actual L. P. , Nr is replaced by
a i

a

y B'
i_j r

r

Integer linear programming must be used to insure

6 e (0,1) If N. (Max.) > F , the cost of an amplifier or
a f o

additional gate for1 forming the factor more than once must be
accounted for.

Example 1.

F = ABCD + ABCE + ABDE

^~k ""*r ^r
1. The only factors to be considered are

f, = ABC and i^ = AB

2. A factored term in a prime implicant will be indicated by

brackets (factor).

{P^ ={ABCD, (ABC)D, (AB)CD}
B,

{P2} =ABCE, (ABC)E, (AB)CE}

{P3} ={ABDE, (AB)DE}
B.

-5-

3. The original constraint inequalities are

pl' > 1

*v + P2 > 1

P2 + P3 > 1

P3 > 1

4. In terms of the new variables, introduced because of factoring,

the constraints become

> 1

+ B£ + B» > 1

+ B£ + B^ +B£ > 1

+ B • > 1

5. Assuming unit diode costs-for each term in an "AND" or an

"OR" gate, the objective function is

Bl + B' + BJ.
4 5

Bi+ B2 +B4 + BJ.

B2 + B3

B3

,5B» +5B» +5B; +3B' +4B« +3B' +4B1 +4B' +36. +26- = Z(Min.)
1 c. 5 4 o o / oij I2

The additional constraint inequalities required for 6f and 6- are

JSL, = B' + B' < 26. N- = B» + BL + B» < 3 6-f]L 4 o— i^ f^ 5 7 8 — f2

The solution is

B5=B8=6f2=1
B1=B2=B3=B4=B6=B7=V°
min. Z = 10

-6-

It is important to note that the constraint inequalities with

the factored variables B1 were written from the original prime
r

implicant linear program having variables P! • A second
j

approach would be to minimize the Boolean function in terms of

the original prime implicants P., and then factor the resulting

equation. These two methods are not equivalent, and"only the
former guarantees the minimum cost function. The reason for

this is that if a choice must be made between- P. and P., where
j

C >C, but where the cost of implementing.the function in

factored form is less when P. is present than if P. were

present, then the latter method does not give the optimal solution.

B. "AND-OR-AND-OR" Logic:

First it is necessary to extend the definition of a general

product term B , where now one of the elements, rather than

being a literal, may be a sum of products. The general form of

Br is then Br =»al I^ ••Ia.) [£bi lb ... *b +... +*̂ I^ .. 1^].
factor

B is then a restricted form of "AND-OR-AND" logic, and Fr ^ °
is the "OR" of B terms, i. e., F = / B . The procedure

r

for formulating the linear program is as follows:
"i

1. From the prime implicants P. determine the set of factors
j

to be considered.

2. Determine a new set of product terms B to be considered

for the minimal form of F. These terms are formed by factoring

various combinations of the prime implicants', using the set of

factors .derived in step 1. To each product term B in .F, assign

a variable B ' € (0, 1). Construct a list of logical implications,

indicating which of the new set of product terms B is true as a

consequence (direct implication) of one of the original product

terms P. being true. The elements of this lists from the set

-7-

3. . Determine the constraint inequalities in terms of the original

P!.
J

4. For each P! in step 3, substitute the set of new variables
•i

BJ. derived from the logical implications obtained in step 2. A
variable B1 may appear at most just once in any one inequality.

5. Construct the objective.function. In the past, we have asso

ciated with the total cost of each product term B , the additional

cost of one diode required to "OR" this term to the remaining

terms in .F* However, with "AND-OR-AND-OR" gating, it

may turn out that there is only one term in F. For this case,

we must subtract from the objective function the cost of one

diode. Let this cost be c, 6, - c, where
add.

XB; <1+«dM, M=£ B^Max. and 6d . (0,1). _For

'•'/ BJ. > 2» 6h = 1; for / Br ~ l' 6d = 0; and / B' cannot e<lVLa^
r r r

zero.

Example 2.

The.function given in Example 1 will again be considered.

F = ABCD + ABCE + ABDE

P P P
. 1 2 3

1. The only factors to be considered are f. = ABC, f? = AB

2. The new product terms to be conaidered are

ABCD, ABCE, ABDE, (ABC) [D+E]

-8-

3.

(AB) [CD + CE + DE], (AB) [CD + CE]
^ •—, J *> =\/ —^

*-

B~7 B8

Now rBl=1
B4=l

px= i =?• B5=l

B6=l

.B8=1

Hence {P^ ={Br B4, B5, B6, Bg}

Also, in similar fashion we obtain:

{P2}. ={B2, B4, B5, B6, B?}

{P3} ={B3, B5, B?, B^}

The original constraint inequalities are

> 1

> 1

> 1

> 1

pi

pl + P2

P2 + P3

P3

-9-

4. The new constraints are determined from the logical

implications.

Bl +
B4

+ B5 + B6 + B8 > 1

Bi + B2 + b; + B5 + B6 + B7 + B8 > 1

B2 + B' + B4 + B^+ B6 + B7 + B8 > 1

B3 + H + B7 + B8 > 1

5. The objective function is, assuming equal diode costs,

SB' + 5B1 + 5B1 + 7B' + 14B' + 11B' + UBL + 11B» + 6,=
12 34 5 6 7 o d

= Z (min.) + 1

where BJ + B' + BI + B' + B' + BL + BL + B' + 86, < 1
12 3 4oo7o d —

The two optimal solutions are 6, = Bj = BL = 1, B' .= B'

= B^ = . .. = B£ = 0 and B^ = 1, B{

= B' = ... = BL = 6, = 0 ; min. Z = 10 .
2 7 d

The case-of using (AB) as a factor in B,-, B,, B_, and Bg
has not been considered. However, this case could have been

handled by employing the procedure of part A of this section.

summary

A simple though somewhat cumbersome procedure for

"AND-AND-OR" and restricted-"AND-OR-AND-OR" factoriza

tion has been presented. The technique can be extended for

other types of gating sequences. The advantages of factoring

are a realization of greater savings in the cost of implementation,

and a solution to the fan-out problem.

-10-

There are two main drawbacks to these procedures.

First, the designer must determine all combinations of factors

to.be considered, and then formulate the problem. If a great

number of factors are possible, this becomes a large, time

consuming job. This problem can be easily solved by having

the computer formulate the linear program directly from a

given set of Boolean functions, preferably not even in prime

implicant form.

The second problem stems from the fact that with a

large number of factors, the number of variables B! in the

linear program increases quite rapidly. The result is that only

a few Boolean functions can be considered at any one time.

However, this is the opposite effect desired. The difficulty

can be rectified by employing linear programming routines which

can accommodate a large number (1000) of variables.

HI. REDUNDANCIES

The case where specific combinations of the variables

are redundant, and hence represent "don't care" conditions, is

now considered. Redundancies in this context refer to the fact

that certain combinations of states of the system being described

by the Boolean functions can not occur. Each combination of

states of the system corresponds to a vertex in our n-dimensional

space. In order to take into account these "don't care" con

ditions when simplifying the Boolean function F, , a new set of

prime implicants {P} = {R, ... P., . . ., P £ must be
1 j m*

determined. The P.' s are determined in the standard manner,
where now the "don't care" vertices are included along with
the vertices of Ffc. The constraint inequalities for the linear
program are as follows:

-11-

m

Lj av. Pj ~ 1 for a11 v in Fk' An ine(luality exists
j=l j

only for the vertices in F,. If a P. contains only "don't care"
vertices, then P. will not appear in the L. P.

j

Example 3.

Consider function F, of Example 1 (page 10) of [1],

where we now include the "don't care" term ABD. This implies
that the states represented by the combinations (A, B, C, D)
and (A, B C, D) can not occur. The function is shown in

Figure 1.

x

Figure 1. F. and "don't care" conditions

The new prime implicants are

pl
ABD

?2
CD

P3
ABD

P4
ABC

The cells are

-12-

(0,-,1,1) (1,1.-.-)

The vertices are

0011

(1.-.1,0)

4

(-.1.1.1)

--An asterisk indicates "don't care" vertices. P~ may be

neglected, since it contains only "don't care" vertices. The

logical constraint inequalities are

pi

P'

>

P'

P'

> 1 for vertex (0011)

' . " (0111)

' " (1111)

> 1 " " (1100)

> 1 " " (1101)

P4 > l
+. 1* > 1

The solutionis G. = P. + P = ABD + CD irrespective of
the objective function.

IV. MAXTERM REPRESENTATION

In the previous analysis, it was assumed that the Boolean

function being minimized was expressed as a sura of product

terms. That is, F= yP.. A function expressible in this form

j
is said to be in minterm form, where each product term P. is

-13-

called a minterm.

P. =77" *i where I• is the ith literal.
J i x

The same function can also be expressed as a product of sum
terms.

F=ZPk WhCre V*=llm
k m

and where the k's take on a different set of values from the j's.

The function expressed as such is said to be in maxterm form,

and a technique for determining the minimal maxterm represen

tation is given in Phis ter [2].

In order to realize a savings in cost, it is sometimes

desirable to implement a function in maxterm form rather than

minterm form. For example, consider the function

F = AB + BC + AB = AB + ^C + "ZS (9 diodes).

Now F = ~K£C + AE, hence

F = (A + B + C) (A + B) (7 diodes)

One method for formulating the minimization process as

a linear program, for a function F in maxterm form, consists

of the following two steps.

1) Express ,F in minterm form. F=/P.

j

2) Minimize F using.linear programming techniques, where

the C.'s in the objective function are the costs associated with

implementing P. rather than P.. The minimal form of F is
j

G=y j "F. where j is summed over a sub-class of the original
j J

set of j' s, and where in the solution of the linear program,

-14-

P! = =^ p. is in G, and P! = 0 =5>P. is not in G.
J J J J

(Note if P. = AS, then P. (A + B).
J J

It is also possible to formulate the linear program

directly from the maxterm representation of the function to be

minimized. _.

Let F= 77 Pk ^here Pfc= ^ |fc .
k — i , m

m=l

Associate with each P, a set of vertices {V,} consis

ting of the intersection of all the vertices not contained in £.

m =1, . . . , Mj^. {Vfc} ={v fc n> vfc r\... r\vfc n>...
12 m

m'

f^Vu } where v, is the set of vertices not contained in I,
^k m km

Note that {"v"k} is the set of vertices contained in P . Hence,
if any vertex in {V,} is true, P, is false.

Let a = 1 if {V, } contains vertex v.
vk k

Let a =0 if {V, } does not contain vertex v.
vk K

The deletion of a product term from the function F is equivalent
to replacing that term by one. Hence the new function will always
be true whenever the original function is true. The criterion

which must be satisfied ior the simplified function G, is that G
must be false whenever the original function F is.false.

Expressing this condition as a set of constraint inequalities, then
K

) \ **k > 1 for all v not in F. The objective
k=l k

function is K

k=l

In general, if {Vfc} is empty, then Pfc =0, and P =1,
e' g* Pfc = A +A. If {Vk> contains all of the vertices in the space,
then Pfc = 1, and P = 0. -15-

The formulation for the maxterm problem is essentially
the same mathematically as that for the minterm problem. The

main difference is the statement of the criterion used in defining
the properties of the minimal form G.

Example 4.

Consider the function containing the true vertices ABC^

ABC, and ABC, as showzi in Figure 2.

(001)1
(Oil)

(111)

_I(110)

(000) (100)
*- A

Figure 2. Function F

F= {A + B) Q3 + C) (A + C) (A + B)

v = (100), (101), (111), (110)

v_ = (010), (011), (111), (110)

Therefore {V^ ={v-£ r\ v^} = {(111), (110)}

Note (111) and (110) are the vertices contained in P.. = AB.

-16-

Also,

{V2}= {(Oil), (HI)}

{V3} = {(001), (Oil) }

{V4} ={(000), (001) }

Since G must be false whenever F is false, then

px > 1 for vertex (110)

p{ + P2 > 1 for vertex (111)

P2+ P3 > 1 for vertex (011)

P3 + P4 > 1 for vertex (001)

P4 > 1 for vertex (000)

V. COMMON FACTORS

In this section, only two level "AND-OR" logic will be

considered. A common factor is defined as a product term

Br =*JJ j?i which is used as an "OR" term in two or more
i

functions.

Classical simplification procedures usually begin with

the function in prime implicant form. Since the cost associated

with each product term is positive, the results of these procedures

do give the optimal solution in terms of minimal cost, when only

one function is being considered. However, if more than one

function is7 being simplified, and common factors are allowed,

then the restriction to prime implicants will not always permit

a true overall optimal solution. For example, consider the

carry function

Fx = ABC + ABC + ABC + ABC (16 diodes)

17-

In prime implicant form, we have

G, = AB + BC + AC (9 diodes)

Now

AC = ABC + ABC

Assume that ABC is an essential prime implicant in function Gy.
Hence, ABC can be used in G, at the cost of one diode required

in the "OR" gate. Then

Gx = AB + BC + ABC + ABC

G* = AB + BC + Al3C
(7 diodes)

A reduction in cost is therefore possible if the restriction

that G. consists only of a subset of the prime implicants of F,

is removed. Note also that each product term P. need not be

a prime implicant of some function. As an example, consider the

functions F~ and F- shown below, in Figure 3.

A

W\
ABC

2 3

Figure 3. Functions F? and F_

ABC

F2 = AB + BCJ (6 diodes) F = AB + AC (6 diodes)

Total cost is 12 dicdes.

Using ABTT, which is not a prime implicant, as a common

factor

B, = AB"£ (3 diodes)

F2= TB + BL (4 diodes) F3=AC +B1
(4 diodes)

-18-

The total cost is 11 diodes.

Finally, it is possible that G, may contain a redundant

prime implicant. For example, consider the function F,-

shown in Figure 4.

AB"C

ABC

Figure 4. F,

Fc = ABTJ + "SBC + XBU + ~XFC
5

If ABC and ABC have been formed for use in some

other functions, then the minimal cost form of F_ maybe

G5 = ABU + XB + "SBC

where AB is a redundant prime implicant.

A procedure ior determining the true minimal form for

implementing .many Boolean functions, where common factors

are allowed, is now given. The main part of this method deals

with determining the set of allowable common factors. Linear

programming will be used as a tool for finding the solution.

The algorithm for formulating the.linear program, where all

possible representations of the Boolean functions are considered,

consists of six parts.

1. Determine all of the prime implicants P.(j,= 1, 2, . . . ,m)
j

contained in the functions F, (k = 1, 2, . .. K) to be minimized.

Note, for example, that AS in F. and AS in F. are different

prime implicants.

-19-

2. Determine the elements of the sets {P.} which consist of

all product terms in which P. is contained including P. itself.

These product terms consist of P. "ANDED" with all combina

tions of the variables not in P., taken one at a time, two at a
J

time, etc. Subscript each element of {P.} with j. For example,

for three variables, if P. = A, then

{P^ ={A} =(Ar ABr ABr ACr AUV ABCj,, AEC^ ABCj, ABT^)

3. Determine a new set of product terms {P} which consists

partly of the union of all the non-zero elements generated by the

intersection of the {P.}'s, (j.= 1, 2, . . . m), where combinations

of the {P.}' s are taken, first two at a time, then three at a

time, . . . etc. Each element in {P} is subscripted with the

sequence of j's determined from the {P.}'s used in the inter-
j

section from which it was derived. Only take one permutation

for each set of indices. Also, each element in {P} may contain

at most just one subscript associated with each function.

This restriction is included since common factors reduce

costs, and have meaning, only when used in two or more different

functions. The set of product terms.derived by this intersection

process is all the possible common factors of the functions.

Append to the beginning of this set of common factors, the original

set of prime implicants. This union of sets is {P}.

4. Assign to each element in {P} .a name B »P» • • •» |
(r = 1, 2, . . . R), where the superscripts are the subscripts of

the corresponding product terms. Assign to each B »P» • • • •
a bivalved variable ,B* € (0,1), where

r

^ _^ ^ a, p, . . . ,p

functions

B' = 1 =^ B »P»-"»P is in the minimal form of the
r r

a, p,.. ., pB' = 0 => B »• k» • • •» f is not in the minimal form
r r

-20-

Let = 1 if B

= 0 if B

«i, p,. .. ,p

«» P>...,p

contains vertex v

does not contain vertex v

For B »P» • • • »P £0 contain vertex v, one of the superscripts
must be the-same as one of the subscripts of the original prime

implicants' P, which contained the vertex. This is true since

it is necessary to differentiate between vertices which have the

same coordinate values but which are in different functions.

5. Construct the constraint inequalities

R

I > 1
r —

for all v in P., and for all k.

r=l

6. Construct the objective function. Special care must be

given to the cost associated with common factors, since they

are used in more than one "OR" gate. The number of "OR"

gates is equal to the number of times a product is used as a

common factor, and is equal to the number of superscripts in

Br

Example ,5.

Consider the two. functions shown below.

AC ^A^C*

AB

(110)
AB

Fl

BC

-21-

Step 1) F1= AB + AC F = BC + AB

Step 2) {Pj} = (ABX, ABCr ABCX)

{P2} = (AC2, ABC2, ABC2)

{p3} = (BU3, abcT,, SbcT)

{P4}= (^B4. XBC„, TLB'S.)
4 4

Step 3) {Px} ^ {P3}

{PL} ^ {P4}

{P2} ^ {P3}

{P2> ^ {P4>

Steps 3) and 4)

= AB*C.
1,3

r= 0

= 0

= 0

{P} = (AB^ AC2, B^, ^B4, AB^ 3)

Step 5) B^

B' + B'

B2

Vertex

+B^ > 1 (110) 1

> F,> 1 (111)

> 1 (ioi) a

B3 +.-B£ > 1 (110) ^

B' + B^ > 1 (010)

B4 > 1 (Oil)

>F.

Step 6) Let the cost of each term in an "AND" and "OR" gate

be one. Then the objective function is

-22-

3BJ + 3B!, + 3B^ + 3B^ + 5B^ = Z (MIN.)

13
Note the cost associated with B_ ' a ABC, - is three

b 1,3
for the "AND" gate, plus two for the "OR" gates.

The solution is

B2 = B43 B5 ~ l' Bl " B3 = °» min Z - U

Fl = AC + ABCJ, F2 - "KB + ABC; where ABC is a common
factor.

Summary.%

When simplifying more than one function at a time, a

reduction in the cost of implementation is realized if common

factors are used. Also, minimal forms need not consist entirely

of prime implicants. An algorithm is presented for determining
all possible combinations of common factors which exist among

a set of Boolean functions. The L. P. for finding the optimal
solution is then given.

VI. DUALITY

In this section, the dual of a linear program is introduced,

and si* pertinent theorems are presented. Conditions are given
for simplifying the minimization L. P. prior to solution. From

this material, additional insight is obtained in understanding the
linear programming minimization formulation.

To each linear program (L. P.), called the primal, there
is associated a unique dual L. P. Since the dual of the dual is the

primal, either L. P. maybe considered the primal. Let the
primal be

Pj > 0 j a 1, 2, . . . , n

23-

Vl : \fi +*12P2 + ••• +alnP; > bl <vertex «

V2= a21Pl +a22P2+ **• +a2nP; > b2 (verteX 2>

Vm: amlPl +am2P2 +' "' +amnPi > bm <vertex m>

ClPi + C2P2 +• •• +CnP; = Z (min.)

The dual L. P. is

,V! > 0 i = 1, 2, . . . , m

*llVi + a2lV2+- * •+amlVm< Ci

*12Vi +a22V2 +' ' -+am2Vm< C2

a. V.» + a, VI + . . . + a V < r
In 1 2n 2 mn m — *-»n

b,V' + bji + . . . + b V' = W (max.)
112 2 mm

From the general theory related to the primal-dual linear

programs, the following two important theorems [3] maybe

derived:

f primal!
Theorem 1: If an optimal solution exists for the [dual J,

[dual]
then one exists for the [primal J , and min. Z = max. W.

Theorem 2: If a slack variable which has been added to

f primal 1
the i"1 constraint of the [dual J is different from zero in any

{primal! Jdual 1
dual J , then in the [primal J the

jth variable is zero in every optimal solution.

-24-

By analyzing the dual L. P., a few interesting characteris

tics of the minimization process are brought to light. Note that

by Theorem 1, it is possible to solve the dual L. P. and to

determine min. Z. It is also possible to determine the P!' s

if all of the V.' s are known [4J.

The following theorem will prove to be useful in simplifying

linear programs.

Theorem 3: If the k"1 inequality in the primal is redun

dant, then V* =0 in at least one of the optimal solutions of the

dual.

Definition: An inequality is redundant with respect to a

set of inequalities if it is implied by the remaining inequalities

in the set. There are two categories into which redundant

inequalities usually fall.

1. Weaker condition: If the ifck inequality is implied by the jtn,
then the itn inequality is redundant. Example:

Consider the set of inequalities

{P^>0, P^>0, 1?^+J?^<7, P^<8}. Since P^ < 8 is
implied by the remaining three inequalities, it is redundant.

2. Positive linear combination: If the ifck inequality can be
expressed as a positive linear combination of a set of inequalities,

then it is redundant. Let the kth inequality be (VJ). Then if
m k

<Vi)= X V^' aj>0 f°ra11 j'
3=1
3=M

(V.') is redundant to the m inequalities (V!).
P[> 0, P' > 0 ^

Example: (V{) Pj + P' < 5

<vy p- < 3

(V^) P^ + 2P^ < 8

-25-

Since (V^) = (V') +(V^), (V^) is redundant. Note that
neither (Vf) nor V' are redundant since

'P. = 6^

.Pi= 1

satisfies (V£) and (V'), but not (V^), and r
p*
*2

= 0

= 4

satisfies (V{) and (V^), but not (V^).
The reason for a. > 0 is that if an inequality is multi-

j

plied by minus one, the direction of the inequality is reversed

as well as the sign of all terms.
thProof: Since the k inequality is redundant, it may be

deleted from the L. P. without effecting the value of min. Z,

and hence V£ will not exist, i. e. V' = 0. Therefore, when no
inequalities are deleted from the primal, since max. W = min.

Z, there is at least one optimal solution to the dual with V' = 0.

Theorem 4:

Let a.. > 0 all i, j

c. > 0 all j

b.
J

> 0 for at least one i.

Case 1. If b, < 0, V' = 0 in all optimal solutions of the dual.

Case 2. If b,= 0, and a.. > 0 for all k, j, then V' = 0 in
J& lj JK

all optimal solutions of the dual.

Case 3. Rule.

If b,= 0, and a. > 0 for all i, j, then V.' = 0 is
m i» — k.

a permissible value in all optimal solutions of the dual, though not

always a necessary condition. The rule is that we will always put

V,' = 0 for this condition,
k

-26-

: Proof:

Case 1. Assume that there is an optimal solution to the dual

with VJ > 0. Since b, < 0, by decreasing V' to 0 no

constraint inequalities are violated, and W(Max.) is increased.

Hence, the original solution could not have been optimal.

Case 2. If b, = 0, then V' does not appear in the objective

function W(Max.). Assume that there is an optimal solution to

the dual with V' > 0. At least one of the constraints must be

an equality. Let this be the p1**1 constraint. (If more than one
constraint is at an equality, pick the one which increases the

most for an equal and constant increase and decrease in V.' and
i

V£ respectively.) Since b. > 0, and a, > 0, decrease V'
and increase V^ keeping the pth constraint an equality. By
this process W is increased. Hence the original solution was

not optimal.

Continue this process until either

a) VI = 0 and hence the process is finished.

b) The t"1 constraint becomes an equality.

Repeat procedure on the tth constraint. (Note that for
the same increments in V' and V.' , the left hand side of the
t-h K 1

t"1 constraint changes a greater amount than the left hand side

of the p"1 constraint. Hence, the pth constraint will again
become an inequality.) The process ends when V,' = 0.

k

Case 3. Since A^ > 0, if jl = 0, V' may be increased

until a second constraint becomes an equality. As VJ is

increased, W remains at its optimal maximum value. If there

is an optimal solution with VJ (max.) > 0, then there are an

infinite number of solutions, corresponding to 0 < V,' < V'.
r ° — k — k(max)

The solution(s) for VJL = 0 will be chosen.

Example 6a, b:

-27-

(a)

Primal

Pj > 0, j =1, 2, 3

V,' : P' + P'
1 1 2

> 1

V p'+p- >i

V^: P^ + P^+P^ >0

(b)

Primal

P! > 0, j= 1,2,3
j

V : P' + PL > 1
112

V2: P' > 1

V^: P' +P^> 0

Pf + P» + P^ = Z(Min.) Pj + P» +P' = Z (Min.)

Optimal Solution: Optimal Solution:

P2= lt Pl = P3 = °» min* Z =l P2 = l* Pl + P3 = 0> min* Z= X

Dual

V[> 0, i = 1, 2, 3

Vi +V^X 1

Vl+V2 +V3< l

V2 +V3<X

VJ + V^ = W(Max.)

Optimal Solutions:

v- = o

All non-negative V!t V'

satisfying V.1 + V» = 1.
1 2

max. W = 1

Dual

v»
1

> o, i= 1,, 2•» 3

vl + V3 < 1

vi + V2

V3

<

<

1

1

V + V' = W(Max.)
1 2

Optimal Solutions:

All non-negative V', V'

satisfying V^ +V^ 1,

and 0< V' < 1 - V'

max. W = 1

For Example 6a, since (V') has a non zero slack

variable, from Theorem 2 we have V' = 0 in the optimal

-28-

solution of the dual. •This.is not the case.for Example 6b, where

VI may take on an infinite number of values between zero and

(1-VJ), for V' not equal to one. For the solution V* =V' = 1/2,
V' = 0, Theorem 2 gives P' = P' = 0 for both cases.

Note finally that max. W = min. Z as stated by Theorem 1.

Since (V') for (a) and (b) are redundant inequalities, by

Theorem 4 (case 5), V' = 0.

If the primal L. P. is associated with the L. P. derived

from the Boolean logic minimization problem, then

a.. = 0 or 1, (a.. > 0)

b. = 1
1

and q. > 0 (are normalized cost coefficient? in dollars) for all
j

i, j-

For each prime implicant P. there is an associated

variable P!, and for each vertex in the Boolean function, there
j

is a constraint inequality. It is possible to associate with each

vertex a variable V.', which has. the units of dollars per unit.

(Note that -V.1 corresponds to the standard simplex multipliers.)

Let (V.*) be the name of the ith vertex of the function being
minimized.

Just aB there are essential, non-essential irredundant,

and non-essential redundant prime implicants, analogous defi

nitions can be defined to vertices.

A vertex is

a. Essential if it is contained in only one prime implicant.

b. Non-essential if it is contained in two or more prime

implicants.

1) Irredundant if all of the prime implicants

containing this vertex are non-essential.

2) Redundant if at least one of the prime implicants

containing this vertex is essential.

Note that the definition of an irredundant prime implicant

is analogous to the definition of a redundant vertex, and vice versa.

-29-

Theorem5: All (V') corresponding to redundant vertices

may be dropped from the primal.

Proof;

Let(V') beF'+PJ +...+PJ +...+P» > 1i il i2 ig it —

where

P. , P. , ... P. , (1< g < t) are essential prime impli-
1 2 lg " • ""

cants. Therefore P' = P' = ... = PJ = 1
U *2 *g

Hence P' +. •. t P« > 1 - g < 0 (2)
lg+l lt -

But P! > 0 for all j implies (3)

P» + ... + P.1 > 0

Note that (2) is an equivalent or weaker condition than (3), and

hence may be dropped from the primal.

Corollary 1: In the optimal solution to the dual, the V? asso
ciated with a redundant cell is aero. If (VM is left in the

primal, then

Y» iF» + .. + p; >l-g, g> 0
1 lg+.l lt~

By Theorem 4, VJ » 0 for g > 0, and by rule 1 for case 3,

V{ = 0 for g f 0.
It can be concluded that constraint inequalities (V!) need

be written for only those vertices VJ which are not redundant.
Example;

Consider the function

F = AB + BC + 35 + X5

Pl P2 P3 P4

-30-

Let the per unit cost associated with literal B() be
eg'

two, and all other c's be one. The primal L. P. is

Vl : Pi

V2: Pi + P2

V3 : P2

V4:

V5:

Pj> 0 j= 1, 2, 3, 4

> 1

> 1

P4 >*

PI + P' >1
3 4 —-

P'
*3 > 1

vertex (111)

vertex (001)

4P{ + 4P^ •+ 3P^ + 3P^ = Z (Min.)

The optimal solution .is

». s 1 t:
2

P{ = P^ a P^ s 1, p; = 0, min. Z = 10

The dual L. P. is

v»
1

> 0 < 4

vi +
v2

Vv2
+ V3

<

<

4

4

V 1

4
+ V i

5
< 3

V3 + V
4

< 3

Vl + V2 + V3 + V4 +'V5B W(Max.)

The optimal solution is

V{ =4, V^ = V^ = 3, V^ = V^ = 0, max. W= 10

The function in three space is shown in Figure 5, and the

optimal solutions are indicated.

-31-

(nAnBnG)

Figure 5. Three space representation of minimal

solution to Boolean function F.

From (Vj|), P^ > 1 -~ PJ = 1.
Substituting into (V'),

P' > 0

which is a redundant inequality. Hence, by Corollary 1, V' = 0

in the optimal solution to the dual.

Analogously, P' = 1, and hence V' = 0. Note that this

checks with the solutions obtained. Finally, from Theorem 5,

(V') and (VL)' could have been deleted from the primal, without

affecting the solution.

The solution to the dual may be interpreted as implying

that an associated shadow price or imputed value of 4, 0, 3, 0, 3

with vertices V{, VL, VL, VL, Vl> respectively. Hence, the
redundant vertices V' and VL are gotten for nothing.

-32-

Linear programming is a lumping rather than a smoothing

operation. This can clearly be seen from the solution to the

dual, since the shadow prices are not distributed over all vertices.

Since P' = P' = 1 in the optimal solution, the slack

variable in (VL) is non-zero, and hence from Theorem 2, VL = 0.
4 4

This again checks with the results. Also, since V' + VL = 3,

then P' = 0, again by.Theorem 2.

The fact that V.' = 0 does not imply that (V.1) is redundant.

As an example, consider the function shown in Figure 6.

Figure 6. Karnaugh diagram representation

of Boolean function F. '

F = ABD + ABC + ACD + BCD + ABD

-33-

The constraint inequalities.for the non-redundant vertices are

Pl > l

P2 + P3 > l
PL + P' > 1

3 4 —

p!> > 1

Let 4P^ + 4P' + 4P^ .+ 4P^ + 4P^ = Z(Min.)

Since P' = P' = 1, the modified primal is

V' : P» + P' > 1

P' + P^ >1

4P^+ 4P^+ 4P^ - Z' (min.)

The optimal solution is

P^ =1, P^ = P' = 0, min. Z»= 4

The dual L. P. is

V'
1

> 0 i = 1, 2

vi < 4

vi + V- < 4

V' < 4

V{ + V^ = W (Max.)

There are an infinite number of optimal solutions to the dual, each

satisfying the relationships,

V- + V!, = 4

0< VJ < 4

Two particular solutions are

V{ =0, V^ = 4

-34-

and VJ = 4, V^ = 0

Note that V.' = 0 (i = 1, 2) does not imply that (V.1) (i = 1 or 2)

is redundant, nor that vertex V.1 is redundant; however, from

Theorem 2, P' = PL = 0. in all optimal solutions to the primal.

The question now arises as to what value should be assigned to

VJ and V' in order to be consistent with the definition of asso

ciating V' with the shadow price of vertex V.' •

Since the cost of all literals was assumed to be constant,

let

V' = V = 2
Vl V2 L

Note that the prime implicant P., = ACD

contains vertices V.' and V', i. e.

ACD = ABCD + ABCD

If, however, the per unit literal costs are allowed to be

CB=2' CA,B, C,D=1

then the V" s can be determined as follows:

Let C(y) be the cost of implementing the Boolean product

term y, including one diode for an "OR" gate. Then

C(ACD) =4=Vj[+ V^

and hence,

C(ABCD) = 6

C(ABCD) = 5

Vi- 4<6+65
x _ 24

'~11

V2= 4<65+5>
_ 20

".11

-35-

Summary:

By introducing the dual L. P., it is possible to associate

a shadow price or imputed value with each vertex contained in F,.

Essentially, these imputed values are a measure of the significance

of each vertex in establishing which prime implicants are to be in

the minimal form. A redundant vertex, for example, has an im

puted value of zero, and has no effect in determining the necessary

constraints of the L. P. Finally, the objective function of the dual

is to be maximized. This objective function is analogous to the

total activity level usually considered in economic problems. By

maximizing the activity level, we are essentially seeking the most

efficient covering of the vertices in F, .

If the dual is easier to solve than the primal, (the j ?rima [
\ | variables and \ j inequalities), then the V?' s maybe

solved for, from which the P!»s can be determined. The final
j

form of the A., matrix is also required. From the knowledge of
j

the slack variables in one system, the second system may be

simplified. Hence, the dual L. P. and the associated theorems

presented are an aid in understanding and simplifying the linear

programming minimization procedure.

VII. FAN-IN CONSIDERATIONS

The fan-in restrictions on the "OR" gate required to form

F, may be taken into account in the simplification computation by

adding the additional constraint inequalities of the form

/) B\ < Fj^, for each F, , where j is summed over

j

has

all B! contained in F. , and the constant FT.T is the fan-in
J k* IN

-36-

factor which equals the maximum number of inputs to an "OR"

gate. B. is a generalized product term, consisting of either
j

the output of a flip-flop or "AND" gate.

The choice of FTN> is usually based on a compromise

between circuit restrictions, costs, and certain requirements de

manded by the logical equations. Rather than leave the choice of

Fjjy to human judgment, it is possible to have the L. P. determine
the optimal choice for FI1SJ. As pointed out earlier, the L. P.
can determine the optimal choice of common factors, and of

amplifiers needed for the fan-out problem. It is.therefore seen

that the minimization technique takes into consideration not only

the Boolean functions, but also the circuit costs required in

implementing the functions. This appears -to be a logical approach

to the problem.

The motivation ior making FJN a variable in the L. P.
will be justified by showing how an additional savings in cost is

realized. Assume that all "OR" gates consist of the same

standardized package, and hence all have the same upper limit

PIN *or rae maximum number of inputs. Assume, for the
present, that F^ is a constant, and solve for the optimal
solution to the L. P. Now, FJN must satisfy all of the constraint
inequalities for each function F,, since the solution is feasible.

However, the cost of implementing an "OR" gate is a monotoni-

cally increasing function of FJN. Hence, Fm can be decreased
until at least one of the constraints becomes an equality. Assume

that the constraint for function F, is an equality, while all the

other constraints are inequalities, i. e.,

l

l

B! = F for F iA\j IN k <4'
i

B! < FT_T for F., all i =£ k.
j IN 1

-37-

Now, if F_N is a variable, it maybe possible to find
another representation of F, which, though possibly more

expensive to implement, requires fewer "OR" terms in (4),

and hence F-N may be reduced. If the total cost saved in
reducing FJN (in all "OR" gates) is greater than the increase
in cost; encountered in implementing F,, then a better solution

has been found. This justifies the purpose of making F,N a
variable. Note that the same argument and justification holds

if more than one constraint is at an equality.

In order to introduce F.N into the L. P. as a variable,
the relationships between gating costs and FJ]Sj must be
expressed as a set of linear constraints. In general, let the

linearized per unit amplifier cost c be

ca=fl <FIN>

Also, let the cost associated with each "OR" gate be C , and

with each "AND" gate be CAND, where

COR= f2 **W

CAND = f3 (FIN)

Note that c , COR, ana ^* and are *uncfci°ns °* many factors,
where only FTN is allowed to vary.

A method is now presented for expressing the linearized

cost C vs. fan-in relation as a set of linear constraints [5].

Expressing any value of C and F___ as a weighted average of

two successive breakpoints, it follows that (see Figure 7)

FIN^ VoHlal+- + Vk

c 8^boniV-nA
1 = X. + \. + . . . \,

o 1 k

0< \.< 1 i=o, 1, ...k

-38-

'(a4,b4>

C= b (a3,b3)

1a2,b2)

^P^Jo^i'-i*
FIN = a

Figure 7. Linearized C = f(F_)

In order to ensure the selection of two successive

breakpoints it is required that,

X. < 6
0 — • o

V, < 6 + 6.
1 — o 1

*2 < h + 52

"•k-2.^

Kk "<

where 6. e (0,1) and

6o + 61 "

W+6k-2

6k-2 + 6k-l

'k-1

6k-l = l

-39-

Since the 6.'s are integers while the \'a are fractional, mixed
integer programming must be employed.

The objective function is now determined. Since each

variable is implemented by the use of a state device, such as a
flip-flop, and if it is assumed that the device has both a true
and a false output driven by amplifiers, then to the objective
function can be added the term 2n Cf, where n is the number
of variables, and Cf is the flip-flop amplifier cost.

Cf=f4<FIN>
Cf need not equal c m

The number of "AND" gates is Y=Y Bj , and the
j=l

associated total cost is

CANDY

The number of "OR" gates is (Y-W), where W=m
is the number of functions Ffc containing only one "OR" term.
Assume mQ = 0. The associated total cost is

CORY

The new objective fuEctioa is (see Equation (13), of [1])

2aCf +CAND Y+COR Y+J CiT +cdY"Z<Min-)
,i

where C.T =c^ +ca (S +6. +...+«.)
'*• ** t.

1

Since ca, CQR, C^^ Y, and the 6's are variables,
the objective function is quadratic, a^d hence nonlinear. For
information on quadratic programming, see [6], [7], and [8].

In order to analyze the objective function in more general
terms, the following change of variables is now made.

-40-

Let B! —*> x.

J

1

—♦ x.

J

CAND """* xa

COR o

Cf —"xf

c
a

* X
c

j = 1, 2, . . . , m

j = m + 1, . . . J, and where for each
combination of i and h there is a
unique j.

The objective function is thus

2n x- + x (x. + x_ + . . . x) + x (x, + x_ •+...+ x)
f a T. 2 m' o x 1 2 m7

+ c

+ xc (xm+1 + . . . +Xj) = Z (Min.) (5)

d (xj +x2 +. . . +xm) +cd (qx Xl + a2 x2.+ . . . + am xm)

where a. is the number of literals in x. .
i i

Let the vector x = (Xj, x2 . . . , Xj, xf x^, xq, xc)

Since every quadratic form can be expressed in terms of

a symmetric matrix C, we have,

T
ox + x Cx = Z(Min.)

where T stands-for transpose.

Now, a quadratic form is positive semi-definite if

xTC x> 0 for all x.

Referring to the quadratic terms in (5), let

x = 1, x. = -1, all other x's = 0.
a l

T
x C x = -1

T
and hence x Cx is not positive semi-definite. Due to this

fact, the standard algorithms used to solve quadratic programming

-41-

problems, but which assume the positive semi-definite property
to hold, cannot be applied.

-TThe reason for this is.that in general, if x Cx is not

positive semi-definite, the solution to the program may not be

the global minimum, but rather a local minimum or possibly a

stationary value which is neither a local nor global minimum.

Fortunately, the quadratic function being considered has

a very special form. Note that there are no square terms, and

that it is highly factorable. Let all 6. = 0, that is, do not
xt.

1

consider the addition of amplifiers into the circuits. The

quadratic term is then

Q (x) = (x + x) (x^ + x + . . . + x) = X Y
. a o i z m

This function is shown in Figure 8.

Qi

Figure 8. Q(x)= XY

Note that the intersection of the surface Q(x) with the planes

Y= const, and X = const, are straight lines. Also, XY = const.

-42-

is a hyperbola. From these properties, it is conjectured that

the quadratic program can be solved for the optimal solution.

. Beale [8] presents an algorithm for solving quadratic
programs when the objective function is convex. A function is

convex if

f (X x+(l- \)y)<\ f(x)+(l- JL)f(y)

Now positive semi-definiteness implies convexity, but not vice

versa. However, as can be seen from Figure 8, the function

Q(x)=XY

is not convex, and hence the procedure of Beale.does not apply.

However, it appears that no local minima exists, and hence a

procedure based upon the principle of steepest descent should

produce an optimal solution. Unfortunately, the author is not

aware of any published algorithm for solving .the type of
quadratic form under consideration.

Though a procedure for finding.the optimal solution will

not be presented in this paper, a theorem will be given for testing
whether or not a feasible solution is optimal. The test is

accomplished by solving a dual linear program derived from a

transformation of the quadratic program under consideration.

Let x =< xM b, } ,> » b = <

x
m J

W= (ity TT2, • V

-43-

a = i*y a2, i a)
' n'

A = (a...) i = 1, 2, . . , n

j = 1, 2, . . . , m

C = (c. fc) i, k= 1, 2, . . . , n

where c, = c, .
lk ki

Theorem 6:

x> 0 (6a)

Ax > b (6b)
T ~~

2ax+x Cx= Z(Min.) (6c)

If xQ solves (6), then there exists

ir > 0 such that
.o.— .

T
ir A < a + x C

o — o

T
ir b = ax + x Cx

o o o o

Proof: x is the optimal solution, and let x be any non-

optimal feasible solution. Then

Xx + (1 - X)xq 0< X < 1

is a feasible solution. Substituting into (6c),

2a [Xx+(l-X)xo] +(Xx+(l-x)xo)T C(Vx+(l-X)xQ) >2ax +xoTCxq

2a[Xx +(l-\)xo] +X2xT Cx+ \(l-X)xoT Cx+ \ (l-X)xTCxo

+(l-\)2xTCx > 2ax +x T Cx
o o — o o o

T TNow x_ Cx = x Cx since C is symmetric. Cancelling common

terms on both sides, then

2a[Mx-xQ)]+X2xT Cx+ 2\ (l-X)xoTCx+ X(X-2) xoT Cxq >0

and cancelling X,

-44-

2a[x-xQ] +XxTCx+ 2(1- X) x T Cx +(X -2) x T Cx >0
Let X —> 0

Then

T T"
a [x- x 1 + x^ Cx - x Cx,. > 0

oJ o o o «—

T T
(a + x^ C) x > ax + x Cx = min. Z

o ' — o o o

The original system can therefore be written as

x > 0

Ax > b

(a.+ x Tc) x= Z (Min.)

The dual to this.linear system is

ir > 0

wA < a .+ x TC
— . o

The solution is

itb= W(Max.)

T
ir = Max. W = min. Z = ax .+ x Cx

o o o o

Summary:

In this section it has been shown that an increased saving

in total cost of implementation may be realized if some functions

are implemented in a non-optimal form. The objective is to

reduce the upper bound FIN on the number of inputs to an "OR"
gate. By making the fan-in factor, FTN a variable, the resulting

quadratic program becomes an exact mathematical model of the

problem. It should be noted that the same objective could be

reached by manually changing the cost constants in the objective

function, and integrating the linear program for.different values

of the constant FT«,.
IN

-45-

REFERENCES

1. Breuer, M. A. , "The Minimization of Boolean Functions

Containing Unequal and Nonlinear Cost Functions--Part I, "

Series 60, Issue No. 431, Electronics Research Labora

tory, University of California, Berkeley, Jan. 1962.

2. Phister, Montgomery, Jr. , Logical Design of Digital

Computers, John Wiley & Sons, Inc. , New York, 1958,

pp. 94-96.

3. Hadley, George, Linear Programming, Addison Wesley,

Reading, Mass. , 1962, 520 pp.

4. Garvin, Walter W. , Introduction to Linear Programming,

McGraw-Hill Book Co. , Inc., New York, I960, pp. 50-53,

246-257.

5. Dantzig, George B. , "On the significance of solving linear

programming problems with some integer variables, "

Econometrica, Vol. 28, No. 1, pp. 30-44; Jan. 1960.

6. Wolfe, Philip, "The simplex method for quadratic program-

ming, " Econometrica, Vol. 27, No. 3, pp. 382-398; June

1959.

7. Kuhn, H. W. and Tucker, A. W. , "Nonlinear Programming, "

Second Berkeley Symposium on Mathematical Statistics and

Probability, Univ. of California Press, 1951, pp. 481-492.

8. Beale, E. M. L. "On Quadratic Programming, " U. S. Naval

Research Logistics Quarterly, Vol. 6, pp. 227-243, 1959.

-46-

	Copyright notice 1962
	ERL-10

