

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

WHY IS ATPG EASY?

by

Philip Chong, Mukul R. Prasad and Kurt Keutzer

Memorandum No. UCB/ERL M99/9

25 February 1999

WHY IS ATPG EASY?

by

Philip Chong, Mukul R. Prasad and Kurt Keutzer

Memorandum No. UCB/ERL M99/9

25 February 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Why is ATPG easy?

Philip Chong Mukul R. Prasad Kurt Keutzer
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

25th February 1999

Abstract

Empirical observation shows that practically encountered instances of ATPG are efficiently solvable.
However, it has been known for more than two decades that ATPG is an NP-complete problem [IS75]. This
work is one of the first attempts to reconcile these seemingly disparate results. We introduce the concept
of cut-width of a circuit and characterize the complexity of ATPG in terms of this property. We provide
theoretical results and empirical evidence to argue that an interestingly large class of practical circuits have
cut-width characteristics which ensure efficient solution of ATPG on them.

1 Introduction

Automatic test pattern generation (ATPG) techniques find widespread use in a number of CAD applications.
In addition to the important task of generating test patterns for testing digital hardware, for which they were
originally proposed, they have proved to be effective tools of logic optimization [DMSV88, CE93] and have
recently found application in verification techniques as well (Bra93, KSL95]. It has been known for more than
two decades that the ATPG problem is NP-complete [IS75]. This means that there cannot exist an algorithm
which solves an arbitrary instance of this problem in poljmomial time, unless P = NP. However, as early
as 1979, Williams and Parker [WP79] claimed that for preu^tically encoxmtered instances of the problem the
complexity of ATPG is only 0(n®). In fact, the widespread use of ATPG-based techniques can largely be
attributed to the relative ease with which large instances of the problem are solved in practice.

We corroborated the claim that ATPG is easily solvable in practice by performing the following experiment.
ATPG wascarriedout on the combinational circuitsfrom the MCNC91 [Yan91] and ISCAS85 [BF85] bench
mark suites, usingTEGUS [SBSV96], an ATPG tool basedon a Boolean satisfiability (SAT) formulation. The
time to solve each SAT instsmce was recorded as a function of the size of the instance and plotted in Figure
1. Of the 11,000 SAT instances generated, some with over 15,000 variables, over 90% were solved in less than
1/lOOth of second; the remaining exhibited roughly a cubic growth in execution time. Thus, the theoretical
worst case complexity of ATPG, i.e. the fact that it is NP-complete, would seem to be a poor indicator of the
practical ease of the problem. This work is one of the first attempts to offer a theoretical explanation for the
practical ease of ATPG.

The practical ease of ATPG suggests that there is some underlying property common to read-life ATPG
instances which makes them tractable. These instances are usually derived from prau^ticad VLSI circuits. There
fore, wedevelop a charaicterization of the complexity ofsolving ATPG in terms of a topologicad circuitproperty,
naunely cut-width. We adso demonstrate, through theoretical atrguments and experiments on practical circuits,
that a laurge class of interesting circuits have smadl cut-widihs^ provably permitting efficient solution of ATPG
on them.

Weuse a popular formulation baised on SAT(alsoa well known NP-complete problem) ais our working model
of the ATPG algorithm. This formulation wais originally proposed by Laixabee [Laur89] and later developed by
Stephan et al. [SBSV96]. The reason for this choice is twofold. First, SAT is a well researched problem (see
[GPFW97] for an excellent survey), andoffers a clean andgeneral framework for anadyzing a wide range ofsearch

0.00014x3-0.706Sx2+1323.4x.638304 « V

.

• i .

4. *

lAMii rr;< :;

4000 4SOO 5000

Figure 1: Results of TEGUS on ATPG-SAT instances

techniques and heuristics. Second, SAT is a solution platform for a large number of other CAD applications.
Therefore, understanding the functioning of SAT on ATPG might offer insight into several other related SAT
applications.

The remainder of the paper is organized as follows. We begin with some definitionsand notation in Section 2.
In Section 3 we discuss some seemingly promising approaches for analyzing the complexity ofATPG instances.
Unfortunately, these approaches provide only an incomplete or inconclusive answer to the practical easiness
of ATPG. Section 4 presents our model of the backtracking based algorithm for solving SAT, the cut-width
property of circuits, and an analysis of the complexity of ATPG in terms of cut-width. In Section 5 wepresent
both theoretical arguments and empiriceil results to show that a cut-width based argument does in fact predict
a polynomial runtuneofATPG on a large class ofpractical circuits. In Section 6 we present interesting parallels
and points ofcontrastbetween our resultsand published work suidressing bounds on the size of binarydecision
diagrams (BDDs). We conclude with directions for future research in Section 7.

2 Definitions and Notation

Definition 2.1 Single Stuck-at-fault; Given a Boolean network C [BRSVW87J, a single stuck-at fault
^ B) is one which causes a net X in C to he permanently stuck at logic value B (where B€ {0,1}).

Definition 2.2 Faulted Circuit; Given a circuit C and a single-stuck at fault if;{X,B), denote by the
circuit C with the fault tp operative i.e. fault-net X asserted to value B.

Definition 2.3 The ATPG Problem; Given a Boolean network C and a single stuck-at fault tj), tiie ATPG-
problem ATPG{Cy^{X^B)) has the answer YES if and only if there exists an assignment of Boolean values
to the primary inputs of C (and also) such that fault net X has complementary logic values in C and
and at least one of the primary outputs of C (and also) have complementary logic values. Such a Boolean
assignment, if one exists is said to be a test for the fault il;. Otherwise the fault is said to be untestable.

Definition 2.4 CIRCUIT-SAT; Given a Boolean circuitC, the answerto theproblem CIRCUIT—SAT{C)
is YES iff there exists an assignment of Boolean values to the primary inputs of C which sets at least one of
the primary outputs of C to logic value 1. This assignment is called a satisfying assignment of C.

A conjunctive normal form (CNF) Boolean formula f on n Boolean variables xi,X2,-.. ,Xn is a set of
m clauses Ci,C2,.. -Cm- Each clause Cj is a set of ki literals Zi,.. A literal is an instance of a variable
or its complement. / is interpreted as the conjunction (logical AND) of the clauses Ci,C2,...Cm, each of
which is interpreted as the disjunction (logical OR) of its constituent literals. For example, the formula / =
(a:i VxJ) A{x2 V2:3) is represented as / = {Ci,C2}, where Ci = {xi,®!} and C2 = {x2,X3}.

(c+ a)(c + 6)(c+ a + 6)

o b

(a + b){a+ 6)

(c + a)(c + b){c +a + b)

(c + tt)(c+ 6)(c+ 2 + 6)

Figure 2: SAT formulas for simple gates

Definition 2.5 SAT; The Boolean satisfiability problem SAT{f) has an answer YES iff there exists an as
signment of Boolean values to the variables xi,X2,... ,Xn under which f evaluates to 1.

SAT andCIRCUIT-SAT are well known instances ofNP-Complete problems [GJ79]. ACIRCUIT-SAT
problem on C csm be posed as a SAT problem on an appropriate Booleem formula /(C). /(C) has onevariable
for each signal net in C and a set of clauses for each gate (of the form shown in Figure 2). Additionally,
there is a clause asserting that at least one output needs to be 1. In the following treatment we willmake no
distinctionbetween the CIRCUIT —SAT problem on a circuit C and the Boolean satisfiability problem on its
corresponding Boolean formula /(C). The set of variables of /(C) will be denoted by Vc-

The ATPG problemcan be naturally cast as a satisfiability problem by formulating it as a CIRCUIT-SAT
problem on a suitable circuit derived from the original circuit C and the fault if}.

• The sub-circuit of C^ corresponding to the transitive-fanout of X in C^p. has as its
primary inputs, gates on the fault-boundary of C (Figure 3).

• CJ,"^: The sub-circuit ofC containing aJl gates, inputs £uid outputs inthe transitive fetnin of thetransitive
fgmout of the fault-point X.

• The circuit corresponding to the pairwise XOR of the outputs of CJ"^ and ^7^®"®®'
derives its inputs from appropriate signal points in C^.

The set of all satisfying assignments for the CIRCUIT-SAT instance gives precisely the set of all
input vectors that test the fault y (see [Lar89] for details). Thus the ATPG problem ATPG{C,if}{X,C)) can
be formulated as aninstance ofBoolean satisfiability, namely CIRCUIT —SAT^C^"^^^). Henceforth, we will
refer to this specisd instance of the satisfiability problem as ATPG-SAT.

Fault Boundary

Fault , B)

Figme 3: Circuit used for ATPG-SAT

Figure 4: CIRCUIT —SAT instances are not q-Horn

Definition 2.6 ATPG-SAT refers to the SAT instance corresponding to an ATPG problem. Specifically,
ATPG —SAT{C,tj}) refers to the SAT formula for testing the single stuck-at fault if) on circuit C.

Throughout this discussion, we assume the circuits we de2d with have gates with fanin and fanout boimded
by kfi and fc/o, respectively. We also assume the circuits are mapped to simple AND and OR gates, allowing
inversions. The former restriction is enforced for practicality; design and technology constraints prohibit un
limited fanin and fanout. The latter restriction is enforced to facilitate the construction of the corresponding
SAT formulas; it is difficult in practice to derive SAT formulas for arbitrsiry gates. TEGUS [SBSV96] enforces
this latter condition for exeu^tly this reason.

3 Applying Existing Techniques

There are a numberof ways of exploring the easiness of ATPG. One approach is to try and seewhat classes of
ATPG problems can be solved in polynomial time, i.e. whether there exists an algorithm that C2tn solve those
ATPG instances in polynomial time. Alternatively, one could start with the SAT formidation of ATPG and
attempt to show through either a worst case or average case anstlysis that some set of ATPG-SAT instances are
easy to solve.

Here wediscuss three such approaches based on an application of existingresults and techniques. Weshow
that none of them is capableofoffering a conclusive or sufficiently generalexplamation for the easiness of ATPG.
The reason for this is that these approaches cannotexploitthe fact that practicalcircuits are considerably more
regular than arbitrary Boolean circuits. In our analysis (Section 4) we attempt to circumvent this shortcoming
by developing a charsicterization of the complexity of ATPG-SAT in terms of circuit properties.

3.1 Simple SAT Classes

Some classes of SAT problems are known to be solvable in polynomi£il time; efficient algorithms are known for
solving SAT formulas of a particular form. Hom-SAT is one such widely known class. Boros et al. [BCH90]
identify an even more general class of SAT formulas known as q-Hom\ the set of q-Hom problems include
Hom-SAT problems as well as severed other pol3momial time classes, such as 2-SAT, HMden-Hom-SAT and
Extended-Hom-SAT.

If we could show that em interestingly leurge class of ATPG-SAT instances fedl into one of the known poly-
nomied time solvable SAT classes it would imply that the corresponding classof ATPG problems axe efficiently
solvable. We argue that it is highly unlikely that any ATPG-SAT instances of prewtical significance lie in one
of the polynomial SAT classes.

Recall that ATPGr-SAT axe specialized instzmces of CIRCUIT-SAT. Consider the circuit of Figure 4. Even
this simple CIRCUIT-SAT instance doesnot fall into the class of q-Hom formulas (Appendix D gives a detailed
proof). Thus it appears that the easiness of ATPG-SAT cannot be explained solely by the intrinsic easiness of
the SAT formulas. The answer lies in relating the solution process of SAT to the properties of the circuits from
which they were derived. We investigate this further in Section 4.

p{u) 1

«p(-ra:)

Pure Literal

useless Variab

Pure Literal

Pure Literal Hard

Pure Literal

Backtracking

n -,1^ s

Backtracking

ATPG-SAT

vexp(<v)

t{v)

Figure 5: Average Time Analysis (from [PB87])

3.2 A;-bounded Circuits

Fujiwara [Fuj88] introduced the notion ofk-hounded circuits andshowed that ATPG canbeefficiently performed
on this class of circuits^. This class ofcircuits was shown to contain some circuits ofpractical interest such as
ripple-carryadders, decoders, and one- and two-dimensional cellular arrays.

Briefly, a circuit is fc-bounded if its nodes can be partitioned into disjoint blockssuch that each block has at
most k inputs, and the blocks form a DAG with no reconvergent paths. Simplyput this means that all the
reconvergence of the circuit is of a local nature, i.e. confined within fc-input blocks. Practical circuitswith deep
reconvergent paths axe abundant. Hence, A;-boundedness seemsto be too restrictive a property to be applied to
general VLSI circuits.

3.3 Average-Time Analysis

Another approach of assessing the complexity of ATPG-SAT would be to perform an average running time
analysis on the the population of ATPG-SAT instances. A number of average-time analyses have already been
done for difiierent models ofSAT formulas and algorithms; for ouransdysis we use the one presented in [PB87].

Consider SAT instances generated by the following model. Let v be the number of variables in a SAT
instance. Let p{v) be the probability that a given literal appears in a given CNF clause, and let t{v) be the
number ofCNF clauses which appear in the SAT instance. Agiven pairoffunctions, p{v) and <(t;) characterize
a fgunily of SAT instances.

Figure 5 is taken from [PB87] anddepicts the space ofSAT problems given the p{v) and t{y) functions. The
lines delimit areas of SAT problems which have a known polynomial average running time algorithm and are
labeled with the name of the associated algorithm. The areas labeled "Hard" and "Difficult" characterize the
problems for which there is no known polynomial average running time algorithm.

As per the analysis given in Appendix C, under suitable assumptions on the topology of circuits, the Ha-ss
ofcorresponding CIRCUIT-SAT formulas can be shown to have p{v) - ^ and t{v) > 1.963t;. ATPG-SAT
instances, being specialized instances of CIRCUIT-SAT, are a subset of this class. The point depicting this
class is shown marked with ATPG-SAT on Figure 5. Thispoint lies just inside the region marked "Easy" for

^This algorithm is exponential in k, but for constant k, the algorithm is polynomial in the circuit size.

0-
0 3>

(a) CIRCUIT-SAT example

Fnulted Sub-circuit

(b) ATPG circuit exaimple

Figiire 6: Example Circuits

backtracking algorithms smd would seem to imply that ATPG-SAT instances have polynomial average running
time. However, this conclusion is flawed, since the class of ATPG-SAT instances represent only a frauAion of the
family of instances represented by that point. It could well be the case that ATPG-SAT instances exhibit an
exponential runtime whereas the remaining instances in this class are fairly easy to solve and thereby responsible
for the polynomial average rimtime of the family as a whole. Thus this analysis is inconclusive at best.

4 Analysis of ATPG-SAT

A niunber of approaches for solving Boolean satisfiability have been proposed in the literature [GPFW97].
Among these, backtracking based approaches are the most popular. Hence, for our analysis of ATPG-SAT
we chose to model the SAT algorithm by a "caching based" variant of simple backtracking [GPFW97]. This
algorithm is described in Section 4.1. We introduce the notion of cut-width of a circuit and characterize the
worst case complexity of solving ATPG-SAT instances in terms of the cut-width of circuits from which the
instances were derived.

To illustrate the salient results, we wiUuse the circuit shown in Figure 6(a) as oiur working example. As per
the discussion in Section 2 the CIRCUIT-SAT instance corresponding to this circuit is:

(6+ /)(c + f){b + c + f){d -f g){e + g){d -1- e + g){a + /i)(/ + h){a + f + h){h + i){g + t){h + g + i)(i) (4.1)

The ATPG problem we consider is a stuck-at-1 fault on the net /. The ATPG-SAT instance generated by
this fault corresponds to the circuit shown in Figure 6(b).

4.1 Caching-Based Backtracking for CIRCUIT-SAT

Most popular backtracking based algorithms, especially those proposed in the CAD literature [SBSV96, SS96],
have some feature built in to reduce conflicts during backtracking. This may be in the form of a pre-processed
set of global implications [SBSV96] or in the form of generating and storing conflict-induced clauses by "learning"
from conflicts [SS96]. Our caching basedversion of simple backtracking is a way of modeling this feature.

The essential idea of caching based backtracking is to perform simple backtracking with a flxed variable
order, except that whenever the algorithm backtracks from an unsatisflable sub-formula, the sub-formula is
cached. Correspondingly, before a sub-formula is taken up for a satisflability check, it is looked up in the cache.
If found, it can be diagnosed immediately as being unsatisflable and the algorithm can betcktrack from it without
trjring any further veuriable assignments. The pseudo-code for the algorithm appears below. In Algorithm 1, /
is the CNF Boolesm formula for the satisfiability check, h is a function that orders the variables of /, and T is
a hash table for storing the set of unsatisflable sub-formulas of f encountered during the backtracking search.

Algorithm 1 Satisfiability through Caching-Based Backtracking
procedure Sat(T,/i,/)
r<-0
if Cache^at(t;/i„t,0,/) = "UNSAT" and Cache^at(v/i„t, 1,/) = "UNSAT" then

return "UNSAT"

else

return "SAT"

end if

procedure Cache_Sat(v<.«rrent,B, fsub)
{vcurreni • Variable currentljr chosen forassignment, B :Value cissigned to Vcurren*}
faub ^ •^ssign(/jy^, Veurrent)®)
if NulLClause(/,„6) then

return "UNSAT"

else {fsub has no NULLclauses}
if Table_Lookup(7", fsub) then

return "UNSAT"

end if

Vnext •«- Next_Var(Wet.rrent,h)
if Cache_SAT(v„ext,0,A„6) = "SAT" then

return "SAT"

end if

if CacheJSAT(une«t,l,Au6) = "SAT" then
return "SAT"

end if

{Both Subtrees UNSAT}
Insert_Table(7', fsub)
return "UNSAT"

end if

Figtire 7showsan examplerun ofthis algorithm on Formula4.1. The variableorderingA = {b<c<f<a<
h<d<e<g<i)is used for the backtretcking search. Note there are severalplaceswhere the cachingstrategy
works to prune the search. For example,_consider the partial assignment 6 = 0,c = 0,/ = 0,a = 0,h = 0;
this leaves the sub-formula {d g){e+ g){d-\-e + g){g + t)(i)(t). This same sub-formula is obtained under the
assignment 6 = 0,c = 0,/ = 0,a = l,h = 0, and so we can prune this branch of the search without further
computation.

The running time of Algorithm 1 on a given formula /, is denoted by 72.(/) and can be analyzed as follows.
A sub-formula of / is obtained by setting a subset of the variables of / to certain values. Define a consistent
sub-formula of / as a sub-formula having no empty claused (i.e. a clause where all the literals have been set to
false imder the paurtiaJ assignment).

We assume that the sub-formulas are cached as sets of clauses. Thus, from our point of view two sub-formulas
axe identical if and only if they have the same set of clauses.^ "^{f) is upper bounded by the product of the
size of the backtracking tree gmd the worst csise time for a single cax:he access (insertion, lookup or deletion).
Since each cache access can be at worst linear in the size of the backtretddng tree, the specific cache access
time cannot alter the asymptotic nature of the running time (i.e. cause the difference between a polsmomisd
and exponential run time). Hence, for the purpose of this ansJysis we assume that the caching is perfect; cache
lookups and insertions can be done in constant time. Underthis scenario, 72^(/) is upper-bounded by the sizeof
the backtracking tree, which in tium is bounded by the number of distinct consistent sub-formulas (DCSFs) of
/ that can be generated under a particular static ordering of the formula variables. Thus, under the ordering
h,

W) = 0(m(^))) (4.2)

where F{fPh{V)) is the number of DCSFs of /, under the ordering fe, V is the set of variables of f and VhiY)

^A formula with empty clauses is trivially unsatisfiable.
^Sub-formulas with a different setofclauses may still befunctionally equivalent. However, we donot recognize thisequivalence

in this treatment.

Ordering A: b<c<f<a<h<d<e<g<i
V:^ v=l

X Null Clause

7] Cache Hit

X X

SIX X

X X X X X SAT

Figure 7: Caching-based backtracking for Formula 4.1

denotes the set of those subsets of V which are valid prefixes of the ordering h. If the formula / corresponds to
a CIRCUIT-SAT instsince, generated fiom a circuit C, we further charetcterize 72.(/) in terms of a topological
property of C. This characterization is developed in the following section.

4.2 Cut-width and Sub-formula Count

Consider a CIRCUIT-SAT formula /(C) correspondingto circuit C. For the initial part of the analysis assume
that C has a single output. The results are extended to multi-output circuits, in Section 4.3. The network C
can be seen as an imdirected hypergraph with the signals as the hyper-edges, and the gates, inputs and outputs
as the nodes. For the purpose of this exposition a Boolesm network and its underl3dng hypergraph are not
distinguished. Cut-width of a hypergraph is defined as follows.

Definition 4.1 Given a hypergraph C(y, E) and a one-to-onefunction h, ordering the vertices of G. h :V —¥
{1,2,... , |V|}. The cut-width ofG, under the ordering h, is denoted as W{G,h) and is given by the expression

W{Gyh) = e E : 3u,v GV such that {u,u} C e and h(u) <i< h(v)}|

(Note: that each hyperedge e ofC is denoted bythe set ofvertices spanned by that hjrperedge.) The minimum
cut-width of G over all possible orderings h is denoted by U^mi„(C). Henceforth, cut-width of a circuit without
mention of a particular variable ordering will refer to the mmimnm cut-width Wmin{G).

Figure 8 illustrates the notion of cut-width on the exsimple circuit from Figure 6(a), using two different
variable orderings, A and B. Ordering A, which was used for the backtradcing tree example of Figure 7, aJso
happens to be a minimum cut-width {Wmin) ordering for this circuit.

The number of nodes at a certedn level in the backtracking tree for /(C) can be bounded in terms of the
size of £ui appropriate cut of the circuit C. A disjoint partition {6vc i<5vc) of the variables Vc defines a unique
cut in C. An assignment of truth values to the variables in the formula /(C) yields a sub-formula fsubiC)
of/(C).

Lemma 4.1 Given a Boolean network C, its corresponding CIRCUIT-SATformula /(C) and a cut {Svc^^Vc)
of Vc, the number of DCSFs that can be obtained by the set of all possible truth assignments to the variables

CutZ

Ordering B
Cutwidth=5

Figure 8: Example cut-widths for the circuit of Figure 6(a)

gHjd
Ordering A' Culwidth=4

Figure 9: Example cut-width, ATPG circuit of Figure 6(b)

6vc is denoted by J^{Svc) can he bounded as:

where |(^Vc»^Vc)l denotes the size of the cut, i.e. the number of distinct nets crossing the cut.

(4.3)

Proof: See Appendix A.l. •
The usefulness of this result stems &om the fact that the formula set size is exponentiztl not in the size

of the variable set but in the size of the cut, which could be potentisJly much smaller. For example consider
the cut (^v,5v) on the circuit of Figure 6(a), with Sv —{6,c,/,a,h}; this corresponds to the level in the
backtracking tree corresponding to the Cut Z label in Figure 8. A naive boimd suggests that there are 2®
possible sub-formulas generated after the assignment of the variables in Sy (there are 2® distinct assignments
to the variables). However, the assigned variables have only one mesms of affecting the sub-formulas on the
unassigned variables; this is through the single cut net between h and i. Thus regardless of the assignment to
the variables of (5v, Lemma 4.1 indicates that there can be at most 2^ distinct sub-formulas for any assignment
to the 8v variables.

Based on this result and the above definition of the cut-width of a circuit we derive the following bound for
the running time of Algorithm 1 on f{C).

Theorem 4.1 Given a Boolean network C and ordering h on Vc, Algorithm 1 can solve the CIRCUIT —SAT
instance f{C) in time 0{n •{2^^toW{c,h)y^^ where n = \Vc\.

Proof: See Appendix A.2. •
From the above result it is evident that if a circuit has a cut-width which is logarithmic in the size of the

circuit, CIRCUIT-SAT can be performed on it in poljmomial time. We discuss further implications of this
result in Section 5 where we provide theoretical as well as empirical results analyzing cut-width properties for
practical classes of circuits.

As expleuned in Section 2, under the SAT formulation of the ATPG problem, testing for a certain fault ^
on a circuit C amounts to performing CIRCUIT-SAT on a certain circuit, namely The following result
shows that, for any fault tp in circuit C, the cut-width of C is linearly related to the cut-width of This
meems that we can reason about the asymptotic behavior of Algorithm 1, on ATPG-SAT instetnces generated
from circuit C, by analyzing the cut-width properties of circuit C (or sub-circuits thereof) rather than having
to deal with the circuit which could be significantly more involved.

Lemma 4.2 Given a Boolean network C, for any ordering h of the variables Vc and any fault on C ,3 an
ordering of the variables of such that

ftv) < 2 •W{C,ft) + 2 (4.4)

Proof: See Appendix A.3. •
Figure 9 illustrates this result on our example ATPG circuit from Figure 6(b). As shown in Figure 8 the

circuit of Figure 6(a) has a cut-width of 3 under ordering A (Figure 7). The ordering A' can be derived (see
Appendix A.3) from this to yield a cut-width of 4 for the ATPG circuit of Figure 6(b).

4.3 Extension to Multi-output Circuits

The discussion so far has been restricted to single-output circuits. Consider a multi-output circuit C, with p
primary outputs oi, 02,. •. Op. For the purpose of a CIRCUIT-SAT test, C can be seen as a set ofp single-output
circuits {Ci, C2,... Op}, one esudi for the transitive fanin cone of eeudi primary output. CIRCUIT-SAT on C
can be performed by performing CIRCUIT-SAT on each of the single-output circuits Ci, C2,... Cp, one at a
time. Then, CIRCUIT - SAT{C) - CIRCUIT - SAT{Ci) V... VCIRCUIT - SAT{Cp).

In this scenario, the results of Sections 4.1 and 4.2 can be applied to multi-output circuits as follows. Given
a multi-output circuit C = {Ci,C2,... Cp} anda,set H ~ {hi,h2,... hp} ofnode orderings for thesingle-output
circuits Ci, C2,... Cp, the notion of cut-width as given by Definition 4.1 can be extended as:

W{C,H)= max W{Ci,hi) (4.5)
*€{1,2,...p}

The minimum cut-width W'mtn(C) generalizes on similar lines, except now the miniTmiTn is overall possible
sets of orderings H. Hence the running time of CIRCUIT-SAT(C), (based on Algorithm 1) can be bounded as:

^(/(^)) = C{p •Umax • where n^o® = |Vc, |. (4.6)
t6{l,2,...p}

Similarly, Lemma 4.2 c£in be restated as:

Lemma 4.3 Given a multi-output Boolean network C, for any set of orderings H = {/iijh2,...hp} of the
variables Vci, Vcji •••VCp and any fault tj; on C, 3 an ordering of the variables of such that

W{C$'̂ ^°,H^)<2-W{C,H) + 2 (4.7)

5 Cut-width Properties of Circuits

5.1 Log-bounded-width Circuits

In the following we define a classof circuits known as log-bounded-width circuits and show that by employing
Algorithm 1 ATPG can be efficiently performed on these circuits. We also prove that fc-bounded circuits (see
Section 3.2) lie within the class of log-bounded-width circuits.

Definition 5.1 A given multi-output circuit C is log-bounded-width if for each single stuck-atfault if) on C,
there exists a set of orderings H of the variables Vnsnb, such that

lb

W(C'̂ , H) = 0(ios(|CJ-'|)) (5.1)

Lemma 5.1 Given a log-bounded-width circuit C and any single stuck-at fault if) on C, test generation for if)
can be accomplished in time polynomial in the size of the circuit C.

10

Proof: Applying Lemma 4.3 and Equation 4.6 to the definition of log-bounded-width above (Definition 5.1), we
can use Algorithm 1tosolve the instance ATPG —SAT{Cjtp) in time polynomial in \C^^\. Since \C^^\ < |C|,
then the running time is polynomial in \C\ as well. •

Lemma 5.2 Given a k-ary tree T, there exists an ordering h, of the variables Vj- such that W(T, h) < {k —
l)log(n).

Proof: See Appendix B.l. •

Theorem 5.1 Any k-bounded circuit, for a given constant k is log-bounded-width.

Proof: See Appendix B.2. •
As shown above, tree circuits are of log-bounded-width. Intuitively, reconvergence tends to increase circuit

cut-width. But, as long as the circuits are sufficiently "tree-like" the log-bounded-width property could be
expected to apply. The locality of reconvergence required by k-boundedness is just one instsmce of this, (which
log-bounded-width has been shown to capture). In principle log-bounded-width simply requires a minimality
of reconvergence and is therefore a more general property than fc-boundedness.

5.2 Practical VLSI circuits

Prom the discussion on circuit cut-width it is apparent that cut-width is intrinsically linked to the topology
of the circuit. Thus, when a class of circuits Ccm be described in terms of suitable topological characteristics,
it is possible to derive the cut-width properties of that class, and reason about the asymptotic complexity
of ATPG-SAT, as was done for log-bounded-width circuits and k-bounded circuits above. However, practical
designs are usustlly not specified in such a manner. Moreover, extracting common topological characteristics
from a set of arbitrary circuit designs is a non-trivial task and beyond the scope of this paper. Thus, we have
instead performed an empirical study of cut-width for a set of circuits. The study is orgsmized in two parts. In
the first part we study circuits in the MCNC91 and ISCAS85 multi-level combinational benchmark suites
and estimate their cut-widths. In the second part of this study, we examine the growth of circuit cut-width
compared to the size of the circuit. [HGRC96] presents a system which extracts topologicalproperties from a
given circuit smd generates arbitrarily large circuits which have similar characteristics. Using this scheme we
generate a "family" of circuits from a given circuit and then examine the cut-width properties of this family.

5.2.1 Experimental Setup

The key element of our experimented setup is a mechanism to measure the cut-width of a single-output circuit
C. This can then be used to derive the cut-width of a multi-output circuit. From the definition, the miniminn
cut-width is simply the value of the max-cut obtained under a min-cut linear arrangement [GJ79] of C. Since
the min-cut linear arrangement (MLA) problem is known to be NP-complete, we use a well-known algorithm
[Hoc97] to approximate the MLA, and hence estimate the cut-width for a given circuit. The approximation
algorithm generates a placement based on recursive mincut bipartitioning, until the partitions are sufficiently
small and then performs an exact MLA for each of these pgurtitions. We used the HMETIS package [KAKS97]
from the University of Minnesota to perform the bipartitioning.

For a set of circuits under study the ease of ATPG problem can be gauged by analyzing the difficulty of the
ATPG-SAT instances generated by them. To this end, we generated one data-point for each potential fault in
each circuit. For a given fault if in circuit C, the data-point measures the approximate cut-width of the circuit

versus the size of this circuit. The size of the circuit is an approximate measure of the size of the
SAT instance ATPG —SAT{C,i})) (in terms of the number of variables) and the cut-width of this circuit is
indicative of the complexityof solving this instance (as per Equation 4.6 and Lemma 4.3).

Note that we do not necessarily advocate using MLA as a method for solving ATPG. Certainly, one could
compute (or approximate) the MLAfor a circuit to obtain a suitable variable orderingfor Algorithm 1. However,
this is not the motivation for the experiment; we only use the MLA here to obtain the cut-width characteristics
of our circuits and show that we expect these circuits to be easily testable.

11

(a) MCNC91 logic benchmarks (11315datapoints) (b) ISCAS85 benchmarks (7389 datapoints)

Figure 10: Cut-width results for benchmEirk circuits

5.2.2 Study of Existing Benchmark Suites

In studying the cut-width properties of the MCNC91 and ISCAS85 benchmark circuits, it became clear
that the individual circuits have different structural properties. Some of these circuits have nodes with fanin
of a dozen or more inputs, while others are composed solely of two-input AND gates £ind inverters. Similarly^
some of the benchmark circuits have nodes which implement complex functions, while others use only simple
AND/OR gates.

Thesedifferences probablywould not exist in actual implementations of circuits; fanin and node complexity
is necessEurily limited dueto speed andsize requirements on the gates. Moreover, for the purposes ofperforming
ATPG it is often desirable to map circuits to simple AND and ORgates (with inverters), as the corresponding
SAT formulas become much easier to derive. Thus, in order to bring more uniformity to the circuits Emd to
more closely emulate the Eu:tual ATPG process, we mapped the benchmEurk circuits to three or fewer input
AND/OR gate networks, allowing inversions. The tech_decomp procedure from the logic optimization pEickage
SIS [S"'"98] was used to perform this mapping.

As described above, for every potential fault ^ in each circuit, we determined the difficulty of solving the
related ATPG —SAT instEmce by finding an estimate for the cut-width of the sub-circuit Figure 10(a)
shows the results for the circuits identified as "logic" circuits fi:om the MCNC91 benchmark suite. We excluded
circuit t481, which we considered degenerate, havingover 3800 nodes after gate mapping yet with only a single
output. Figure 10(b) corresponds to the ISCAS85 combinationsd benchmark circuits. We omitted the circuits
C3540 and C6288 in this Einalysis, due to limitations in our min-cut linear arrangement tool.^ We expect
C6288 to have a large cut-width, as it has been traxlitionEdly known as a difficult example to test in the CAD
community. In any event, our method ran successfully for all the remaining benchmarks (48 firom MCNC91
and 9 firom ISCAS85).

Note that the growth of cut-width versus circuit size is smsdl; on the graphs we plot log curves fitted to
the data points to illustrate this. These plots suggest that the cut-width is roughly a logarithmic function of
circuit size for these circuits, and so we CEua expect these benchmarks to be easily testable. This agrees with
the empirical results from TEGUS (Figure 1).

^We used HMETIS in a mode which fixed some vertices to specific partitions. Thesecircuitsgenerated too manyfixed vertices
for HMETIS to handle.

12

5.2.3 Study of Generated Circuits

Using the existing benchmark suites limits the size of the circuits which we analyze. Ideally, we would like
to have a large range of circuit sizes so that we can exsunine the growth of the cut-width with larger circuits.
To this end, we adopted the approach of synthesizing circuits using the programs circ and gen, described in
{HGRC96]. These programs respectively extract important characteristics from existing circuits and generate
rsmdom circuits with these same characteristics. Note that these programs do not generate any useful circuits
in that the function of each node is undefined. However, this is of no concern to us, as we are only interested
in the structure of the circuit, in particular the cut-width corresponding to each possible fault point.

Our goal is to generate circuits with structures similar to the original MCNC benchmark circuits but with
varying sizes. To this end-, we use circ to find the characteristics for a selection of the benchmark circuits,
and then scale these parameters before using gen. In particular, we change only the number of nodes in the
circuit, the number of primary inputs, the number of primary outputs, and the number of edges (nets) in the
circuit. We do not change the depth of logic, as this parameter is' bounded for practical circuits to meet delay
constrmnts. We edso do not change the distribution of delays, fanouts or edge lengths in the circuit; [HGRC96]
identifies these pareoneters as important in characterizing the structure of a circuit, and we wish to obtadn
circuits structurally similar to the original benchmarks.

For each benchmark circuit used here, we used circ and gen to generate a "family" of circuits ranging
&om 1,000 nodes to 6,000 nodes. For each generated circuit, we take each possible fault find the induced
sub-circuit and calculate the size of this sub-circuit and its minimum cut-width; this is exactly the same
procedure as used with the original benchmark circuits.

Figures 11(a) through 12(b) show the cut-width versus circuit size for four diJfferent families of circuits
generated as described above. We used a least-squaures method [Mey75] to fit three different curves to the data:
linear (y = ox 6), logarithmic (y = alog(x) + 6) and power (y = ax^) curves, where y is the cut-width and
X is the number of nodes. Of the three curves, the log curve gives the smsdlest square error for all four circuit
families; the best-fit curves are shown in the figures.

For the generated circuits, there appears to be more spread of the data away from the fitted curves than
for the existing benchmarks. We suggest that this is due to the randomness of the circuits built by gen; the
hand-designed benchmark circuits have apparent regularities (e.g. some benchmark circuits have identical cone
sizes across all outputs) which cannot be captured by gen, and these regularities help reduce the variance of
our data as compared to random circuits.

In 8uiy case, the growth of the cut-width is sub-lineeir with the size of the circuit, which indicates that the
complexity of ATPG on typical circuits grows sub-exponentially with the size of the problem.

6 HDDs and CIRCUIT-SAT

The concept of circuit-width has been used by researchers [Ber91, McM92] to obtain upper bounds on the size
of BDDs representing the circuit function. At first glance our treatment of circuit cut-width would seem to bear
a striking similarity to-these results. However, om: results have no direct relationship to the BDD bounds. We
discuss this aspect in some detsdl below and conclude that neither result subsumes the other, eetch useful in its
own domain.

Binary decision diagrams (BDDs) and CNF Boolean formulas are both representations of Boolesm functions.
Solving CIRCUIT-SAT on a Boolean circuit C could be done by building a BDD for the circuit and doing a
"0" check on the BDD. Alternatively, one can construct a CNF Boolean formula /(C) and solve satisfiability
on the formula using a backtracking algorithm. In essence, a BDD and a backtreicking tree represent the same
entity, i.e. the Boolean space of the function.

Berman [Ber91] gave a boimd on the BDD size, for any topological ordering of the circuit elements. This
result was extended by McMillan [McM92] for arbitrary orderings. McMillsm's result can be summarized as
follows. Given a single-output circuit C, with n inputs, if the elements of C can be linearly ordered such that
over all cross-sections of the linear arrangement, Wf (forward width) bounds the number of wires running in
the forward direction and Wr (reverse width) bounds the number of wires in the reverse direction, then the size

13

« • »♦ »

»«»««M» • 0» ♦

wm m m ...-•'to'v*6*0"
mbMSm* mm
IMMMa»«0 • «

(a) cml62a family (37192 datapoints)

«« » •

SOO 1000 1500 2000

oo • • e» o» •

« «

»♦•«•#«»•«•« 000

♦ m ^ m •

9000 3S00 4000

(b) cml63a family (37776 datapoints)

Figure 11: Cut-width results for generated circuits

of the BDD representing the output of C can be upper bounded by . This result differsfrom the result
presented in this paper on two coimts.

• Our definition of circuit cut-width is independent of the direction of signal-flow (our characterization of
width ison an undirected h3rpergraph) and thussubstantially different from Wf and Wr in an operational
sense.

• The above result isexponential in the forward width and double-exponential in the reverse width, while our
result has only a single exponentisd. We exploit this property in defining the class of log-bounded-width
circuits.

The explanation for these discrepancies lies in the following differences betweenBDDs and CIRCUIT-SAT
formulas. BDDs represent the intrinsic natiure of a Boolean function, independent of the specific hardware
implementation, while CIRCUIT-SAT formulas (as per the construction of Section 2) are in one to one corre
spondence with the circuit topology. The result of [McM92] bounds the BDD size by bounding the number
of possible multi-output functions that a certain sub-circuit of the original circuit could compute. Our proof
technique however, treats the SAT formula as a string encoding the circuit topology and tries to bound the
number of distinct sub-strings that cam be generated from a partial truth assignment to the CIRCUIT-SAT
variables. Therefore, the two results, although similar in spirit, charsicterize different entities altogether.

7 Conclusions and Future Work

We have presented oneofthe first attemptsat reconciling the theoretical, worst case complexity ofATPG with
the relative ease with which practical instances of it are solved. For the purpose of anal}rsis we have employed
a SAT based formulation ofATPG [Lar89], with a caching based variant ofsimple backtracking (see Section 4)
used to model the SAT solver.

Under this model of the algorithm the complexity of ATPG on a given circuit has been characterized in
terms of a topological property of the circuit, namely the undirected circuit cut-width. Theoretical arguments
and experimental results confirm that this property can be used to predict polynomial runtimes of ATPG, for
a wide range of practical VLSI circuits.

Specifically, this analysis has been used to define a clsiss of circuitscalledlog-bounded-width circuits which
we have shown to be efficiently testable. Additionally, this class of circuits has been shown to subsume the

14

♦ «•

M4 «

—

y

/

o e • 4 «

f

(a) 14 family (38297 datapoints)

« ♦ • ««o

• ^ •«» • 4

1000 2000 9000 4000 5000 0000

(b) 19 family (37215 datapoints)

Figure 12: Cut-width results for generated circuits

class of fc-bounded circuits. Our experiments on a wide range of benchmark and generated circuits show that
they exhibit the log-bounded-width property. On an intuitive level the log-boimded-width property essentially
captures the "treeness" of the circuit. As long as a circuit has limited reconvergence (not necessarily local
reconvergence), the log-bounded-width property can be expected to apply.

The C2u:hing based variant of backtracking stud the results on min-cut linear arrangement have been used as
a proof methodology in this work. However, they can be extended into a practiced tool for performing ATPG
with suitable modifications. As a first step, the min-cut arrangement based variable ordering could be used to
replswje the naive ordering heuristics used by current ATPG-SAT solvers.

Practical SAT algorithms [Lar89, SBSV96, SS96] employ a host of other heuristics on top of backtracking,
in their respective solution engines. Quantifying the benefits of these additional heuristics could offer further
insight into the easiness of ATPG. Additionally, a number of circuit based CAD problems viz. false path
eliminating static timing anal3rsis, delay fault testing and logic verification use satisfiability as the core solution
engine. Since our analysis characterizes SAT in terms of circuit properties, in a more general setting the results
could potentially be applicable to these domains as well.

Appendix

A Proofs for Section 4

A.l Proof of Lemma 4.1

Consider the set of2'̂ ^ci possible different Boolean assignments to the variables Svc Only a fraction of these
produce consistent sub-formulas. It is these assignments that we consider here. These assignments partition
the clauses of f{C) into three disjoint categories.

• Clauses all of whose variables are part of Svc Every consistent sub-formula of f{C) has these clauses
satisfied.

• Clauses all of whose variables are part of Svc These clauses are unaffected by any assignment to the
variables Svc thus appear unaltered in any consistent sub-formula.

• Clauses part of whose variables are in Svc aJQd part in . We caJl these clauses injured clauses.

15

CASE 1.1

Assigned,

tW- •
f

Cut Net

Unassigned
/

CASE 1.2

Unassigned

•

t
Cut Net

Figure 13: Case 1 for generating injured clauses

CASE 2.1 CASE 2.2

Assigned

Cut Net

Unassigned
/

\

Cut Net

-M-

Assigned

/

Figmre 14: Ceise 2 for generating injured clauses

Prom theabove categorization it isclear that different consistent sub-formulas oftheset^{6vc) differ only in
the configuration ofthe injured clauses. Furthermore, under any assignment to variables Svc an injured clause
canhave only two different configinrations. Consider a typical injured clause C= {I1+I2+' •'+li+li+i +.. .+lk)
such that the variables corresponding to literals + ^2 d-... -I- If arepart ofSvq and the variables corresponding
to literals U+i + ... -t- Ifc are part of Svc Under any assignment to the variables 5vc^ C takes one of the two
configurations, (If+i + ... + Z&) or 1 (i.e. it has been satisfied). Thus we nan bound

!F{5y^) < 2^^ injured clauses) (A.1)

Anupper bound can be obtained forthe number ofinjured clauses based on the following arguments. Every
injured clause must contain at least one assigned variable and at least one unassigned variable. Moreover, a
pair of variables occur in a common clauseonly under one of the following two cases:

• Case 1: They form an input-output pair for a gate (see Figure 13). For this pair to produce an injured
clause either the input variable is assigned and the output unassigned or vice-versa. In both these cases,
the input net falls in the cut {Svci^Vc)-

• Case 2: They form a pair of "sibling" inputs for a common gate g (see Figure 14). As before, they
can be responsible for an injured clause if and only if one of them is assigned and the other imassigned.
Additionally, the output of g can be either assigned or unassigned. In either case, from the clause
construction of Figure 2, it is clear that every injmed clause that these "siblings" participate in already
contains a pair of variables that have been counted in Case 1 (namely the output of g and the input that
differs from the output in assignment status). Thus, this case is subsumed by Case L

Prom the above case analysis it is evident that every injured clause can be associated with a cut-net and
also that Case 1 can account for all injured clauses. Since the network is fmout-boimded by fe/©, each cut net
can fan out to kfo gates and therefore produce at most kfo instances of Case 1. Moreover, since the network is
composed ofprimitive gatesonly, a given padr ofvariables can occur in at most twocommon clauses (see Figure
2). Thus each cut net can account for at most 2kfo injuredclauses. Hence,

Number of injured clauses = 2fc/o|(^Vc)^Vc)l

Applying this result to Equation A.l the bound on J^{6vc) follows.

16

(A.2)

c

a

Signal
Node

Dummy
Node

d
b aUc

e

NOTE : a,b,c,d,e represent sets of nets

Figure 15: Proof for ATPG circuit width vs. original circuit width

bud

A.2 Proof of Theorem 4.1

To prove the result, we derive a bound on ^{Ph{Vc)) and then apply Equation 4.2. Recall that Ph{Vc)
{5vcl^Vc Q and <Jvc is a prefibc of the ordering h}. Therefore ^Ph^c)] = |^| = n.

m(vc)) <
Svc^Vh{Vc)

< n- max Pidvr-)
Svc€VHiVc)

< n • max (from Lemma 4.1)
Svc€Vh{Vc)

= n • (from Definition 4.1)

A.3 Proof of Lemma 4.2

Consider the composition of the circuit It is composed of the two sub-circuits and and a

single 2-input XOR gatet (see Figure 3). Note that both C'f®"®"* and aresub-circuits ofC. One may see
that given any variable ordering h for Vc, this implies a corresponding ordering ha^ib for any sub-circuit Caub
of C such that W{Caubi fiaufr) < ^{C, h).

Given ordering h for Vcr, a suitable ordering can be constructed as follows. Extract the implied orderings
for sub-circuits (7/®"®"* and from h. Now merge these two together by putting each variable u/ of
the faulted sub-circuit just after its corresponding '̂ unfaulted variable" v (derived from CJ"^). Now
construct by adding t to the beginning of this merged ordering. To derive the width of under this
ordering, consider the following.

The gate t is a two input gate and can therefore contribute at most 2 to ,h^) (this eiccoimts
for the gidditive 2 in the expression). Now, for the moment assume that the primary inputs of C"^®"®"* are
not fed from fanout points in but from separate dummy nodes (the dummy nodes are inserted after the
corresponding signal nodes in the ordering fi^). In this scenario it is easy to see that the width of the resulting
circuit is at most 2 • W(C, h) -f 2. Merging the dummy nodes with the corresponding signal nodes does not
increeise the cut-width of the resulting circuit (see Figure 15). Hence the required result follows.

17

B Proofs for Section 5

B.l Proof of Lemma 5.2

Consider a fc-ary tree T" over n vertices with root r. For a vertexordering, take the variables by usingdepth-first
search starting from the root; at each node visit the children in increasing order of the size of the sub-trees
rooted at each child. Under this ordering 7"has a max-cut of at most (fe —1)log(n) edges. This can be proved
by induction on n. For the base case n = 1, the cut is zero.

For larger n, there are two cases. Let Si, 1 < i < k be the subtrees rooted at the immediatechildren of r,
and let q be the size of the max-cut for Si. For the first case, let all |si| < n/2. Then the max-cut imder the
given DFSordering is at most (k—1)H- c, where c = maxf Ci. By the induction h3T>othesis, c < (A: —1)log(n/2),
so the max-cut of T is at most (fe —1) log(n).

For the second case, for some £, |st| > n/2. Then this subtree is visited last by the DFS ordering, amd so
the max-cut ofT by this ordering is at most max((A; - 1) -I- c,ct), where c = maxj^st c,. Since |st| < n/2, i 5^ £,
the induction hjrpothesis gives (A: - 1) -t- c < (fe - 1)log(n), and since |st| < n, ct < (A; - 1)log(n) as well.

Thus the max-cut of T is at most {k—1) log(n).

B.2 Proof of Theorem 5.1

First consider the graphG consisting ofthe blocks ofa A;-bounded circuit; by the non-reconvergence property of
k-bounded circuits, the cone for each output ofG is a A:-ary tree. Foreach output tree, usethe ordering scheme
proposed in the proof of Lemma 5.2 to order the blocks of G. Now, within each block order the vertices of the
block eu-bitrarily. Each block can thus increase the max-cut by a fzictor ofat most 2*^. Hence, given Lemma 5.2
for k-ary trees we can conclude an upper bound of2^ -{k- 1)log(n) for the max-cut ofa A;-bounded circuit.

C Average-Time Analysis

Let Vbe the number ofvariables in an SAT instance. Let p{v) be the probability that a given variable appears
in a given CNF clause, and let t{v) be the number of CNF clauses that appear in the SAT instance. Consider
the CIRCUIT-SAT problem applied to a circuit which contains only 2-input AND gates, allowing the inputs
and outputs of the gates to have inversions. Note that this is a typical decomposition technique used in the
presence of more complex gates used to simplify the construction of the SAT formula. If we construct the SAT
formulas for each gate, then a single gate will give rise to exactly three CNF clauses. For instance, if we have a
gate for x —y •z, then the CNF formula we obtain is (y+ x)(z -l- x)(y -f z -f a:). Suppose we have n gates, and
k primsuy inputs to the circuit; then we have u = n + A:.

Now consider the size of the clauses generated by this circuit. Twoclauses firom each gate willhave ex2u:tly
two literals, while the remaining clause will have three literstls. Thus the average clause length in the overaU
SAT formula is 5 literals. Since there axe 2v possible literals, any given literal has probability ^ ofappearing
in any given clause, so p(v) =

The analysis in [PB87] shows that, if hmt;-foo vp{v) = 6 > In2, then simple backtracking will give a poly
nomial average runmng tune when t{v) > (In2 + for some positive € and where d is the solution of
ln(l -H d) -I- dln(l -h 5) = 26. Now we have lim„_»oo VP(v) = | = 6, and solving for d gives d = 3.305. In
the limit as e —f 0, we require t{v) > ln(2)t;^ = 1.963v for a polynomial average running time. Note that
t{v) = 3n= 3{v —A:), so for a polynomial average running time we require 3{v —A;) > 1.963t;, oi k < 0.346v.

We expect, for practical circuits, that the primary inputs be only a sm^ fraction of the total number of
nodes. Since the circuits are mapped to 2-input AND gates and inverters, any interesting function will be
mapped to a large number of gates while leaving the number of primary inputs unaffected. Thus we assume
k < 0.346v, as required.

Above, we aissumed a formulation based on a CIRCUIT-SAT problem; note that an instance of ATPG can
be formulated as a CIRCUIT-SAT problem by simply duplicating part of the circuit.

18

*s

\

\

ctass •
CtSM •
casro 0
fjna X

OKU •
cnsz •

0 SCO 1000 1S00 aooo zm oooo osoo «ooo coo sooo

(a) p(w) VS. V

Cl»5 •
ctm •
CZS70 g»

SOO 1000 1500 2000 2SOO 3000 3500 4000 4500 SOOO

(b) t{v) vs. V

Figiire 16: Benchmark SAT instances in TEGUS

Figures 16(a) and 16(b) show the values of p{v) smd t(y) as measured on SAT instances generated from
a number of the ISCAS85 benchmark circuits using TEGUS. Curve fitting indicates p(v) is indeed inversely
proportional to u, while t{v) is linear with v.

D CIRCUIT-SAT and the q-Horn Property

We show that the CIRCUIT-SAT formula for Figure 4 is not q-Horn. This SAT formula, /, is given by:

/ = c A /i A /2

where

/i = (c + c)(e + d){e-f c + d)

/2 == (c + a)(c + &)(c + a + b)

We prove that f is not q-Hom by proving that its complexity index, Z{f) is greater than 1. As defined
in [BCHS94] the complexity index of a CNF <f> is the optimal value Z{4>) of the linear programming problem,
denoted by LP{<f>)

Z{<f>) —miaZ

such that

oci + ^2 ~ ~ ^ {k = l...m) and
i£Pk ieNk

0<ai<l {i = l...n)

where Pjt is the set of positive literals in clause k and Nk is the set of negative literals in clause k.
It is shown in [BCH90] that all q-Hom instances have a complexity index of at most 1. We prove by

contradiction that Z(f) > 1. Suppose that Z(f) < 1
Consider LP{fi)

19

1 -j- e — c < Z

1 + e —d ^ Z

1 — e + c + (f< Z

0<c<l, 0<d<l, 0<d<l

Substituting Z = 1 in the above and solving gives

c = d = e —0 (D.l)

Now, consider LP{f2)

1 + a — c < Z

1 + 6 —c ^ Z

2 + c — a — 6<Z

0<a<l, 0<6<1

Substituting Z = 1 and the solution of LP{fi) from Equation D.l in LP{f2) gives no solution.

=^Z{h/\h)>l

^ ZU) > 1

Acknowledgments

This work originated as a class project in algorithms at U.C. Berkeley under the guidance ofChristos Papadim-
itriou, to whom we are grateful for motivation and guidance. Olivier Coudert provided helpful advice during
the early stages of this work. Thanks to George Karypis and the rest of the HMETIS team, and Mike Button
eind the circ/gen team, for providing key software components and to YujiKukimoto for useful feedback on a
preliminary version of this work. This work was supported in part by California MICRO and NSERC Canada.

References

[BCH90] E. Boros, Y. Crama, and P. L. HEunmer. Polynomial-time Inference ofAll Valid Implications for
Horn and Related Formulae. Ann. Math Art. Intell, 1:21-32, 1990.

[BCHS94] E. Boros, Y. Crama, P. L. Hammer, and M. Saks. A Complexity Index for Satisfiability Problems.
SIAM Journal of Computing, 23(l):45-49, February 1994.

[Ber91] C. Leonard Herman. Circuit Width, Register Allocation and Ordered Binzuy Decision Diagrauns.
IEEE Transactions on Computer-Aid^ Design, 10(8):1059-1066, August 1991.

[BF85] F. Brglez andH.Fujiwara. A Neural Netlist of10 Combinational Benchmark Circuits anda Target
Translator in Fortran. In International Symposium on Circuits and Systems^ June 1985.

[Bra93] D. Bramd. Verification of Large Synthesized Designs. In IEEE International Conference on Com
puter Aided Design, pages 534-537, 1993.

[BRSVW87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A Multiple-Level Logic
Optimization System. IEEE Transactions on CAD/ICAS, CAD-6(6):1062-1082, November 1987.

20

[CE93] K.-T. Cheng and L. A. Entrena. Multi-level Logic Optimization by Redimdancy Addition and
Removed. In European Conference on Design Automation, pages 373-377, June 1993.

[DMSV88] S. Devadas, H.-K. T. Ma, and A. Sangiovanni-Vincentelli. Logic Verification, Testing sind Their
Relationship to Logic Synthesis. In Testing and Diagnosis of VLSI and ULSI, pages 181-246.
Kluwer Academic Publishers, 1988.

[Puj88] Hideo Fujiwara. Computational Complexity of Controllability/Observability Problems for Com-
binsdtoned Circuits. In International Symposium on Fault-Tolerant Computing, pages 64-69, June
1988.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theoryof
NP-Completeness. W. H. Freeman and Company, 1979.

[GPFW97] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics and Computer Science,
35:19-151, 1997.

[HGRC96] Michael Button, J. P. Grossman, Jonathan Rose, and Derek Cornell. Characterization and Param-
terized Random Generation of Digital Circuits. In 33rd Design Automation Conference, pages
94-99, 1996.

[Hoc97] Dorit S. Hochbaum, editor. ApproximationAlgorithms for NP-Hard Problems. PWS Publishing
Compamy, 1997.

p[S75] O. H. Ibarra and S. K. SaJbini. Polynomially Complete Fault Detection Problems. IEEE Transac
tions on Computers, C-24(3):242-249, March 1975.

[KAKS97] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel Hypergraph
Partitioning: Application in VLSI Domadn. In 34th Design Automation Conference, pages 526-
529, 1997.

[KSL95] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin. Verity - A Formal Verification Program for
Custom CMOS Circuits. IBM Journal of Research and Development, 39:149-165, 1995.

[Lar89] Traw^^ Larrabee. Efl&cient Generation of Test Patterns Using Boolean Difference. In International
Test Conference, pages 795-801, 1989.

[McM92] K. L. McMillan. Symbolic modelchecking: An approach to the state explosion problem. PhD thesis.
School of Computer Science, Carnegie Mellon University, 1992.

[Mey75] Stuart L. Meyer. Data Analysis For Scientists and Engineers. Wiley and Sons, 1975.

[PB87] Paul W. Purdom and Cynthia A. Brown. Polynomiad-Average-Time Satisfiability Problems. In
formation Sciences, 41:23-42, 1987.

[S"'"98] E. M.Sentovich et ad. SIS: A SystemforSequential Circuit Synthesis. Technicad Report UCB/ERL
M92/41, ERL, College of Engineering, University of Cadifornia, Berkeley, May 1998.

[SBSV96] Paul Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. Combinationad Test
Generation Using Satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Cir
cuits and Systems, 15(9):1167-1176, September 1996.

[SS96] J. P. Marques Silva and Karem A. Sadcadlah. GRASP- A New Search Algorithm for Satisfiability.
In International Conference on Computer Aided Design, pages 220-227, 1996.

[WP79] Thomas W. Williams and Kenneth Parker. Testing Logic Networks and Designing for Testability.
Computer, pages 9-21, October 1979.

21

{Yan91] Saeyang Yauig. Logic Synthesis and Optimization Benchmarks User Guide, Version 3.0. Technical
report, Microelectronics Center of North Carolina, 1991.

22

	Copyright notice 1999
	ERL-99-9

