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Abstract

In this paper we will investigate the capacity and mutual information of a broad-
band fading channel consisting of a finite number of time-varying paths. We will
show that the capacity of the channel in the wideband limit is the same as that
of a wideband Gaussian channel with the same average received power. How-
ever, the input signals needed to achieve the capacity must be “peaky” in time
or frequency. In particular, we show that if white-like signals are used instead
(as is common in spread-spectrum systems), the mutual information is inversely
proportional to the number of resolvable paths L with energy spread out, and in
fact approaches 0 as the number of paths get large. This is true even when the
paths are assumed to be tracked perfectly at the receiver. A critical parameter
Lerit is defined in terms of system parameters to delineate the threshold on L
over which such over-spreading phenomenon occurs.

1 Introduction

Wireless communication takes place over multipath fading channels. Typically the
transmitted signal travels to the receiver along a multitude of paths, the delays and
gains of which vary with time. One design approach to communication systems for such
channels is to separate the channel measurement and data transmission problems: one
assumes that the receiver can perfectly track the time varying channel characteristics,
and decodes the transmitted signal using this knowledge; one then updates the channel
estimate from the knowledge of the transmitted and received signal pair. When the
channel is known to the receiver and the noise is additive Gaussian the best input
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signals to use are those that look like samples of Gaussian noise. However, it is not
clear if the channel characteristics can be reliably estimated when such input signals
are used. This issue is particularly pertinent when the signals are spread over a very
large bandwidth, as in the proposed third-generation wideband CDMA systems.

To answer these questions, we study in this paper the capacity and mutual infor-
mation of multipath fading channels without the a priori assumption of knowledge of
the channel at the receiver. We consider a channel having a finite number L of paths
and a large transmission bandwidth W. To state the results we introduce the notion
of the number of resolvable paths L: This is the number of paths one would see if one
could only differentiate paths whose delays differ by more than 1/W. Three results
are presented in this paper:

1. With no restriction on the input signal other than an average power constraint,
as the bandwidth gets large, one can achieve communication rates over a multipath
fading channel equal to the capacity of an infinite bandwidth additive white Gaussian
channel of the same SNR without fading. Moreover, this can be achieved by frequency
shift keying and non-coherent detection.

2. In contrast, if one uses signals the energy of which are spread evenly over time
and frequency, then the mutual information decreases in inverse proportion to the
number of resolvable paths [, assuming that the energy is divided more or less equally
among all paths and that the path gains are independent. Thus, as the number of
paths gets large, the mutual information approaches zero. This result holds even when
the receiver can track perfectly the timing of each path and the only uncertainty is in
the phases and amplitudes. Observe that the bandwidth does not directly influence
the mutual information, but if the underlying number of paths L is very large and the
delays of these paths spread out, then L will increase with increasing bandwidth.

3. Without side information about the timing of the paths, if one uses signals that
are spread evenly over time and frequency, the mutual information approaches zero
with increasing bandwidth even when there is a single fixed gain path with random
time varying delay.

The study of the wideband fading channel dates back to the early 60’s. Kennedy
has shown that the capacity of an infinite bandwidth Rayleigh fading channel is the
same as that of an infinite bandwidth AWGN channel with the same average received
power (see [1, §8.6], [2]). Our first theorem is a parallel result, applicable to any channel
with a finite number of paths.

More recently, Gallager and Medard [3] showed that if the channel is such that the
fading processes at different frequencies are independent, then the mutual information
achievable over this channel approaches zero with increasing bandwidth if white-like



input signals are used. The assumption of the independence of fades at different
frequencies is roughly equivalent to assuming an infinite number of paths. It is not
clear a priori whether a similar result holds if the number of paths is finite. This issue
is important in a wideband system, because any finite set of paths will eventually be
resolvable as the bandwidth gets sufficiently large. This in part motivates us to deal
directly with a model with finite number of paths.

The above results show that the answer to this question is somewhat subtle. Sup-
pose there are a few dominant paths. If we assume that the receiver has side informa-
tion on the timing but not the phases and magnitudes of the paths, then the limitation
to mutual information comes from the number of resolvable paths L rather than the
channel bandwidth W. Otherwise, if we assume that no side information is available
at receiver about path delays, the limitation comes from the necessity to estimate
these delays more and more accurately as bandwidth gets large to be able to decode a
white-like transmitted signal. This results in the decay of mutual information to zero
with bandwidth. In typical wireless settings, the path delays vary at a much slower
time-scale than the path gains (phase and amplitude), so to the first approximation,
the first of the scenarios described will hold. The effects predicted for the second sce-
nario (that the mutual information goes to zero with increasing bandwidth even when
a only a finite number of paths is present) takes place only at very large bandwidths.

In addition to the above qualitative conclusions, we have also computed explicit
upper and lower bounds to the mutual information as a function of key channel pa-
rameters. These bounds lead us to define a critical parameter:

Loy == P_A;I;Es

where P is the average received power constraint, No/2 is the power spectral density
of the additive Gaussian noise, and T is the coherence time of the channel. The
parameter Lci: delineates the regime in which over-spreading occurs. If the number of
resolvable paths L is much smaller than Lesie, then the mutual information achieved by
spread-spectrum signal is close to the capacity of the non-fading white Gaussian noise
channel. On the other hand, if L is much larger than Lesie, the mutual information
achieved is negligibly small.

The rest of the paper is organized as follows. In Section 2, we present the fading
channel model. Section 3 focuses on how to achieve the capacity of the channel with
only average power constraint. In Section 4, we study the mutual information achieved
by wideband signals, and derive upper and lower bounds as a function of the number
of resolvable paths I and other channel parameters. In Section 5, we turn to the
problem of detection of binary orthogonal broadband signals with multipath diversity
reception, when the path gains are unknown or imperfectly estimated. We observe
the performance deterioration as the number of multipaths grow, in a manner akin
to the scaling of mutual information. This provides a more intuitive understanding
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of the information theoretic results and an interpretation of the critical parameter
Leie in particular. In Section 6, the scenario of single path with time-varying delay is
considered. Section 7 contains our conclusions.

A word about notation: unless otherwise stated, the information rates in this paper
are in the units of nats per second.

2 Channel Model

We consider a general multi-path fading channel: when the channel input waveform is
z(t), the channel output y(t) is given by

L
y(t) =Y a(t)z(t — m(t) + 2(2), (1)
=1

where L is the number of paths, a,(t) is the gain of path £ at time ¢, 7,(t) is the
delay of the path ¢ at time ¢, and z(¢) is white Gaussian noise with power spectral
density No/2. We will assume that a,(t) and 7(t) are stationary and ergodic stochastic
processes, and independent of each other.

We begin by identify a number of key parameters of this channel. The delay spread
T4 quantifies the uncertainty in the delay of the paths; it satisfies

sup 7e(t) — l?tf Te(t) < Ty (2)
e :

The coherence time T is the duration of time over which the passband channel remains
essentially time invariant; it satisfies

sup fe[e(t) — me(s)] < 1, (3)

i<,

where f, is the carrier frequency of the communication system. We also require that
the power spectrum of a,(%) is contained within [—1/T,1/T.]. We will assume that the
delay spread is much less than the coherence time of the channel. This is the case for
most wireless channels where typical delay spreads run in the microseconds whereas
typical coherence times are measured in milliseconds [5]. The average transmitter
power is constrained to P, and the bandwidth of the input signals is constrained to be
W around the carrier frequency.

The channels we are interested in are “narrowband” in the sense that the bandwidth
is much smaller than the carrier frequency, but “broadband” in the sense that power
per degree of freedom is very small, i.e., we are power limited as opposed to bandwidth
limited. That the bandwidth is small compared to the carrier frequency is the reason
why we can define the coherence time only with respect to the carrier frequency fc
in (3).



3 Capacity via Frequency-Shift Keying
This section is devoted to proving the following theorem.

Theorem 1. Under an average power constraint, the capacity of an infinite bandwidth
multipath fading channel is the same as that of an infinite bandwidth additive white
noise channel with the same received power, and this capacity can be achieved by fre-
quency shift keying modulation.

Suppose we wish to transmit one of M messages. Let T; be chosen such that
T4 <« Ts; < T.. During this interval T, the channel can be thought of as a linear time
invariant channel at the frequencies of interest. To each message we assign a signal

Tm(t) = {\/Xexp(jzwfmt) 0<t<Ts

0 else.

That is, each message is a sinusoid at frequency f,, with amplitude v/A. We will choose
fm to be an integer multiple of 1/(T; — 27;). When z,, is transmitted, the received

signal y is given by
L

Z ae(t)zm(t — 7e(t)) + 2(1).

=1
Over the interval [Ty, T — Ty], we can assume that a,(t) and fn7(t) are essentially
unchanged due to (3) and that T, « T., and we can write the received signal as

L
y(t) = Zag\/Xexp(j%rfm(t — 7)) + 2(1)
=1

= GV exp(j2 fmt) + z(2)

where G = Zf=l a;exp(j27 fm7e) is the complex phasor representing the amplitude
gain and phase shift during the interval [Ty, T, — Ty). Without loss of generality, we
will assume that E(|G|?) = 1.

At the receiver, the received signal is correlated against all the possible transmitted
signals z;. Namely, the receiver forms:

R

T-Ty
- Tmrm ), et

for 1 <1 < M. Note that for [ = m,

R = V/A(Ts — 2T,)/NoG + W,



where W,, is a circularly symmetric complex Gaussian random variable with variance
1. For | # m, since (fi — fm) is an integer multiple of 1/(T; — 2T;), z» and z; are
orthogonal on this interval, and the signal component at the output of the correlator
vanishes and we are left with

R =W,

where W, is again a circularly symmetric complex Gaussian random variable with
variance 1. Note that because of the orthogonality of the z;’s {W;} form a set of
independent random variables.

To transmit message m, we will repeat the transmission z,, on N disjoint time in-
tervals to average over the fading of the channel. The receiver will form the correlations
Ry, for each possible message 1 <! < M and each interval 1 <n < N,

Rin = 8im/ MTs — 2T4)[NoG(n) + Wia,

where G(n) is the complex gain for time interval n, and W, are i.i.d. circularly
symmetric complex Gaussian random variables with variance 1. The decoder will form
the decision variables

L&
_ 2
S = N n§=1: | Rix)

and use a threshold rule to decide on a message: if exactly one of S;’s say S;, exceeds
A =14 (1 - ¢)MTs — 2T4)/No then it will declare that [ was transmitted. Otherwise,
it will declare a decoding error. We will fix € € (0,1) and later take it to be arbitrarily
small. Observe that this is a non-coherent scheme as we do not need to measure the
phase nor the amplitude of the channel gain.

The decision variable for the transmitted message S,, is given by

N
Y 1G(R)MT, — 2T4)/No + Wanal*.

n=1

1
N
By the ergodicity of the fading process, this time average will exceed the threshold

with probability arbitrarily close to 1 for any € > 0 as N gets large.
For any message | # m, its decision variable is given by

53
~ Im-nlz'
N n=1

Note that |W;,|* are independent exponentially distributed random variables with
mean 1, and we will bound the probability

Pr[S > A]



using a Chernoff bound:
Pr[S) < A] < exp(~NE(A))

where
E(A) = sup[rA — log(E[exp(r|W14[*)])]
= sup [rA +log(1 — 1))
=A-1-log(A).

Using the union bound we see that the probability that one of the decision variables
S), I # m, exceeds A is upper bounded by

exp(- N |B(4) - -llvlog(M)])

This probability decays to zero exponentially in N as long as

1

N logM < A—1—log(A).

Substituting the value for A we can rewrite our condition as

R(\) = NlTs log M < (1-¢)(1- 2%)_}3_0 _ Ti,l(’g [1 L 6)()\(Ts];de))]

We now introduce another parameter 6, which represents the fraction of time we trans-
mit information. During this time, we use the scheme described above with A = P/§,
and the rest of the time the transmitter transmits nothing. This will maintain the
average power to be P. The average rate that we achieve is given by:

E_ilog[l‘l'(l_‘)(%;\—’_oz@)].

As 8 approaches 0, this expression approaches
Ts\ P
(1—e¢) (1 . 2ﬁ)

TP 0
OR(P/0) = (1 — e)(1 - 2—Ti)

No

which differs from the capacity of an infinite bandwidth additive white Gaussian noise
channel only by the factor 1 — 27;/T;, after we note that e can be chosen arbitrarily
small. Under our assumption that Ty < T, the capacity lost is negligible.



4 Mutual Information For White-Like Signals

There are a number of interesting properties of the capacity-achieving scheme described
in the previous section. First, the input signals are “peaky” in frequency. Each occupies
a single narrow band. Second, they are peaky in time as well. The parameter 0
introduced represents the duty cycle of the transmitted signal, and it approaches zero
to get close to capacity. Third, the channel is never explicitly measured at the receiver;
the detection is non-coherent.

The above properties of the input signals are quite different than more traditional
CDMA waveforms which are broadband and which are transmitted continuously over
time. We now turn our attention to mutual information achieved using such signals.
The main conclusion we will show, under some simplifying assumptions, is that the
mutual information achieved using these signals is inversely proportional to the number
of equal-energy resolvable paths and in fact approaches 0 as the number of such paths
gets large.

We will make a few further assumptions on the fading process. First, we assume
that the complex gain for path £, A, = a(t)exp(727 f.7¢(t)) is constant over a time
interval of duration T, and jumps to a new independent value at the end of this
interval. While typically the channel varies in a more continuous manner, this model
greatly simplifies the analysis while capturing the essential idea of channel coherence.
Moreover, because f. is typically very large, we will assume that the gains A,’s are
circularly symmetric. We will also assume that there is negligible spillover of the input
signal across intervals, consistent with our assumption of the delay spread being much
less than the coherence time.

Under our assumptions, the channel in different intervals of length T, are indepen-
dent, and we can focus on analyzing the mutual information achievable on one such
interval. We shift to baseband and sample the continuous-time system (1) at a rate of
1/W. In the discrete time model we have

PT, <& .
i= Xi-r, 19 =1,... K,
Y=/ o ;:1: AXice,+ Zi,  i=1,...K (4)

where K, = |WT,.], 7o = [Wr(t)], and Z; are the samples of the noise process. The
normalization is done such that E[|Z;|?] = 1 and the X;’s satisfy the energy constraint:

1 K. .
E[T(:ZX‘] <1

=1

The sampled delays 7,’s are the actual delays sampled at a resolution of #. There may
be more than one path with the same sampled delay. These paths are not resolvable
at this sampling rate and from the receiver point of view can be considered as single
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paths. Let L be the number of such resolvable paths and let Dy, ... , D be the distinct
sampled delays of these paths. If we let

Ge= Y. Anm

m:tm=D,

be the sum of the gains of the paths with the same (sampled) delay D,, then we can
rewrite eqn. (4) as

[T & . :
Y;' = K;G[X{_DI-I-Z,' 1= 1,...]\C (5)

where £ = PT,./N,.

At this point, we have a discrete tap model of the channel with a finite number
of resolvable paths, each of which may in turn be a sum of a number of paths. The
gains of these paths are independent from one interval (of length T¢) to the next. In
wireless scenarios, the delays D,, though random, typically vary at a much slower
time-scale than the path gains. This is because the coherence time for the path gains
is inversely proportional to the carrier frequency f., while the time for the delay of a
path to change by one tap is inversely proportional to W. Since typically W « f., the
delay of a path is changing at a much slower time-scale than its gain. For example,
if we take W = 10°Hz and f. = 10°Hz, then for a transmitter moving at 60 mph
towards the receiver, it takes about 18 seconds for the direct path to move from one
tap to another, while the path gain is rotating at about 55 Hz. Thus, here we make
the assumption that the path delays D,’s can be tracked perfectly at the receiver, i.e.
timing acquisition has already been performed. This assumption is consistent with the
fact that timing acquisition in spread-spectrum systems is usually much easier than
tracking of path gains and phases. We will further make the assumption that the
delays D;’s and the path gains G,’s are independent. In Section 6, we will consider
the situation when path timing is not assumed to be known a priori.

4.1 Upper Bound on Mutual Information

In the above scenario, the quantity of interest is /(X;Y|D), which gives the mutual
information per T.. We now present an upper bound on this quantity.

Lemma 1.

K. , L L -
I(X;Y|D) £ Exg,plog (EH exp [%E- 9“8{2( Xi-D,Ge) (Z X;-D,,.Hm) }])
¢ i=1. V=1 m=1
(6)

where {H} are independent of {G,} and {D.} and each H, is identically distributed
as Gq.



Proof. See Appendix A. ]

We now further bound the right hand side of eqn. (6). Let Hy = |H|e"™* and
G¢ = |Gele ¢, Circular symmetry implies that ¢’s and ¥’s are uniform in [—m,7].
For the expectation inside the logarithm, condition on everything else and take the
expectation with respect to the 1’s first. We then get:

e[ E {z(zx.-ulce) (35 xeoum) )]

1=1 m=1

e

where C(m,n) = K! E’“ Xi—mX[_, is the empirical auto-correlation function of
the input signal. Now E exp(me(aeJ")) = Iy(2|al), where I is the 0th order modified
Bessel function of the 1st kind. Using the inequality Io(z) < exp(z?/4) we get

Epexp [i—g W{g (g X‘-DIG‘) (mz: Xi-Dn H’“) }])

L
< Ejyexp [52 > |Hnl?

m=1

Z GlC(Dla D'm)

=1

’J

Using Jensen’s inequality, our bound on I(X;Y) is thus

L 2
ZG(C(DbD ) ]
=1

Suppose now the input signal is stationary and white with autocorrelation function
§(n). Assuming the coherence time bandwidth product is large such that the em-
pirical auto-correlation of the input is the same as the auto-correlation function, i.e.

C(m,n) = dmn. Then,

L
> |HaP
m=1

L
I(X;Y) < log Ep g, €xp [82 Z |Hp?

L
=Y |Hnl’|Gnl’

m=1

L
Y " G«C(De, D
£=1

and so

I(X;Y|D) £ ) 108 Ejtin} Gl €xP(E2 | Hn [*1Gm ?)
m=1
This bound can be explicitly computed for specific distribution of the path amplitudes.
To exhibit asymptotic behavior as the number of resolvable paths get large, consider
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the case when |H,,|?’s are identically distributed for all m, and E(|Hn|?) = 7, i.e. the
resolvable paths have equal amount of energy. Then:

I(X;Y|D) < Llog Ej, e, exp(EX|Hi*|G1|?)= Llog g(£?)

where g(r) is the generating function of |H1|*|Gi|* (assumed exists.) If the number of
distinguishable paths L large,

82
9EH = 1+ EE(HPIG ) =1+ I

and hence the upper bound on I(X;Y|D) is approximately
£2
T.

Thus, for large L, an approximate upper bound on the mutual information per unit
time 1s
P?T.
NZL

(7)

We observe that this bound is inversely proportional to the number of resolvable paths
but do not depend directly on the bandwidth W. As the number of equal energy paths
go large, the mutual information goes to zero.

We have made a few assumptions above to simplify the calculations, but they are
not really necessary. For instance, it is not difficult to show that if the energy in path i
is ¢;/ L, where ¢;’s are bounded and bounded away from 0, the same asymptotic upper
bound (7) holds. Thus, it is not necessary that the paths have identical energy as long
as their energies are all becoming small at the same rate.

It is also not necessary to assume that the autocorrelation function is d(n). It is
enough that the random variable

L
U= |Hnl*|Fnl*
m=1

with F,, = Zf:l G¢C(D¢, D,,) that appears in our bound for the mutual information
is in some sense small. For this, it suffices to assume that the empirical autocorrelation
function C(m,n) of the input process has some summability properties. For example,
assuming that
Y (m=-0*CEt,m)|’ < a
¢

for all m for some a, we can get a similar upper bound as in (7). The derivation of
this is given in Appendix C.
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4.2 Lower Bound on Mutual Information

The upper bound (7) shows that the mutual information goes to zero when the num-
ber of resolvable paths become large. What happens when the number of paths are
bounded even though the bandwidth is large? We address this issue by deriving a
lower bound to the mutual information I(X;Y|D) below.

For simplicity, we assume that the input {X;} is i.i.d. complex circular symmetric
Gaussian. We begin with the following relationships:

I(X:Y|D)=I(Y;X,G|D) - I{Y;G|X,D) > I(Y; X|G,D) — I(Y;G|X,D) (8)
where the first equality follows from the chain rule. Conditional on the paths gains G
and the delays D, X and Y are jointly Gaussian. The first term is then given by:

I(Y:X|G, D) = Eg,plogdet(I + 7“‘-5,—,4,«)

where A is a K. by A, matrix such that A;» = G if m =i — D, and 0 otherwise. A is
a Toeplitz matrix. By our assumption, the delay spread T; is much smaller than the
coherence time T,. Hence D, « K,.. In this regime, the eigenvalues of AA™ are well
approximated by IC(—,-\'E—C)P,k =0...K. -1, where

L
C(f) =) Geexp(2n7Def)

=1

is the Fourier transform of the impulse response of the channel. Hence

K

(4 8 k
I(Y;X|G,D) = Egp|» log(l+ 7 IC(—K)I")

k=1 [ c

i £
= K.Egplog(l+ I\_’IC(O)|2)

L
£
= K.Eglog(1+ 3| > G (9)
¢ =1
The second step follows from the fact that C(f) is identically distributed for every f,
which in turns follows from the circular symmetry and independence of the G’s.

We can upper bound the second term in (8) by making a worst-case assumption that

the paths gains G¢’s are circularly symmetric and Gaussian with the same variance.

I(Y;G)X, D) < Ex,plogdet(I + %BAB*) (10)
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where Bim = Xi_m and A = diag(o?,... ,0}), where o} = E[|G,|*]. Now,

I(Y;G|X, D)

< Explogdet(I + Ai,BAB")
4
= Explogdet(] + Ai,B‘BA)
< LExplog % r(/ + %B BA)] (Jensen’s inequality)
= LExplog |1+ % Zag(—z | Xm-D,| }
¢ m=1

. £ yRL:
< - 2 ’m— 2 ‘e | lit
< LEplog [l + 7 ; U,EX(KC ; | Xm-p,| )] (Jensen’s inequality)

N £
< Ll 1+ =).
< Llog( L)

The last inequality follows from the energy constraint on the input and that 3,07 = 1.
Combining this with eqn. (9) yields the following lower bound:

I(X;Y|D) 2 K.Eglog(1 + 7= |ZG5|2)—Llog(1+ =).

Let us now examine this bound in the wideband limit. For large W, K. = |[WT,]
is large and the first term approaches:

K EGlog I\' |ZG(|2 —)SEG|ZGA =¢£.

Cl_

The quantity I(X;Y|D) is the mutual information per coherence time interval.
Thus. in the wideband limit, we have the following lower bound on the mutual infor-
mation per unit time:

P L PT

0

Note that the second term is always less than the first term, so that this lower bound
is strictly positive. The first term is the capacity of the infinite bandwidth AWGN
channel. The second term can therefore be interpreted as an upper bound on the
capacity penalty due to channel uncertainty. Observe that this term depends only on
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the number of resolvable paths and not on the bandwidth. In particular, if the number
of paths is bounded, then the mutual information is bounded away from zero even at
infinite bandwidth. This further emphasizes that the fundamental limitation comes
from the number of equal-energy resolvable paths.

As L — oo, we have the following asymptotic lower bound:

P?T,

——< 11
aNZL (1)

which approaches zero as [ — oo. Compared to the a.éymptotic upper bound in (7),
we see that the upper and lower bounds agree to within a factor of 2.
If we let:

. PT.

Lcrit = NO (12)
and p
CawgN = s

then we can write the lower bound as

3 LCI‘!
Cawgn |1 - log(1 + t)
crit L
and the upper bound as 3
Lcnt
C
AWGN L

Note that the upper bound holds for large L while the lower bound holds for any L.
If L « L, then

~

I LCI‘I
L log(1 + L‘) ~ 0,

crit
and the mutual information achievable with spread-spectrum signals is close to the ca-
pacity of the infinite-bandwidth AWGN channel. On the other hand, if L> f/cm, then
the upper bound says that the mutual information achievable is negligible compared
to that of an AWGN channel. Thus, one may view Lesit as the critical parameter delin-
eating the regime where “over-spreading” occurs. If one thinks of P/Ny as a nominal
information rate, then Leric is smaller for low-rate users and for systems with shorter
coherence time.

At carrier frequency of 1 GHz and vehicle speed of 60 mph, the coherence time is
of the order of 18 milliseconds. For a voice user with data rate of 9.6 kbits/s, this gives
a value of L, to be 120. On the other hand, at 10 Ghz , the coherence time becomes
1.8 milliseconds, and Ly = 12. The upper and lower bounds are plotted for these
scenarios in Figs. (1) and (2), as a function of the number of resolvable paths.
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Figure 1: Upper and lower bounds to the achievable mutual information as a function

of the number of resolvable paths, for T, = 0.018s. The unit is in bits per second. The
upper horizontal line is the capacity of the AWGN channel.

5 Detection of Binary Orthogonal Signals

In the previous sections, we studied the information theoretic properties of broadband
multipath channels, focusing on performance scaling when the number of resolvable
paths become large. In this section, we will shift our emphasis to the detection error
probability of specific binary orthogonal modulation schemes under the same scaling.
We will demonstrate performance deterioration as the number of multipaths grow, in
a manner akin to the scaling of mutual information. We will also give an intuitive

understanding of the critical parameter Leric in terms of estimation errors in the path
gains.
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Figure 2: Upper and lower bounds to the achievable mutual information as a function
of the number of resolvable paths, for T, = 0.0018s. The unit is in bits per second.
The upper horizontal line is the capacity of the AWGN channel.

We use the same channel model as in eqn. (1):

Zaz z(t — me(t)) + 2(2), (13)

where each path has independent statistics.

Consider now an uncoded binary modulation scheme when at each symbol time
one of two orthogonal waveforms z¢(:) and z;(-) is transmitted. The symbol duration
T, is chosen such that Ty « T, <« T., where Ty and T, are the delay spread and the
coherence time of the channel respectively. The symbol duration much larger than the
delay spread means that we can ignore inter-symbol interference. The symbol duration
much less than the coherence time means that we can assume that the channel is
essentially time-invariant over a symbol duration. The average received energy per bit
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is &. The two symbols are assumed to be equiprobable. We compare the performance
of narrowband and broadband signaling schemes, under coherent and non-coherent
detection.

5.1 Narrowband Signaling

First consider the case when the signals are narrowband FSK signals at frequencies fo
and fj, chosen to be orthogonal. (These are the same as the ones used in the capacity-
achieving strategy described in Section 3.) By correlating the received signals with zo
and z; in turn, we obtain two sufficient statistics Ry and R; for detection. Assume
without loss of generality that symbol 0 is transmitted. Similar to the development in
Section 3, we obtain:

where G = Zf‘:l a¢exp(727 fore) and Wp, W, are independent circular symmetric
complex Gaussian rv’s with variance Np. (Recall that G is normalized such that
E(|GI?) = 1. If G is known to the receiver, then coherent detection can be done, and
the error probability, conditional on G, is given by

P(G) = Q ( 25—];0|G|) ,

where Q(-) is the complementary cdf of a N(0,1) rv. If we now assume that each of the
path has uniform phase, magnitude a, such that E(a?) = 1 and Rayleigh distributed,
then G is circular-symmetric Gaussian with variance 1, and the probability of error,
averaged over G, is given by (see for example [4, eqn. 7.3.8]):

Observe that this expression does not depend on L. If each path is not Rayleigh but
still has uniform phase and identically distributed, then this expression holds in the
limit when L becomes large, due to the Central Limit Theorem.

If G is not known to the receiver, then non-coherent detection has to be done by
comparing the magnitude of Ry and R; (square-law detector). The error probability,
conditional on G, is given by [4, eqn. 7.3.11)

_ 1 1& | 0
P(G) = Fexpl—3 2(GP)
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Assuming that each path is Rayleigh, the average error probability is then [4, eqn.
7.3.12]
1
2+ £
If each path is not Rayleigh, then this holds only in the limit when L becomes large.
We observe that while, as expected, the performance of non-coherent detection
is worse than coherent detection, the performance of the non-coherent detector does
not get arbitrarily worse as the number of paths get large. Its limiting performance
depends only on the average SNR.

Pe =

5.2 Wideband Signaling

Let us now consider using spread-spectrum signals, such that z¢ and z, are white-like
and orthogonal. Without going into the specific details of the structure of the signals,
it suffices for our purpose here to assume that the signals have been chosen such that
delayed versions are nearly orthogonal to each other. In this case, a reasonable ap-
proximation is the standard diversity branch model (see for example [4, Section 7.4]).
In this model, the receiver observes L independently faded replicas of the information
signal, one for each resolvable path The additive noise in each branch is white, Gaus-
sian with power spectral dens1ty , and independent between branches. This last
assumption ignores the “self-noise” due to interference between delayed versions of the
signals, and this is a good approximation if the signals are white-like.

More specifically, suppose that the L resolvable paths are at sampled delays D;,

, D;, assumed known to the receiver. Then if symbol 0 is transmitted, the branches

at the baseband are given by

Ye(t) = Gezo(t — De) + 2(1), ¢=1,...,L

where G, is the sum of the complex gains of the paths at delay D,. Match filtering
each of the branches with z§(t — D,) and z}(t — D) gives us the following sufficient
statistics for each £:

(14)

Ry = VEGe+ Wy 1=0
e = u/[( =1

where {W;} are ii.d. circular symmetric Gaussian random variables with variance

No. Note that G = Ef_ Ge. For simplicity, we will assume that the gains G,’s of
the resolvable paths are identically distributed, and hence have variance 1/ L,i.e. the
energy in the signal is equally spread among the paths. Observe that the narrowband
scenario corresponds to L=1.

If the receiver has perfect knowledge of the complex path gains {G¢}, then the
optimum detector is to do maximal-ratio combining, weighting each branch by G and
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then adding. This is simply the Rake receiver. Conditional on {G,}, the probability
of error is given by [4, eqn. 7.4.20]

P({Ge}) =@ (\/§7VEZIG1| )
=1

If we assume that each of the |G¢|’s has a Rayleigh distribution, the average error
probability can be explicitly calculated as [4, eqns. 7.4.15,7.4.21]:

EETEY e

=0

where

=y
No

-
2L+ &

u:

Regardless of whether the path gains are Rayleigh, as L becomes large,
L
Z |Ge|2 51
=1

so that the error probability converges to Q4 /%I—f,%), i.e. the same as that for a non-
fading channel with the same received SNR.

The performance of coherent detection as a function of number of resolvable paths
is plotted in Figs. 3 and 4 for Rayleigh fading and at different SNRs. The narrowband
scenario corresponds to having 1 diversity branch. We see that the performance of
the broadband scheme improves monotonically with the number L of resolvable paths.
This is the well-known multipath diversity advantage of spread-spectrum schemes.

The picture, however, is different for non-coherent detection. Consider a receiver

which does not know the path gains G,’s and implements a square-law detector, i.e. it

computes for [ = 0,1,
L
U= Z | Rie|?
=1

and makes a decision based on the larger of Up and U,. The probability of error is

L L
Pr[ly > Us) = Pr | Y [Wiel* > ) |VEGe + Worl?

=1 =1
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Let us first examine this error probability in the limit when the number of resolvable
paths becomes large. Direct computation shows that

E(U, —Up) = =&
and hence U
lim B(——=— )_ 0.
Looo \/z
Also,
lim Var [Ul Uo] = 2NZ.
L=oco -\/z

Since Up and U; are independent and both are a sum of L independent terms, we can
apply the Central Limit Theorem and conclude that

U1 Uo

Vi

Hence, the probability of error of the non-coherent scheme approaches 1/2 for a large
number of resolvable paths. How large does L have to be for this to happen? A more
refined estimate of the error probability yields

= N(0,2N?).

1 &

Pe~Q( E_I\To.

)-

Hence, when L is compare to the SNR -,%%, then the performance of the non-coherent
detector degrades significantly.

For the case when the gain G, of each branch is Rayleigh, an explicit expression
for the error probability can be computed for finite L [4, eqn. 7.4.30]: it is given by
formula (15) as in the coherent case, but with x given instead by

The performance of non-coherent detection is plotted as a function of the number
of resolvable paths in Fig. 3 and 4 for different SNR’s. We see that for small L
performance of broadband scheme improves over that of the narrowband scheme (L=
1) with increasing L. This is due to the effect of multipath diversity. As L is increased
further, there is a diminishing return to the benefits from the multipath diversity. On
the other hand, the lack of knowledge about the gains of the individual resolvable paths
starts to hurt the combining ability of the non-coherent broadband receiver. There is
an optimal L* after which the performance of the non-coherent broadband detector
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Figure 3: Comparison of error probability under coherent detection (below) and non-
coherent detection (above), as a function of the number of paths. )%% = 10dB.

starts to degrade. As [ — oo, the non-coherent broadband scheme performs even
worse than the non-coherent narrowband scheme and in fact the error probability of
the former approaches 1/2.

Observe the contrast in performance scaling of the coherent and non-coherent
broadband schemes. A natural question is whether the poor performance scaling of
the non-coherent scheme can be offset to some extent by estimating the path gains and
using the estimates in a coherent receiver. To get some insights to this question, let us
analyze the performance of a maximal-ratio combiner, using imperfect estimates Ge's
instead of G,. We assume that for each diversity branch £ =1,... | L, the estimate G,
is obtained from a set of noisy measurements:

Sek=\/5:G[+Zu¢, k=1,...K

The channel measurements are commonly obtained in two ways: from a pilot signal
with known data symbols, or from previously detected symbols. In the former case,
&, is the energy per bit of the pilot signal, while in the latter case, & = &;,. In either
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Figure 4: Comparison of error probability under coherent detectlon (below) and non-
coherent detection (above), as a function of the number of paths 7 = 15dB.

case, it is reasonable to assume that one can measure over a time interval of length
T., the coherence time. Hence, the number of measurements K can be taken to be
T./Ts, where T, is the symbol duration. The noise Zy’s are taken to be i.i.d. circular
symmetric random variables with variance Ny, and also independent of the noise in
the interval of the current symbol to be detected.

We employ the LLSE estimate of Gg; for each £, this is given by:

K—&+LZ :

The mean-square error associated with this estimate is:

1

— (16)
K2 +1

same for all branches. The maximal-ratio combiner, using the channel estimates, com-
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putes for each { = 0,1

=1

L
V[ := Re {ZG’;RM}

where Ry is given in eqn. (14), and picks the hypothesis with the larger V.. The
probability of error is

L L
pe = Pr[Vi > V] = Pr l:i)‘ie{z Gy (Wie — Woe)} > VE Re {Z c’;;G,H :

=1 =1

Direct computation yields:

. K&
E(G}Ge) = =5
L(#+1)
E(G"(Wy—Wu)) = 0
2K¢E,

Var [G*(Wle - Wo[)] = =—F=-
Applying the Central Limit Theorem, as L = oo,

L
VIS Gi(Wie = Wa)} B N(0,K&,).

£=1

Also. by a variance computation, one can show that as L - o,
L
VIvER{ Y GGy Do
=1

We thus conclude that as the number of resolvable paths grow, the probability of error
approaches 1/2 for the coherent scheme using imperfect channel estimates. Using
the mean and variance computation done above, a more refined estimate of the error

probability for large L is given by

e ™ o1 4 LNo\ Na |-
201+ #22) No

Thus, if L < K—%, then the performance is very close to that of the coherent

receiver with perfect channel estimates. On the other hand, if L>K %’;—, then the
imperfect channel estimates have a significant impact on performance. An intuitive
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explanation can be seen from the expression (16): if L > I\",—f,%, then the mean square

error in estimating G, is approximating 1/L, the variance of Gy itself. In other words,
little information is gained about the G,’s from the channel measurements. As the
number of paths grow large, the receiver meets the same fate as the non-coherent
receiver: detection becomes impossible.

The critical parameter

L = A’i’r_};
can be interpreted as the threshold delineating the regime in which the system is
“over-spread”: if the number of resolvable paths is significantly larger than Lesic, the
estimation errors in the paths gains precludes effective combining of the multipaths.

Expressing this threshold in terms of system parameters, we find that

. PT,
Lcrit = NO

where P is the received power of the signal from which channel measurements are
obtained. If the measurements are done in a decision-feedback mode, P is the received
power of the transmitted signal itself. In this case, the critical parameter defined here
for detection coincides with that defined in (12) for the achievable mutual information.
If the measurements are done from a pilot, P is the power of the pilot. On the
downlink of a CDMA system, it is more economical to have a pilot common to all
users; moreover, the power can be larger than the signals for the individual user. This
makes coherent combining easier, resulting in a larger L. On the uplink, however, it
is not possible to have a common pilot, and the channel estimation will have to done
from previously detected symbols or even non-coherently. With a lower received power
from the individual users, L can be considerably smaller.

In concluding this section, we see that the scaling of the error probability perfor-
mance of broadband orthogonal modulation schemes mirrors that of the information
theoretic properties we derived earlier. As the number of resolvable paths grow large,
the performance of such schemes deteriorate arbitrarily badly, whether they try to
estimate channel parameters or perform non-coherent detection. Certainly, this is not
surprising as the information theoretic results impose fundamental limitation on the
performance of any scheme given the constraint that spread-spectrum transmitted sig-
nals are used. On the other hand, the analysis of specific modulation schemes done
here gives a more concrete feeling as to what goes wrong. Basically, as the number
of resolvable paths become large and their individual energies become corresponding
smaller, it is harder to estimate their gains and to combine them effectively. The fact
that the threshold L.y identified in both analyses are the same further substantiates
this explanation.
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6 Timing Uncertainty

In Section 4, we showed that as the number of resolvable paths L with equal energy
gets large, the mutual information decreases inversely proportional to L and approaches
zero. This holds even when the receiver can track the delay of each path perfectly. In
this section, we shall show that if this side information is not a priori assumed, the
mutual information goes to zero with increasing bandwidth even when there is only
one path.

We will focus on a single path channel (L = 1), with a fixed gain (a;(t) = 1), but
keep the stochastic nature of the delay process, 71(t). We assume that 7(t) remains
constant for a time T and jumps to an independent value in the next time-interval of
length T!. The duration 7! can be thought of as the coherence time for this model,
but observe that this is in general different from the coherence time T, for the path
gains considered in Section 4. As explained there, the path delays typically vary much
slower than the path gains.

The second assumption is that the delay is uniformly distributed in [0, T4], where
T, is the delay spread. We will also assume that there is negligible spillover of the
input signal across intervals. consistent with our assumption of the delay spread being
much less than the coherence time.

Under our assumptions the channel in different intervals of length T, are indepen-
dent, and we can focus on analyzing the mutual information achievable on one such
interval. We will start by shifting to baseband, and discretizing time by sampling at a
rate of 1/W complex samples per second. In this discrete time model we have

. _ | PTL S . .
y,_,/NOA,éA,_,+Z,, i=1,..., K

where Y; are the samples of the received signal, X; are the scaled samples of the
transmitted signal, 7 is the random delay in this interval, and Z; are the samples of
the noise process. Note that we have normalized the scaling so that E[|Z;|?>] = 1. The
random variable 7 takes values in {1,...,T;W} and is uniformly distributed on this
range. Let K = WT/, and a = T4/T!. The assumption on the delay spread makes
sure that a <« 1. Note that the power constraint over z(t) translates into an energy
constraint on {X;:i=1,...,K.}:

1 &
z 2

i=1

We now present an upper bound to the mutual information which holds for any input
distribution.
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Lemma 2. Let & = PT!/Ny. Then:

z log( aK\flexp{zg' me[c'(d,e)]})].

K = Ko =

I(X;Y) <E[

where,

7 sz m X

C i=1
is the empirical autocorrelation function of the input process over the time-interval of
length T,.

Proof. The proof follows the same lines as that of Lemma 1 . See Appendix B. O

Suppose now the input signal is stationary and white with autocorrelation func-
tion §(n). Assuming the coherence time bandwidth product is large such that the
empirical auto-correlation of the input is the same as the auto-correlation function, i.e.
C(m,n) = §,n. Substituting into the upper bound above, we get:

(e - 1)]

— log [1 + Wle( (ZPTC') - 1)]

.V <
I(X;Y) < log [1 + N

[+

As the bandwidth W becomes large, the upper bound decays to zero like

1 2PT!
W, [exp( A ) — 1] .

This decay in mutual information is due to the necessity to track the path timing
accurately, with the needed resolution increasing linearly with the bandwidth. While
such channel measurements are not crucial for communication using narrowband sinu-
soids, they are when white-like signals are used. As the bandwidth grows, the channel
cannot be tracked at the desired accuracy, and communicating reliably is also impos-
sible. However, since T is quite large for typical wireless scenarios, this phenomenon
will kick in only when the bandwidth is very large.

7 Conclusions

The main conclusion of this paper is that the mutual information achievable using
spread-spectrum signals through a multipath fading channel depends crucially on how
the signal energy is divided among the resolvable paths. If there are only a few domi-
nant paths, the achievable mutual information is close to the capacity of the AWGN
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channel with the channel gains perfectly. If the energy is spread out among many
equal-energy resolvable paths, the mutual information achievable is very small, being
inversely proportional to the number of resolvable paths L. The limitation comes from
the fact that the energy in each path is too small for the gains to be measured accu-
rately enough for effective combining. From a communication theoretic point of view,
multipath diversity benefits the system only up to a certain point. When there are too
many paths, the uncertainty about the path gain severely limits performance. We have
also established a critical parameter L which delineates the threshold on the number
of resolvable paths above which this “over-spreading” phenomenon occurs.

Theorem 1 provides a counterpoint to the above result. It shows that the above
phenomenon is not intrinsic to the multipath fading channel itself but is rather a conse-
quence of the signaling strategy. Indeed, by using narrowband signals and transmitting
at a low duty cycle, capacity of the infinite-bandwidth AWGN channel can be achieved.
This is independent of the number of paths.

An interesting point is brought out by these results. Whereas for the infinite-
bandwidth AWGN channel, capacity can be achieved using any set of orthogonal sig-
nals, such is not the case for multipath fading channels. The performance is very
much dependent on the specific choice of the orthogonal signals. While capacity can
be achieved with narrowband sinusoids, the mutual information achievable by spread-
spectrum signals can be very small. This is intimately tied to the fact that sinusoids
are eigenfunctions of any linear time-invariant system, while white-like signals are not.
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A Proof of Lemma 1

Since

I(X;Y|D)= H(Y) - H(Y|X, D),

we can bound the mutual information by bounding H(Y|D) and —H(Y|X, D) sepa-
rately. It is easy to upper bound H(Y') via the entropy power inequality:

H(Y) < klogme(l + £/k).
It remains to upper bound —H(Y'|X, D). To that end,

~H(Y|X,D)
= E[log(p(Y |X, D))]
= EgE[log(p(Y|X, D)|G = g]

£ £
= EgElog(Exm " exp[— Z IE Z HyX;_p, +Z: - % Z Xi-p,9e|*))
i ¢ ¢

£ £
= —EgElog(Epn~* exp[— Z IEP‘ + Z; — zQiIZ)

where P, = Y, H,X;_p, and Q; = > ¢ Xi-p,ge- Expanding the square
—-H(Y|X,D)
&
=—logr—-FE Z; |Z,-|2| + EgFElog(En exp(—Tc- 2 |\P; — Qil* - 2\/8/kzme(]’g - @Q)Z7))

= —klog(me) — Ec2\/E[kEn Zme(P;Z;’)

+ EgElog(Ey exp(—% Z |P; — Qil* + 21/€/k Re(Q: Z7)))
< —klog(me) + EgEx,p log(Ey exp —% Z |P: — Qil*Ez exp 2V/E/k Re(Q: Z7))
= —klog(me) + EcEx,plog(En exp —% Z[IPe —Qi* = 1Q:I)

where the inequality follows from Jensen’s. Thus

I(X;Y) < klog(l + £/k)

k
+ EgEx plog (EH exp —5% Z[IPz -Qil’ - |Q’|2])

i=1
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2
=log(1 + £/k) — EGEkaZIPl

=1

+ EgEx plog <EH exp 8E ; 9‘te(2P,Q’,‘))

< klog(l +&/k) —
+ EgEx Dlog(EHexpE Zme (PQ; ))
i=1

proving the lemma.

B Proof of Lemmma 2

Since

I(X;Y)=H(Y) - HY|X),

we can bound the mutual information by bounding H(Y) and —H(Y|X) separately.
It is easy to upper bound H(Y') via the entropy power inequality:

H(Y) < klogme(l + E/k).
It remains to upper bound —H(Y|X). To that end,
—-H(Y|X)

= E[log(p(Y|X))]
= E[E[log(p(Y|X)) | D = d]]

ak%15[1°8< EW exp — Z|\/— Xiea + Zi - fx,e )]

i=1
= —klogm — E[Z |Z,~|2]

ak—1

di: [mg( ZZO: exp (-5% Z;: Xia — Xiel?
- 2\/5'—/’;23 Re(Xi—a — Xi-t)Zf)))]

i=1
ak-1

= —klog(we) — 1 2./E/k E[Z Xi_aZ} )]

d=0
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ak-1 ak-1 k
— Z E[log( Z exp (’5% ; | Xi—a — Xi-e|®

d=0
k
+2VERY iRe(X,-_gZ,’-')))]
i=1
ak-1 ak—-1
< —klog( 7re)+ ZEx[log( Zexp EkZ|X, 0= Xizel?
d=0 =0

Ezexpz\/ETZme YA )]

=1
ak-1 ak-1 1 k
= —klog(me) Z Ex [log( Z exp -SE z[lX;_d —Xi_e|* - |Xi-z|2])]
d=0 =0 i=1

Thus

I(X;Y) < klog(1 + £/k)

ak-1 ak-1 k

T ok ; Exlog (J ; exp —& ;UX. —a— Xizel* - IX.-_elz])
1 ak-1 £ k
o Y
=log(1 + &/k) — — ; Ex+ ; | Xi—dl

ak—1 ak-1

+$ ; Exlog< Z expS Zme 2Xi—a X[y )

x—l

< klog(l +E&/k) -

ak-1 ak-1

z Ex log( Z expSkZSRe i—d X[, ) (17)

d=0 i=1

C Upper Bound on Mutual Information for More
General Autocorrelation Function

In this appendix, we will show that an upper bound similar to (7) can be derived

for the mutual information for signals with empirical auto-correlation function more
general than an impulse.

Consider an input signal with empirical autocorrelation function C(-,) satisfying:

Y (m—2PIC(,m)} < a

4
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for all m for some a. Then

=Y C(D.,D
4
= C(Dm,Dm)Gm + »_ C(Ds, D )G
#Em
= Gn+ Y (De = Dn)C(De, D D,)—Ct
t#£m D¢ = D,

The first term G,,,, has zero mean and variance 1/ L. The second term is also zero mean
and by using the Cauchy-Schwartz inequality its second moment is upper bounded by

(210 u110,508) (5 )

£#£m
Since D¢’s are distinct integers, we can upper bound the first term by « and the second

term by 5 (p—q)~% < 7%/3. which we can further upper bound by an?/(3L). Thus

F,, has zero mean and its variance is proportional to 1/ L. Since H,, has second moment
1/, we see that E[U] is proportional to 1/tL.
Let us now look at the second moment of U. Expanding out |U]* we get

Euvm— = Y E(|FuFy, 21+ZE[|H | Ful®.

m;ém

The second sum is order 1/L3. For the first, we will bound each term:

FmF:n = (Gm + C(Dm’q Dm)Gml + Z C(D[y Dm)G() (Gm: + C(m,m’)Gm + Z C(Del, D
eg{m,m’} og{mm'}
= GG (1 + |C(Dmy D!)|?) + |G |*C(Dm, Dint) + |Gt |*C(Dime, D)
+Gm Y. C(De, Dpi)Ge
eg{m,m'}
+Gm Y, C(D¢,Dn)Ge
Lg{mm'}
+C(Dm, Dm)Gr Y C(De, D)Ge
£g{m,m’}
+C(Drmis Dm)Gr ) C(De, Dr)Ge
Lg{m,m'}
+ Y. ). C(D:,Dn)C(De, D)GeGe
¢g{m,m'} t'g{m,m'}
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The first three of the terms that appear in the last equality are proportional to 1/ L.
For the next term we can apply the Cauchy-Schwartz inequality to get

2 G 2
< Y (De=Dw)?|C(De, D)l Y Gel

~ D)2
eg{m,m'} Lg{m,m'} (Dt Dm )

Y C(Dt,Dy:)Ge

eg{m,m'}

and thus bound its expectation by a quantity proportional to 1/L just as in bounding
the variance of F,,. The same method works for the next three terms also. For the
last term

2
ZC D, D Dz:,Dml)GzGer
(&)
Gef? |Ge|*
< " — 1) m 4 D2 | :
2_(De = Dr)*(De = D IC(Des Du)C(Des D) ) 1y = 5 15~ Do
(¢.e) (¢.¢')
<a —E[G"]

where the last step again follows from the fact that D,’s are distinct integers. Since
E[G1] is proportional to 1/L? we conclude that E[|U|?] is proportional to 1/L. Together
with some constraints on H and G, this is sufficient to make

E exp(E*U) =~ 1 + constant€?/ [

from which the mutual information again decays to zero.
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