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Abstract

In this paper, we study the structure from motion problem as a constrained nonlinear least
squares problem which minimizes the so called reprojection error subject to all constraints among
multiple images. By converting this constrained optimization problem to an unconstrained one,
we contend that multilinear constraints, when used for motion and structure estimation, need to
be properly normalized, which makes them no longer tensors. We demonstrate this by using the
bilinear epipolar constraints and show how they give rise to a multiview version of the (crossed)
normalized epipolar constraint of two views [5]. Such a (crossed) normalized epipolar constraint
serves as an optimal objective function for motion (and structure) estimation. This objective
function further reveals certain statistic relationship between bilinear and trilinear constraints:
Even the rectilinear motion can be correctlyestimated by the normalized epipolar constraint as a
limit of generic cases, hence trilinear constraints are not really necessary. Since the so obtained
objective function is defined naturally on a product of Stiefel manifolds, we show how to use
geometric optimization techniques [2] to minimize such a function. Simulation and experimental
results are presented to evaluate the proposed algorithm and verify our claims.

1 Introduction

In this paper, we revisit a classic problem in structure from motion: How to recover camera motion
and (Euclidean) scene structure from correspondences of a cloud of points seen in multiple (per
spective) images? With such a vast body of literature studying almost every aspect of this problem
(see, for example, reviews of batch methods [13], recursive methods [7, 12], orthographic case [14]
and projective reconstruction [16]), it is quite reasonable to ask what, if anything, can still be new
in this topic.

First of all, we do not yet have a clear picture about the relationship between multilinear
constraints and the (statistic) optimality of motion and structure estimates. Although we have
understood very well the geometric (or algebraic) relationship among multilinear constraints [4, 6,
10, 15] (which will be briefly reviewed in Section 3), when it comes to using them for designing
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motion or structure recovery algorithms, they are usually used as objectives rather than, constraints.
Many researchers believe that multilinear tensors should be recovered first and, from them, motion
and structure could be further retrieved [3]. Algebraically, this is true. Nevertheless, when a
noise model is considered and the direct objective is to minimize certain statistics, such as the
reprojection error (also called nonlinear least squares error as in [13]), it becomes quite unclear
how to incorporate these multilinear constraints into the objective. More specifically, we want to
answer the questions:

(i) Can we convert such a constrained estimation (or optimization) problem to an un
constrained one? If so, what weight should be assigned to each constraint?

Secondly, we have every reason to believe that, for such a constrained estimation problem, its a
posteriori likelihood function (or some variation of it) still needs to be found. From an estimation
theoretic viewpoint, such a function should indeed capture some peculiar statistic nature of the
multiview structure from motion problem. Other than the well known algebraic and geometric
relationship between bilinear and trilinear constraints, we may ask:

(ii) What is the statistic relationship between bilinear and trilinear constraints? Is
trilinear constraint really needed for motion (or structure) estimation in the degenerate
rectilinear motion case?

On the other hand, from an optimization theoretic viewpoint, with such a function we can further
understand:

(iii) What is the exact nature of the optimization associated to the original prob
lem? What geometric space does the optimization take place on? Is there any generic
optimization technique available for minimizing such a function?

Finally, in applications which require high accuracy, noise sensitivity becomes the primary
issue [1, 5, 17]. Although a specific sensitivity study is needed for every algorithm, it is still
possible to study the intrinsic sensitivity inherent in the initial problem. From statistics, we know
that the Hessian of the a posteriori likelihood function at the maximum closely approximates
the covariance matrix of the estimates. Hence an explicit expression of the likelihood function is
absolutely necessary for a systematic study of the intrinsic sensitivity issue. As we will soon see, the
normalized epipolar constraint to be derived is such a function and we will show how to compute
its Hessian, even though the sensitivity issue is not a main subject of this paper (see Section 5)1

In this paper, we will give clear answers to the above questions through the development of
a solution to the constrained nonlinear least squares optimization problem which minimizes the
reprojection error subject to constraints among multiple images. Question set (i) will be answered
in Section 4. The answers will become evident from the derivation and the form of the normalized

epipolar constraint. For Question set (ii), the statistic relationship between bilinear and trilinear
constraints will be revealed by Simulation 3 in Section 6 and some further explanation will be given
in Comment 5. Question set (iii) are to be answered in Section 5 where a generic optimization
algorithm is explicitly laid out for minimizing the normalized epipolar constraint. Although our
results, including the algorithm, can be easily generalized to trilinear constraints or even to an un-
calibrated framework, we choose to present the calibrated case using bilinear (epipolar) constraints
so as to clearly convey the main ideas. Nevertheless, we will comment on the trilinear case and
uncalibrated case in due time.



Relations to Previous Work: Our algorithm belongs to the so called batch methodsfor motion
and structure recovery from multiple views, like that of [13, 14, 16], and is a necessary extension to
the unconstrained nonlinear least squares method [13]. We here emphasize again that, our focus is
not on an algorithm for computing motion or structure faster than the ones in [9, 17], although we
will mention briefly how to speed up our algorithm. Instead, we are using our algorithm as a means
of revealing the interesting geometry in multiview structure from motion, by way of identifying
it with the optimality of each step of the algorithm. In doing so, one will be able to see what
roles multilinear constraints essentially play in the design of optimal algorithms. Especially, the
revelation of the statistic relationship between bilinear and trilinear constraints is an important
complement to the well known algebraic or geometric results [4, 6, 10, 15]. Our results, especially
the normalized epipolar constraint, may also help improve existing recursive methods such as in
[7, 12] if the filter objective function is modified to the one given by us. Moreover, studying
the Hessian of such an objective will allow an extension of existing sensitivity study [1, 5] to the
multiview case.

2 Camera Model

We first introduce some notation which will be frequently used in this paper (the notation is
consistent with that in [8]). Given a vector p = [pi,P2,P3]^ € we define 5o(3) (thespace of
skew symmetric matrices in by:

p =

0 -P3 P2
P3 0 -pi

-P2 Pi 0
(1)

It then follows from the definition of cross-product of vectors that, for any two vectors p, g € R^
we havepx q = pq.

The camera motion is modeled as a rigid body motion in R^. The displacement of the camera
belongs to the special Euclidean group 5E(3), represented in homogeneous coordinates as:

S£;(3) =|s=[^ P |p€K^i^e50(3)J (2)

where 50(3) is the space of 3 x 3 rotation matrices (orthogonal matrices with determinant 4-1).
Clearly, a transformation g is uniquely determined by its rotational part R € 50(3) and trans-
lational part p € R^. So sometimes we also express g € 5£'(3) by (R,p) as a shorthand. It
is also convenient to represent a point q = [9ij92)93]^ € R^ in homogeneous coordinates as
9 — 1]^ € R'̂ . The set of all such points can also be identified as the subset of RF®
excluding the plane at infinity, i.e., the plane consisting ofall points with coordinates [qi,q2j 93i 0]^.
Let q{t),t 6 R be the coordinates of q with respect to the camera coordinate frame at time t. Then
the coordinate transformation between q{t) and 9(^0) is given by:

g{t) = 9{t)q{to). (3)

Without loss of generality, we may assume q{to) is the coordinates with respect to a pre-fixed
inertial frame. In R^, the above coordinate transformation is equivalent to:

q(t) = R{t)q{tQ)+p(t). (4)



Define the projection matrix P 6 to he P = [73x3,0]. In this paper we always use
bold letters to denote image points. Then, in homogeneous coordinates, the (calibrated) image
X= (x,y,2:)^ G of a point g 6 R® satisfies:

Ax = Pq. (5)

where A> 0 encodes the (positive) depth information, defined to be the scale ofthe point q with
respect to its image x. For instances, X= qs for perspective projection and A= ||g|| for spherical
projection. If the imaging surface has variable curvature, Acan be more involved.

3 Geometric Interpretation of Multilinear Constraints

Consider n points with coordinates g\ g^, •.. , g" € relative to some inertial coordinate frame.
To be consistent in notation, we always use the superscript i G N of g* to enumerate different
points. Each of the n points {g*}f_i has its corresponding images xi,x^,... ,xj,j GIK^ 1 < i < n,
with respect to the m camera frames at m different locations. The subscripts j or k are always
used to enumerate the m camera frames. Denote the relative motion (transformation) between the

and frames as gkj ^ {Rkj,Pkj) € 5jE(3), l<j,k<m. For j = 1,..., m, let Aj- be the scale
of the point g* with respect to its image x*-. Then from (3) and (5) we have:

^1 0

0•
*2

0

..0
0

• •
T'Pii

0 ^2
—

P921

Xm . . ^9ml .

which we rewrite in a more compact notation as:

X*A* = Aq\

(6)

(7)

We call A G the motion matrix. Notice that the motion matrix A = [ai,02,03,04] has
four column vectors ai G 1 < / < 4. A only depends on the relative motions between camera
frames and can be viewed as a natural generalization of the essential matrix in the two view case.

Now for the image kj G of a point g, we define the vector Xj G associated to Xj to
be the column of the matrix X:

Xj = [0,..., 0, xJ,0,..., 0]^ GE^"",

We then have the well-known results:

1 < j <

Proposition 1 (Multilinear Constraint) Consider m images {xj G ®point q, and
the motion matrix A = [01,02,03,04] € of relative motions between camera frames. Then
the associated vectors {xj G satisfy the following wedge product equation:

ai A 02 A 03 A 04 A Xi A ... A Xm = 0. (8)

For givencamera motions, this equation gives multilinear constraints in the m imagesXj of a single
3D point. Among all the constraints given by this wedge product equation, those involving only
four images are called quadrilinear, those involving only three images are called trilinear, and



those involving only two images are called either bilinear, fundamental or epipolar. It has
been shown that constraints involving more than four images are (algebraically) dependent on the
trilinear and bilinear ones [4].

For the problem of motion and structure reconstruction, we are more interested in recovering
the motion matrix A from measured images Xj's. In general, coefficients of all the multilinear
constraints are minors of the motion matrix A. As for relationships among these coefficients, it is
also known that the following statement is true [6]:

Proposition 2 (Multilinear Constraint Dependency) Coefficients of trilinear or quadrilin-
ear constraints are functions of those of all bilinear (epipolar) constraints (or equivalently the cor
responding fundamental matrices) given that the locations of the camera center do not lie on a
straight line.

This proposition states a very important fact: information about the camera motion is already
fully contained in the bilinear constraints unless the camera center moves in a straight line - such
a motion is also called rectilinear motion. Geometrically, this degenerate case is illustrated in
Figures 1. In fact, a set of points on m image planes satisfy all multilinear constraints if
and only if "rays" extending from camera centers along these image points intersect at a unique
point in 3D. As a consequence of this geometric interpretation of multilinear constraints, in order for

02 03

Figure 1: Degeneracy: Centers of camera lie
on a straight line. Coplanar constraints are
not sufficient to uniquely determine the inter
section hence trilinear constraints are needed.

Figure 2: Sufficiency: Centers of camera and
the point are not coplanar. Three (bilinear)
coplanar constraints are sufficient to uniquely
determine the intersection.

an extra image to satisfy all multilinear constraints, it only needs to satisfy two (bilinear) coplanar
constraints given that the new camera center is not collinear with the previous ones. For example,
in Figure 2, in order for the fourth image to satisfy all multilinear constraints, it is sufficient for the
ray (o4,g) to be coplanar with the ray (o2,g) and the ray (o3,g). The coplanar condition between
the ray (o4,g) and the ray (oi,g) is redundant.

4 Normalized Epipolar Constraint of Multiple Images

Multilinear constraints have conventionally been used to formulate various objective functions for
motion recovery. However, if we do use them as constraints, we only need to pick a minimal set



of independent ones. The minimal requirement is needed for Lagrangian multipliers to have a
unique solution. The dependency among multilinear constraints suggests that if the centers of the
camera do not lie on a straight line, pairwise epipolar constraints already provide a sufficient set
of constraints. In this paper we will assume this condition is satisfied unless otherwise stated -
Comments 2 and 5 will discuss about the degenerate case. Furthermore, the (pairwise) epipolar
constraints among consecutive three images naturally give a minimal setofindependent constraints.
In this section, we show how to use these constraints to derive aclean form of an optimal objective
function for motion (and structure) recovery. In the next section, we will show how to use geometric
optimization techniques to find the optimal solution which minimizes theobjective function derived
here.

The rigid body motion between the and camera frames is gkj = (Rkj.Vkj) 6 SE(Z),
I < k,j <m. Thus the coordinates ofa 3D point with respect to frames j and k are related
by:

qk = RkjQj-hPkj' (9)
Let us denote by Ejk = R'kjPkj € the essential matrix associated with the camera motion
between the k*^ and frames, then in absence of noise, image points xj satisfy the epipolar
constraints:

xf = 0. (10)

In presence of isotropic noises, we seek for points x = {xj} on the image plane and a configura
tion of 771 camera frames Q= {gkj^ such that they minimize the total reprojection error. That
is, we are to minimize the objective:

n m

= (11)
1=1 i=i

subject to the constraints:

xf^w+iXj+i =0. xf£w+2xi+2 = 0, xfe3 = l (12)
where es= (0,0,1)1" e i < j < „ _ i, i < i; < ^ - 2,1 < / < ro and 1 < «< n. ^he first two
constraints areepipolar constraints among three consecutive images. From the previous section, we
know that they form a minimal (but sufficient) set of constraints among multiview images under
a generic configuration. We will discuss the degeneracy case in Comments 2>and 5. The last
constraint is for the imaging model of perspective projection.^ Using Lagrangian multipliers,
the above constrained optimization problem is equivalent to minimizing:

n m j+2

IP + E +/3j(xf63 - 1)}
t=l j=l k=j+l

for some € R. From the necessary condition VF = 0 for local minima,

j+2 j-l

2(xi - x}) + 0')kEik^kU<m + E 4j£5xUt>i+ = 0
k=j+l k=j—2

^Without loss ofgenerality, we here will only discuss the perspective projection. The spherical projection is similar
and hence omitted for simplicity.



for all i = 1,..., n, j = 1,..., m. Multiplying the above equation by 63 €3 to eliminate we
obtain:

2(x' -x}) =eje3( ^
A:=j+1

i-1

E
k=j—2

(13)

for all i = 1,... , n, j = 1,.., , m. It is readily seen that, in order to convert the above con
strained optimization to an unconstrained one, we need to solve for and For this pur

pose, we define vectors x*,x*. Ax* € associated to the point: x* = [xj^,... ,xj^ ,x* =
[x*!^,... ,Ax* = X* —X*, and the vector ofall the Lagrangian multipliers:

Q:' = [«>;i2j <^13) ®23> ®24> <^34) •••i^Tn-2,m» <^m-l,7n]^ ^

and matrix D GIR3mx3m as diagonal blocks:

€363 03x3
D =

03x3 £3 63

We define, for m > 3, matrices E = E{m) G 3) ^ |̂ 3mx(2m 3)
recursively as:

with

E{m) =

X'(m) =

E{2) =

X\2) =

Ei2

J

F;(m-1) I 0(3„i_9)x6
. 03x3(2m-5) I
X*(m-\) I 0(3^_9)x2

. 03x(2m-5) I

Em—2,711 03x3

Em = 03x3 Em—l,m
E'^ El- L,in _

X*
m 03x1

Xin = Osxl xjn .

. Ki-2 Ki-1 .

We define the pseudo-array multiplication E •X* recursively as

E(m). X'{m) =

with

E{m - 1) •X*{m - 1) I 0(3^_9Jx2
03x(2m-5)

£(2)-X*(2)= f
. ^12*1 .

Em'Xl =
Em—2,rn^m O3XI

Osxl l,m^m
JPT j?T



Using this notation, the equation (13) can be rewritten as:

2Ax'= DE'X'a\ (14)

Note that D is a projection matrix, i.e., D'̂ = D. All theconstraints in (12) then can be rewritten
compactly as two matrix equations:

. X* = 0, DAx* = Ax'. (15)

The first equation is simply a matrix expression of all the epipolar constraints. Thus we can solve
from equation (14) for a*:

a'= 2(x''̂ •E'̂ DE •X') •E'̂ x' (16)

given that the matrix G = X*^ •E^DE •X* is invertible. We call matrix G the observability
Grammian.

Comment 1 (Observability Grammian) In general, the observability Grammian is invertible
even in cases that the algorithm is not designed for, i.e., the camera motions are such that optical
centers lie on a straight line, except for points on the line. In fact, 3D points which make the
Grammian degenerate, i.e., det(G) = 0 are very rare. Geometrically, it means that, given a sequence
of camera motions, the 3D location of a point whose images make the Grammian degenerate is not
observable. For example, for camera translating in a straight line, points on the line itself then
satisfy det(G) = 0 hence their images contain no information about neither their 3D location nor
the camera motion on the line. In this sense, G can be thought of as the observability matrix in
control theory.

Substituting the expression ofa' (16) into (14), we then obtain the expression for Ax' and we have:

IIAx'll^ = •X' (x''̂ •E'̂ DE •X') •BV. (17)
Substituting this expression into the objective function F{Q, x) we obtain:

F(g, x) =̂ x'̂ B •X' (x"'' •B^DB•X") •BV. (18)
Notice that the terms on the right hand side of the equation are exactly multiview versions of the
crossed normalized epipolar constraints, but it is by no means a trivial sum of the pairwise
crossed normalized epipolar constraints [5]. Inorder to minimize F(Q,x), we need to iterate between
the camera motion 6 and triangulated structure x, which would be essentially a multiview version
of the optimal triangulation procedure proposed in [5]. In this paper, however, we will only
demonstrate how to obtain optimal motion estimates. Note that, in the expression of F{Q,k), the
matrix X* is a function of x' instead of the measured x'. In general, the difference between x' and
X* is small. Therefore, we may approximate X* by replacing xj in X* by the known xj. We call the
resulting matrix as X\ We then obtain a new function (in camera motion only) Fn(Q) = F(Q,x):

F„(e) =^x'̂ B •x' •B^BB •X')"' X''" •BV. (19)
1=1



In absence of noise, each term of Fn(Q) should be:

•X* [x" -E^DE-x')•BV = 0. (20)

We call this the normalized epipolar constraint of multiple images. This is a natural gener
alization of the normalized epipolar constraint in the two view case [5]. Thus, as in the two view
case, Fn{Q) can be regarded as a statistically adjusted objective function for directly estimating
the camera motions.

Comment 2 (Bilinear vs. Trilinear Constraints) It is true that one can also use a set of
independent trilinear constraints to replace those in (12) and, with a similar exercise, derive its
normalized versionfor motion (and structure) estimation. However, trilinear tensors (as functions
of camera motions) do not have as good geometric structure as the bilinear ones. This makes
the associated optimization problem harder to describe, even though it is essentially an equivalent
optimization problem. One must also be aware that, in the rectilinear motion case, the normalized
epipolar constraint objective is not supposed to have a unique minimum (as we will soon see
in Simulation 3, in presence of noise, this is not completely true. We will discuss further the new
meaning of the minimum in Comment 5) while the corresponding normalized trilinear one always
gives a unique solution.

Comment 3 (Calibrated vs. Uncalibrated Camera) In the case of an uncalibrated camera,
nothing substantial will change in the above derivation except that the essential matrices need to
be replaced by fundamental matrices and that the camera intrinsic parameters will introduce 5 new
unknowns.

5 Geometric Optimization Techniques

Fn in the previous section is a function defined on the space of configurations of m camera frames,
which is not a regular Euclidean space. Thus conventional optimization techniques cannot be
directly applied to minimizing F^. In this section, we show how to apply newly developed geometric
optimization techniques [2, 11] to solve this problem. We here will adopt the Newton's method,
although it may not be the fastest, because it allows us to compute the Hessian of the objective
function which* is potentially useful for sensitivity analysis.

The configuration ^ of m camera frames are determined by relative rotations and translations:

n = [F2i,F32,...,F,„.m-i] €50(3)'"-^

Then Fn(Q) can be denoted as Fn(7l,V). It is direct to check that Fn{fR,,XP) = F„(7^,F) for
all A 0. Thus Fn{fR,,V) is a function defined on the manifold M = 50(3)'""^ x where
g3m-4 jg ^ ^ dimensional spheroid. M is simply a product of Stiefel manifolds and it has
total dimension 6m —7. Furthermore, the (induced) Euclidean metrics on 50(3) and are
the same as their canonical metrics as Stiefel manifolds. This gives a natural Riemannian metric
^(•, •) on the total manifold M. Note that any tangent vector X € Tpi^-p^M can be represented as
^ with Xti € T7e(50(3)'"~^) and X-p 6 T(p(S '̂"~'*) defined by the expressions:

~ ••• >Fni,Tn—,m—l]> (21)

Xv = [Xl,...,Xl„.,f (22)



where ? = 1,... ,m —1 and X-p^V = 0. Then the Riemannian metric
$(•,•) on the manifold M is explicitly given by:

m-l

X) —̂ ^T+i,i^i+i,i + X^Xp. (23)
t=l

Similar to the two view case [5], we can directly apply the Riemannian optimization schemes
developed in [2, 11] for minimizing the function Fn(TZ,V).

Riemannian Newton's Algorithm Minimizing Fn(TZ^V):

1. Pick an orthonormal basis on Compute the vector g € with its
i*^ entry given by (g),- = dFn(B^). Compute the matrix H € R(6"»-7)x(6m-7) {i,jy^
entry given by (H)ij = HessFn{B\B^). Compute the vector S= -H~^g €

2. Recover the vector A 6 whose coordinates with respect to the orthonormal basis B* 's
are exactly S. Update the point (TZ,V) along the geodesic to exp(A).

3. Repeat step 1 if ||g|| > e for some pre-specified tolerance c > 0.

In the above algorithm, we still need to know: how to pick an orthonormal basis on TM, how to
compute geodesies on the manifold M, and how to compute the gradient and Hessian of F„.

Using the Gram-Schmidt process, we can find vectors V-p,... , such that, to
gether with F, they form an orthonormal basis of R^"*~^. Let ei,e2,€3 € R^ be the standard
orthonormal basis of R^. Then a natural orthonormal basis on is given by:

03i-3+i ^ _0, Ri+i,iej, 0,..., 0], 0)

for 1 < z < m —1, 1 < i < 3 and

^3m-3+t ^ (0,l4), forl<i<3m-4.

Given a vector X = (Xp^ Xp) € T^p^p^M with Xp and Xp given by (21) and (22) respectively,
the geodesic {fR,(t)^V(t)) = exp(A't),t € R is given by:

n(t) = {R2xe'̂ ^, ,..., (24)
V{t) = Vcos{Gt)^-Usm((Tt), (j=\\Xp\\,U = XpIg. (25)

The tangent of this geodesic at t = 0 is exactly X.

With an orthonormal basis, the computation of gradient and Hessian can be reduced to direc
tional derivatives along geodesies on M. Given a vector X G let (7^(t),F(t)) = exp(/Vt).
Then we have:

dF„(7^(^),F(^))dF^(X) =
dt

HessF„(A',A') =

10



Polarizing HessF„(A',.V) we can obtain the expression of HessF„(^,iy) for arbitrary X^y ^

HessF„(A',3^)

= i (HessFn {X +y,X +y)- HessF„(,x-y,x-y)).
According to the definition of gradient, gradF^ € which is given by:

dFn(X) = $(gradF„, X), VA' € T^n,v)M, (26)

is exactly equal to the 1-form dF„ with respect to an orthonormal frame. Therefore, at each point
(7^, F), we pick the orthonormal basis on as above and compute the first and
second order derivatives of F„ with respect to corresponding geodesies of the base vectors. The
gradient and Hessian of Fn are then explicitly expressed by the vector g and the matrix H as
described in the above algorithm. The updating vector A computed in the algorithm is in fact
intrinsically defined^ and satisfies:

HessFn(A, X) = ^(-graxiF„,X), VA € (27)

Note that F„ has a very good structure - only matrix E depends on (F, V) and it consists
of blocks of essential matrices Fjj+i and Fjj+2' The computation of the Hessian can then be
reduced to computing derivatives of these matrices with respect to the chosen base vectors. From
the definition of the essential matrix Ejki we have:

>T -

Hence the computation can be further reduced to derivatives of essential matrix Fjj+i only. For a
vector X € of the form given by (21) and (22), by direct computation, we have:

-h Rj+ijXj+ij,
d^Ejj+i{X,X) = ^j+i,jRj+i,jPj+i,j +

- ' X'p'̂ X'pRj^ijPj+ij

foT j = 1,... , m —1. Note that these formulae are consistent to the corresponding ones in the
two view case. Thus we now have all the necessary ingredients for implementing the proposed
optimization scheme. For any given number of camera frames, we get an optimal estimate of the
camera relative configuration by minimizing the normalized epipolar objective F„.

Comment 4 (Newton vs. Levenberg-Marquardt) The difference between Newton and Lev-
enberg - Marquardt (LM) methods is that in LM the Hessian is approximated by some form of the
objective function's gradient. Since the gradient only involves first order derivatives, LM in general
is much less costly in each step. From our implementation of the Newton's algorithm, the Hessian
indeed takes more than P5% of the computing time. Nevertheless, we computed the Hessian any
way since the formula would be useful for future sensitivity analysis of motion estimation in the
multiview case.

'That is, the definition of A is independent of the choice of coordinate frame.
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6 Simulations and Experiments

In this section, weshow by simulations and experiments the performance of the normalized epipolar
constraint. We will apply it to cases with or without the sufficiency of the epipolar constraint
satisfied.

Setup: Table 1 shows the simulation parameters used. In the table, u.f.l. stands for unit of
focal length. The ratio of the magnitude of translation and rotation, or simply the T/R ratio, is

Table 1: Simulation parameters

Parameter Unit Value

Number of trials 100 - 500

Number of points 20

Number of frames 3-4

Field of view degrees 90

Depth variation u.f.l. 100 - 400

Image size pixels 500 X 500

compared at the center of the random cloud (scattered in the truncated pyramid specified by the
given field of view and depth variation). For all simulations, independent Gaussian noise with std
given in unit of pixel is added to each image point. In general, the amount of rotation between
consecutive frames is about 20° and the amount of translation is then automatically given by the
T/R ratio. In the following, camera motions will be specified by their translation and rotation axes.
For example, between a pair of frames, the symbol XY means that the translation is along the
Jf-axis and rotation is along the V-axis. If n such symbols are connected by hyphens, it specifies
a sequence of consecutive motions. Error measure for rotation is

arccos

tr(RijRjj) -1

in degrees where R is an estimate of the true R. Error measure for translation is the angle between
Pij and pij in degrees where p is an estimate of the true p. All nonlinear (two view or multiview)
algorithms are initialized by estimates from the conventional two view linear algorithm.®

6.1 Simulation 1: Comparison with Two Frame Bilinear and Normalized Epipo
lar Constraints

Figure 3 plots the errors of rotation estimates and translation estimates compared with results
from the standard 8-point linear algorithm and nonlinear algorithm for pairwise views [5]. As we
see, normalization among multiple images indeed performs better than normalization among only
pairwise images.

^In the multiview Cctse, the relative scciles between trfmslations are initiahzed by triangulation since thedirections
of translations cire known from estimates given by the linear algorithm.
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Figure 3: Motion estimate error comparison between normalized epipolar constraint of three frames,
normalized epipolar constraint of two frames and (bilinear) epipolar constraint. The number of
trials is 500, camera motions are XX-YY and T/R ratio is 1,

6.2 Simulation 2: Axis Dependency Profile

We run the multiview algorithm with consecutive motions along the same rotation and translation
axes for all nine possible combinations. See Figure 4. Note that our multiview algorithm is not
designed to work in rectilinear motion case, such as XX-XX, YY-YY and ZZ-ZZ. Nevertheless,
the simulation results in the figure show that the translation estimates still converge to the correct
translational direction and the error angles between estimates and the true ones are comparable
to other generic cases. As we see, the estimate error is larger when translation along the Z-axis is
present. This is because of a smaller signal to noise ratio in this case.

6.3 Simulation 3: A Statistically Stable Solution for Rectilinear Motion from
Normalized Epipolar Constraint

From the previous simulation, we notice that the algorithm indeed converges to the correct transla
tional direction in the rectilinear motion case. Then how about the relative scales between consec

utive translations? They are usually believed to be captured only by trilinear constraints but not
by bilinear ones. This is not completely true: The rectilinear motion is indeed a degenerate case for
the bilinear constraints, from which there is no unique solution for the relative scales - (for example
see Figure 1). However, statistically, the true relative scales must be a stable solution among all
the possible ones. That is, if we properly normalize the epipolar constraint w.r.t. the noise model,
the true relative scale should be captured by the epipolar constraints alone as a statistically stable
solution. Here, noise essentially plays a positive role of "singling out" the stable solution which
otherwise would be lost when degeneracy occurs. Figure 5 plots two histograms of relative scale
estimates given by minimizing our normalized epipolar constraint: One is for a rectilinear motion
and the other one for a generic motion. Clearly, in both cases, the histogram resembles a Gaussian
distribution with the mean centered at the true scale, as a result of the proper normalization. More-
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Figure 4: Axis dependency profile: The algorithms are run for all nine combinations of camera
rotation and translation w.r.t. the X, Y and Y axes. The number of trials is 100, noise level is 3
pixel std and T/R ratio is 1.

over, the two histograms are comparable to each other, which suggests that, using (normalized)
epipolar constraint alone, scale estimates in a degenerate case are not necessarily worse than in a
generic case.

Comment 5 (Bilinear vs. Trilinear Constraints Continued) Simulation 3 reveals a re
markable statistic relationship between bilinear and trilinear constraints: If an optimal estimate is
obtained for generic cases, it can still be retrieved as the stable estimate in a degenerate case -
the (noise-free) deterministic constraint may be degenerate, but there is no reason for the a pos
teriori distribution of the estimate to be degenerate as well. Geometrically, the estimate obtained
in a degenerate configuration can be interpreted as a "limit" of a sequence of estimates of generic
configurations. Such an estimate may also be viewed as the so called "viscous solution" of the
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Figure 5: Histogram of relative scale estimates by normalized epipolar constraint in a rectilinear
motion case and a generic motion case. The number of trial is 100, noise level is 3 pixel std and
the true relative scale between consecutive translation is 2.
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normalized epipolar constraint if the Gaussian noise added on images is regarded as some kind of
"diffusion". Therefore, in principle, we do not really need trilinear constraints in order to estimate
motion (including relative scales) correctly even in the rectilinear motion case, although such an
estimate may be more sensitive or less robust (if the noise model changes).

6.4 Experiment: Motion Recovery from Real Images

We simply tested our algorithm on a set of real images taken by a commercial pan-tilt camera.
Figure 6 shows four images of a cubic corner with feature points, Figure 7 plots the estimated and
hand measured actual camera location, and Table 2 gives the errors between the estimated and
measured motions. The camera is self-calibrated by Hartley's method for a pure rotating camera.

Since our camera calibration and motion measurements are still crude, errors of this size are

Figure 6: Four images of a cubic corner taken by the camera.

Mollon EriinBUon EipwwnenI

Actual Camera LocaUon
Ellimaled Camera Loeallon

Figure 7: Comparison of estimated and measured camera configuration for the four images



Table 2: Motion estimate errors in degrees

Motions Rotation Errors Translation Errors

Frames 2-1 8.1® 4.6®

Frames 3-2 6.3®

bo
o

Frames 4-3 4.4® 4.5®

expected. We are currently fine-tuning our hardware setup to get better results.

7 Conclusions and Discussions

In this paper, we contend by using (bilinear) epipolar constraint that multilinear constraints need
to be properly normalized when used for motion (or structure) estimation. There are several conse
quences of such a normalization. First, the so obtained objective function is no longer linear hence
it does not preserve the tensor structure of multilinear constraints. Second, such a normalization
is a natural generalization of the well known normalized epipolar constraint between two images
but by no means a trivial sum of them. Third, the normalization not only provides optimal mo
tion (and structure) estimates but, more importantly, reveals certain statistic relationship between
epipolar and trilinear constraints - as a necessary complement to the well known algebraic or ge
ometric relationship. We now know that in principle normalized epipolar constraint alone suffices
for estimating correct motion (as a statistically stable solution) even in the rectilinear motion case.
However, more extensive simulation, experiments and analysis are still needed to evaluate how re
ally practical it is when applied to degenerate cases because it may be less robust to model change.
For example, in the case when the noise on the images is no longer isotropic or identically indepen
dently distributed, we do not know whether the rectilinear motion can still be well estimated. In
a practical implementation, the reader is recommended to extend the idea of normalization in this
paper to trilinear constraints or even to an uncalibrated camera.

In this paper, we use the generic Newton's algorithm to minimize the normalized epipolar
constraint. One disadvantage is that it is slower than most gradient based algorithms, such as the
commonly used Levenberg-Marquardt algorithm. For this reason, we recommend the reader to use
those algorithms instead for practical implementations. We here outlined the Newton's algorithm
to demonstrate how to compute all the necessary geometric entities associated to the optimization.
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