

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PHYSICAL AND NUMERICAL METHODS

OF SPEEDING UP PARTICLE CODES AND

PARALLELING AS APPLIED TO RF DISCHARGES

by

E. Kawamura, C. K. Birdsall and V. Vahedi

Memorandum No. UCB/ERL M99/58

1 December 1999

PHYSICAL AND NUMERICAL METHODS

OF SPEEDING UP PARTICLE CODES AND

PARALLELING AS APPLIED TO RF DISCHARGES

by

E. Kawamura, C. K. Birdsall and V. Vahedi

Memorandum No. UCB/ERL M99/58

1 December 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Physical and Numerical Methods of Speeding

Up Particle Codes and Paralleling as Applied

to RF Discharges

E. Kawamura"^, C. K. Birdsall^ and V. Vahedi*

t EECS Dept., 195M Cory Hall

University of California at Berkeley

Berkeley, CA 94720-1770

* Lam Research Corp.

4650 Cashing Parkway

Fremont, CA 94538-6470

Abstract

We demonstrate means, both physical and numerical, for speeding up particle-in-

cell (PIC) simulations of RF discharges. These include implicit movers, longer ion

timesteps, lighter mass ions, different weights for electrons and ions, and improved

initial density profiles. By using these methods (singly or together) on Ar and O2 RF

discharges, we were able to achieve speedups of 6 to 30 times with single processor

machines. In electrostatic IdSv PIC simulations of RF discharges, the field solve is

typically less than 1 percent of the work load. Even for 2d3v PIC simulations, the

field solve can be a small percentage of the work load especially when FFT methods

are used to solve for the field. Thus, we can obtain significant gains by just parallel

ing the particle processing (e.g., pushing/accumulating) without paralleling the field

solve. We apphed this simple scheme to conduct ld3v and 2d3v PIC simulations of

Ar RF discharges on 2 and 4 CPU symmetric multiprocessor (SMP) machines and

on a distributed network of workstations (NOW). For a fixed number of grid points,

the speedup,for this parallel particle processing became more linear with increasing

particle munber. The combination of single processor methods and paralleling makes

run-times for PIC codes more competitive with other types of codes.

1 Introduction

Particle-in-cell (PIC) simulations of RF discharges are attractive because the fields and en

ergy distributions can be obtained self-consistently from first principles [1]. No assumptions

need be made about the electric field or the bulk plasma velocity distributions, and the

boundary conditions are realistic for both particles and fields. Collisions can be included in

PIC simulations by coupling PIC methods with Monte-Carlo collisions (MCC). A detailed

key reference for PIC-MCC is provided by V. Vahedi and M. Surendra (1995) [2]. The only

disadvantage of PIC-MCC is that it tends to be computationally expensive compared to

other numerical methods. Plasma simulations using fluid codes (solving several moments of

the Boltzmann equation) tend to run faster than PIC-MCC codes, but make assumptions

about the velocity distributions of the electrons and ions (e.g., assume velocity distributions

are Maxwellian) and ignore kinetic effects such as stochastic electron heating. Our goal is to

keep the first-principle, self-consistent approach in PIC-MCC while accelerating PIC-MCC

codes so that they are more useful to modelers and experimentalists alike who are designing

new plasma processing equipment.

The current "rule-ofthumb" on PIC-MCC simulations of RF discharges is that one needs

to run the simulations for about 1000 RF cycles in order to reach equilibrium. Depending on

the simulation, this may take 10® or more timesteps, with from 10^ —10® particles. Standard

explicit PIC-MCC codes with no speedup applied, running on a single processor moderately

fast workstation (e.g., a 233 MHz DEC Alpha workstation), do not begin to complete such

a run in one hour.

In this paper, we will briefly review the standard PIC-MCC model used in our simulations.

Next, we will discuss various methods of speeding up PIC-MCC codes on single processor

machines. These include implicit movers, longer ion timesteps, lighter mass ions, different

weights for electrons and ions, and improved initial density profiles. We will then apply

these methods to three different ld3v RF discharges (a 100 mT argon discharge, a 10 mT

argon discharge, and a 100 mT oxygen discharge). By "ld3v", we mean one dimensional

displacements (Id) with three velocity components (3v).

Finally, we will introduce and discuss a parallel particle processing scheme for PIC-MCC

simulations. In a typical electrostatic ld3v PIC-MCC simulation ofan RF discharge, most

of the time is spent in processing (e.g., pushing or accumulating) the particles rather than

in the field solve. This is true even for 2d3v PIC-MCC simulations, especially when we use

Fast Fourier Transform (FFT) field solve methods. Thus, we can obtain significant speed

gains by just paralleling the particle processing without paralleling the field solve. We will

apply this scheme to both ld3v and 2d3v argon RF discharges.

1.1 Bounded plasma model

Figure 1 shows the Plasma Device Planar ld3v model used in our well known and widely

used code called PDPl [1, 3]. The metal electrodes at rc = 0 and x = L bound the plasma

region and have surface charge, both induced by the fields in the plasma and from charges

deposited from the external circuit.

surface charge

V(OorI(t) L R C

VvV II

Figure 1: Model for the plasma device code PDPl, showing all of the elements of a whole

device, with the plasma between the electrodes and the external driving circuit outside, all

solved simutaneously. Prom Verboncoeur et al [4] (1993).

PIC-MCC codes follow particles in their own and applied electric (E) and magnetic (B)

fields, from first principles, self-consistently, with the collisions done by the MCC method.

Each computer particle is a "superparticle" whichrepresents 10®—10® real particles (electrons

or ions). The simulation must run with a suflficient number of particles in order to minimize

the discrete particle noise. For each timestep: (i) The charge and current densities p and J

are obtained by a linear weighting of the particles to the spatial grid, (ii) p and J are used

to solve for E and B on the grid. For electrostatic simulations, Poisson's equation is used to

solve for E. For electromagnetic simulations, the full set of Maxwell's equations is used to

solve for E and B. (iii) E and B are linearly weighted back to each particle position in order

to determine the force on each particle, (iv) The equations of motion are used to advance the

particles to new positions and velocities, (iv) The boundaries are checked, and out of bounds

particles are removed while particles injected at the boundaries are added to the simulation,

(v) A Monte-Carlo collision handler checks for collisions and adjusts the particle velocities

accordingly. Figure 2 shows the PIC-MCC flow chart for the bounded plasma model.

Weighting

(E, B).^

Integration of equations
of motion, moving particles

F. ^ V.' ^x.

Integration of field

equations on grid

(p,J). -^(E, B)^

Particle loss/gain
at the boundaries

(emission, absorption, etc.)

Weighting

(X, V). (p, J).

Monte-Carlo Collisions

Figure 2: PIC-MCC Flow chart for bounded and collisional models. From Vahedi and

Surendra [2] (1995).

1.2 Monte-Carlo collisions model

Let us briefly describe the MCC model used in our simulations. A more detailed discussion

can be found in reference [2]. The kinetic energy Si of the ith particle of species s is given

by

= msvljl = ms{v1^ + v% + 4)/2. (1)

The total collision cross-section for this particle is given by

^T{Si) = (2)
3=UN

where j = \ to N denotes the different types of collisions for species s, and cfj{Si) is the

cross-section for the jth type of collision. A constant maximum collision frequency Umax for

a species s is defined by

i^max = max{nt(7Tv}x,£ = max{nt(x)}x max{aT(S){2S/Tns)^}£, (3)

where nt{x) is the density of the target species. If Ng is the total number of particles of

species s in the simulation, then, the maximum number ofparticles ofspecies s colliding in

a time interval At is given by

Ncoll = NsPs = Ns(l - exp(-UmaxAt)). (4)

For each species s, Ncoii particles are chosen randomly from the simulation to undergo col

lisions. A random number R between 0 and 1 is used to determine the type of collision in

the following manner,

R < J^i(^i)/J^max (Collision Type 1),

^i(^i)/j^max < R< + U2(Si))luTnax (ColUsion Type 2),

^ji^i)l^max < R- (No ColUsion).
j=l,N

(5)

Since some of the Ncoii particles have a possibility of not colliding (i.e., undergoing a "null

collision"), this model is called the "null collision" model. Typically, for our applications,

^coii Ng, thus the null collision model hasa significant speed advantage over other collision

models which query each of the Ng particles for collisions every timestep.

1.3 Explicit leap frog mover

Our base PIC-MCC code uses the standard "leap frog" finite difference scheme to advance

the particles:
yn+i/2 _ + Ata"(x")

(6)

where = qE"-(x^)/m is the acceleration. The superscripts in the equations refer to

the time level. For example, refers to the value of x at time t = (n l)At, where

At is the timestep. Note that the leap frog scheme is "explicit" since and •y"+V2

determined only from values of x, v and a at earlier time levels.

In the Birdsall and Langdon simulation text [5], the stability and accuracy of the leap

frog scheme is tested by applying it to the simple harmonic oscillator model: x = —ljqX. The

exact acceleration a" = —cjqx"^ is substituted into the finite diflFerence scheme (6) to obtain,

x"+i - 2x" + x"-^
At2

= -WflXn. (7)

This equation is readily solved by assuming solutions of the form: x" = Xoexp(—inuAt).

Substituting this, into (7), we obtain,

sin(£jAt/2) = ±ciJoAt/2 (8)

For u)oAt/2 1, « wq? as desired. However, if ujoAt > 2, the real solution for ui

becomes complex with growing and decaying roots, implying numerical instability. Electron

plasma oscillations are simple harmonic oscillations and are typically the highest frequency

oscillations in our simulations. Thus, the stability criterion for the standard explicit leap

frog mover is uoAt < 2. Accuracy for the leap frog scheme is also obtained from (8). For

(jJoAt < 1,

(jj/luq = 1+ 0((JoAt)^, (9)

showing a quadratic phase error term. For simulations which use the leap frog mover, we

typically take woAt < 0.2.

2 Speedup Methods for Single Processor Computers

Numerous methods for speeding up PIC-MCC codes on single processor machines have been

published in detail and widely applied, but usually one at a time. See, for example, Table 1in
Vahedi et al [6]. We will apply several speedup methods together to electrostatic simulations

of RF discharges. Our base PIC-MCC code uses an explicit leap frog mover to advance the

particles, with no speedup applied, hence having a speed Gain = 1. "Gain" is defined as:

(base run time)/(sped up run time); a number > 1.

2.1 Implicit scheme

Implicit PIC-MCC codes allow much larger timesteps At and grid spacings Ax while main

taining stability and accuracy, due to attenuating fields at high frequencies and (usually) at

short wavelengths. For detailed anaylses ofimplicit methods, please see the texts by Birdsall

and Langdon (Chap. 9, 1985) [5] and by Brackbill and Cohen (Chaps. 9 and 11, 1985) [7].

The direct implicit scheme summarized below is also analyzed in detail in reference [8].

An example ofa direct implicit particle advance is the following:

+ £r'+'(!"+')]

^n+1/2 _ + qAt&^lm (10)

3,n+l ^ ^

The scheme is "implicit" since £7"+^ must be known to advance x from time level n to

"b 1} but Xn^i is needed to determine In otherwords, future time level information

is needed to advance the particles. The scheme is "direct" since a direct solution for

can be obtained without iterating the particle advance, provided that qAt'̂ \VE\j[2m) 1.

See References [5, 7, 8] for the details.

The recursive filtering ofthe E field in (10) damps out high frequency modes. Ifwe apply

the simple harmonic oscillator model to this implicit scheme (as was done for the leap frog

mover), we obtain the following equations, which are valid for uoAt <C 1 [8]:

Re(6j)/tJo —1 H"
(11)

lm{u)/uQ = —0{uoAt).

The real part shows a quadratic phase shift term while the negative and higher order imag

inary part shows amplitude damping. High frequency {uoAt ^1) oscillations are strongly

damped while low frequency (uoAt <C 1) oscillations are hardly affected. Thus, the physics

that is not accurately resolved (i.e., by the use oflarge timesteps) is removed bythe damping.

The implicit movers are more complex and take more computations per timestep than

explicit movers. However, since they do not rely only on past time level information to

advance the particles, they arestable over a wider range oftimesteps and grid spacings than

explicit movers. Thus implicit movers can speedup simulations by allowing larger At and

Ax than explicit movers. But by increasing At and Ax, information about high frequency

or short wavelength phenomena is automatically lost. Additionally, implicit methods tend

to damp out such phenomena anyway. Thus, implicit methods should only be applied in

cases where high frequency or short wavelength phenomena are not important, (e.g., RF

discharges where we need only resolve the sheath width and the RF frequency plus a few

harmonics).

2.2 Subcycling, AU > Ate

With the short timesteps used in order to satisfy stability and accuracy conditions for the

electrons, the far heavier ions move hardly at all in one electron timestep Ate- Hence, the

ions might be moved less frequently, i.e., every A:th electron timestep (Ati = kAte), where

k may be 10 to 100, depending on the ion mass. This is called "subcycling". See the texts

Birdsall and Langdon (Chap. 9, 1985) [5] and Brackbill and Cohen (Chap.lO, 1985) [7] for

the details. In electropositive discharges, the numberofionsand electrons are about the same

so that the maximum Gain achievable from subcycling is 2. However, for electronegative

discharges, the number of ions can far exceed the number of electrons so that subcycling can

significantly reduce the simulation time. We will see examples of this later.

2.3 Improved initial density profiles

We usually start our PIC-MCC simulations with spatially uniform ion and electron density
profiles. The density profiles then evolve to their equilibrium states. This suggests that the
time to reach equilibrium could be improved by starting off with non-uniform initial density

profiles that are close to their final equilibrium values. These profiles may be calculated

analytically or deduced from previous runs.

2.4 Light ions

One method ofobtaining a better initial starting point for a simulation is the use of "light

ions". The light ion speedup method is done in two steps. First, we replace the real ion

masses Mr^ai with the light ionmasses Mught^ and run the discharge until it comes to a "light

ion" equilibrium. Reducing the mass of the ions increases their speed, which enables them to

reach an equilibrium state in a smaller number of RF cycles, and hence less computer time.

Then we restore the real masses Mreah (keeping the same kinetic energies, by decreasing

the ion velocities by the factor y/Mreai/^^iight), and run until equilibrium again. There is
a short lived transient in restarting with the real masses, then a more gradual transition

to the final "real ion" equilibrium. The hope is that the overall running time is less than

that running with Mreai throughout (it is). Since the speed of the light ions is faster by the

factor yjMreai/^iighu we expect the light ions to reach equilibrium faster than real ions by
this factor. The maximum Gain possible is also ijMreai/Mughu assuming that the second
equilibrium is reached relatively quickly.

Increasing the speed of the ions, however, increases the rate of loss of the ions to the walls.

This means that we must increase the creation rate (ionization) in order to make up for this

increased rate of loss. One way to increase the creation rate was to increase the electron-

neutral cross-sections (including ionization) in our code by the factor ^jMreai/Mught [9].

10

2.5 Variable particle weights

In electropositive discharges, the number of electrons is about the same as the number of

ions; the charge ofthe positive ions is neutralized by the charge ofthe electrons. Incontrast,

for very electronegative discharges, the number of ions can greatly exceed the number of

electrons; the heavy negative ions largely neutralize the heavy positive ions so that there

is no need for a comparable electron population. In a typical oxygen RF discharge, there

may be ^ 10^ Oj and 0~ ions for every electron. Suppose we need atleast 10^ electrons

in our simulation to reduce numerical noise and to satisfy the condition that the number of

electrons per Debye length A/jg be much greater than 1. Ordinarily, this would mean that

we require at least 10® Oj and 0~ ions inour simulation. Since processing the particles is

typically the costliest part of the simulation, significant Gains can be achieved by reducing

the number of computer particles. One way to reduce the number of computer particles is

to weight the ion superparticles more heavily than the electron superparticles. For example,

if an electron superparticle represents 10® real electrons, an ion superparticle can represent

10® real ions. Then, in the above example, we can reduce the number of required ions in the

simulation from 10® to 10^.

A "variable weighting" procedure for electronegative discharges has been developed and

implemented by Cooperberg et al [10]. If there were no collisions, then the procedure would

be fairly straightforward since there would be no interactions involving particles ofdifferent

weights. But, because of collisions, the weight of each particle is a dynamic variable that

is updated every time the particle undergoes a collision. Suppose in a chlorine discharge,

we initially start with a weight u; = 1 for electrons and lu = 10 for 01" ions. Consider the

reaction,

e" + CI2 ^ or + 01.

Here, we must remove 1 electron and create 1/10 of a 01". Even if the 01" particles start

out with a high weight, the creation of low weight 01" particles, as in the above case, can

still lead to the increase of 01" particles. The solution is to impose a cap on the number

of particles per species. Once the maximum number of particles is reached for a species,

instead of adding particles to the simulation, we increase the weight of existing particles. In

11

the above reaction, if the C1 number is at its maximum, we find two existing Cl" close to
the event and adjust the weights and velocities of these Cl to add the mass, momentum

and kinetic energy required by the reaction. Two Cl~ are used since energy and momentum

conservation cannot be both satisfied with only one Cl~.

2.6 Constraints on At and Ax

We often try tospeedup simulations by increasing the timestep At and the grid spacing Ax.

But, in order to maintain stability and accuracy, we must obey certain constraints on At

and Ax. Most of these limits are discussed in the simulation texts noted earlier. The higher

Gains come when we run near these limits.

In a typical RF discharge, fast plasma phenomena may not be significant. Then, the

highest frequency we need to resolve is the RF driving frequency Ur/, plus a few harmonics,
and the shortest length we need to resolve is the sheath width s. However, the accuracy

criteria for PIC-MCC codes which use explicit movers require resolving the electron plasma

frequency and the electron Debye length: UpeAt < 0.2, Xoe/^x > 1. (Typically, Upe > Urf
and Xdq s.) On the other hand, by using implicit movers, we can relax these constraints

to ujrfAt -C 1 and Arc s.

Anadditional accuracy condition which must always besatisfied isthe Courant condition:

VsAts/Ax < 1, where v^ is the characteristic velocity of a particle of species s, and Ats is
the timestep of a particle ofspecies s. This ensures that most particles will not travel more

than one cell per timestep and will sample the electric fields properly.

Finally, because our MCC model assumes one collision per particle per timestep, care

must be taken to choose a At such that the probability of having a particle collide more

than once per At is low. The collision probability ofthe jth particle in a timestep At is

Pj = l- e^T>(-ngasCrT(Sj)vjAt), (12)

where vj and Sj are the speed and kinetic energy of the jth particle, and ar(£j) is its total
collision cross section with the target density Ugas. Then, the collision probability for n

12

collisions in the same At is approximately P" . The number of missed collisions per At is

then proportional to

err= ^ Pf = Pj/(l - Pj). (13)
k=2,oo

For example, an err = 0.01 requires Pj < 0.095 and ngas<JT{Sj)YjAt = UjAt < 0.1. See Vahid

and Surendra, 1995 [2]. In our Tables below, we calculate i^maxAt = rigas max{aT,s(^)v5(£)}£:At

which is larger than all the i/jAt.

3 Applications of Speedup Methods for Single Proces

sor Computers

In this section, we apply the speedup methods discussed in the previous section on three

different models: a 100 mT argon discharge, a 10 mT argon discharge, and a 100 mT oxygen

discharge. All of the simulations reported in this section were made on a modest 233 MHz

DEC Alpha workstation using our ld3v electrostatic PIC-MCC code PDPl. For each of the

three models, we provide a Table which lists the Gains due to the speedup methods as well

as the values ofthe various constraint terms (e.g., UpeAte) discussed in the previous section.

3.1 100 mT argon discharge

Our first step was to examine the 1000 RF cycle "rule of thumb" on our standard argon

current driven model, as reported on earlier by V. Vahedi et al(1993) [6]. This ld3v model

consisted of a 100 mT parallel plate argon reactor with a 2cm electrode spacing, driven by a

sinusoidal current drive with an amplitude of0.4 A and a frequency of13.56 MHz. The runs

were initiated with an equal number of electrons and ions, uniform in x, with Maxwellian

electrons at Tg = 2 eV, and Maxwellian ions at Tj = 0.03 eV. These runs were made with

about 2XlO^particles, half electrons, half ions. [See Table 1].

13

100 mT Ar

Model Base Implicit Implicit,

Subcycled

Total time(s) 7.1x10^ 1.75x10^ 1.1x10^

GAIN 1 4.1 6.5

VteAtjAx 0.43 0.69 0.69

0.013 0.021 0.42

l^gAtg 0.041 0.32 0.32

ViAti 0.0024 0.019 0.38

A/je/Aa; 2.7 0.53 0.53

Atg 0.16 1.3 1.3

Table 1: Argon ICQ mT: base, implicit, implicit plus subcycling runs. Run time went from

20 hours to 3.1 hours.

3.1.1 Base run

We conducted the base run (explicit coding with no speedup applied) for about 1000 RF

cycles « 2 million Atbase- Here, Atbase = timestep used for base run. The computing time

was about 7.1 x 10^ seconds, roughly 20 hours. However, the actual time for the base

model to reach equilibrium, judging from the behavior of the number of particles and other

diagnostics, was less, at about 500 RF cycles. We assume that a simulation has reached

equilibrium when the number of particles and other diagnostics (i.e., density, electric field,

potential profiles, temperature, energy distributions) do not change "appreciably" when we

run the simulation longer.

3.1.2 Implicit case

As mentioned earlier, implicit schemes allow a larger timestep At while maintaining numeri

cal stabilityand accuracy. Byusing an implicit scheme, we were able to increase the timestep

by a factor of 8 (Atimpiidt = SAtbase)- When run for 1000 RF cycles, the simulation took

14

about 1.75x10^ seconds (4.9 hours). Hence, the running time was reduced by a factor of

7.1xlOVl.75xlO^ = 4.1, or Gain = 4.1. We did not obtain a Gain of8 as might be expected

because running the code implicitly was roughly twice as costly as running it explicitly. A

profile of the explicit and implicit codes showed that the percentage of time spent in the

mover was 37% in both cases but the more complex implicit mover took 1.85 times longer

per call than the explicit mover. Also even though the collision handler was called only every

SAtbasei it took 4.5 times as long per call in the implicit case as the explicit case because

the number of collisions per call increases with At. [See (4).] This suggests that at lower

pressures, where collision handlers play smaller roles, we can expect higher Gains for implicit

runs.

3.1.3 Implicit and subcycling

We further reduced the run time from the implicit case by using longer ion timesteps. We

chose a subcycling factor = 20, which means that the ions were processed only every

20Ate- When run for 1000 RF cycles, the computing time was about 1.1x10'̂ seconds. This

represents a Gain = 1.75x10^/1.1x10'* = 1.6over the implicit without subcycling case. The

total Gain = 7.1xl0'*/l.lxl0^ = 6.5 over the base case.

In the non-subcyling case, for every 20Ate, we process 20(1x10^) + 20(1x10'*) = 4x10®

particles. In the subcycling case, for every 20Ate, we process 20(1x10^) + 1x10^ = 2.1x10'*

particles. This means that we expect a maximum Gain of about 4xl0®/2.1xl0'* = 1.9 from

subcycling. (As the subcycling factor k increases, the ion move becomes negligible and the

Gain approaches 2.) However, only about 1.6 of the expected 1.9 was realized because, like

the implicit case, the subcycling did not reduce appreciably the total time spent with the

collision handler. Even though the collision handler is called less frequently for the ions

(every Ati = kAtg rather than every Ate), the number of ion collisions per call increases

with increasing Ati. As with the implicit case, at lower pressures we should expect higher

Gains due to subcycling since the collision handler would play a lesser role. We should also

note that albeit small in IdSv simulations, the time to calculate fields is also not reduced by

subcycling.

15

n(x) (m-3)

8.0e+15

6.0e+15 -

4.0e+15

2.0e+15

O.Oe+00
0.000 0.005 0.010 0.015 0.020

Figure 3: The initial density profiles used in simulating a 100 mT argon discharge. In the

bulk, the ion and electron densities are equal and parabolic. In the sheath, the ion density

drops off linearly and the electron density is zero.

3.1.4 Improved initial density profile

We repeated thebase run described above butstarting with an improved initial density profile

shown in Fig. 3. As in the previous runs, the initial electron and ion velocity distributions

are Maxwellian with Tg = 2 eV and Ti = 0.03 eV. In the bulk, the electron and ion densities

are equal and parabolic in shape. In the sheath, the electron density is zero, while the ion

density falls off linearly. We chose bulk parabolic profiles since they are similar to the cosine

curves which are solutions to the diffusion equations. We chose to start off with zero electron

density in the sheath since the electron density drops off sharply in the sheath. For the ions,

the density drop off in the sheath is less abrupt, and we chose to model it with a straight

line. Because ofour improved starting point, our simulation of the 100 mT argon discharge

reached equilibrium in about 125 RF cycles rather than 500 RF cycles. This represents a

Gain = 4. So, good initial estimates of the density profiles can significantly shorten the

simulation time.

16

10 mT Ar

Model Base Light ions Light ions,

implicit

Total time(s) 5x10^ 1.2x10^ 2.7x103

GAIN 1 4.1 19

VteAte/Ax 0.13 0.13 1.0

6.7x10-3 0.12 0.96

4.1x10-3 4.1x10-2 0.32

2.4x10-^ 2.4x10-3 0.019

A^Je/Ax 1.0 1.0 1.0

^peAig 0.16 0.16 1.3

Table 2: Argon 10 mT: base, light ion, light ion plus implicit runs. Run time went from 13.9

hours to 45 minutes.

3.2 10 mT argon discharge

Our second model was also an argon discharge but with a lower pressure of 10 mT, a larger

electrode spacing of 5 cm, and a sinusoidal current drive of amplitude 0.6 A and frequency

13.56 MHz. As with the 100 mT argon discharge, the runs were initiated with an equal

number of electrons and argon ions uniform in x, with Maxwellian electrons and ions at Tg

= 2 eV and Ti = 0.03 eV. The number of computer particles used in this simulation was

roughly 1.3x10^ instead of the 2x10^ used in the 100 mT simulation. [See Table 2].

3.2.1 Base run

For the base run, the discharge reached equilibrium in about 1000 RF cycles. The run took

about 5x10^ seconds or 14 hours, slightly longer than (1.3 x10^/2x10'̂) x (time to run 100

mT argon model for 1000 RF cycles). In ld3v PIC-MCC simulationsof RF discharges, most

of the time is spent processing particlesso that the computation time is roughly proportional

to the number of particles.

17

3.2.2 Light ions

As discussed before, the light ion speedup method requires two steps. First, we ran the dis

charge with light ions until we reached a "light ion" equilibrium. We used Mught/Mreai = 100.

In addition to increasing the electron-neutral cross-sections by the factor yjMreai/Mught = 10,
we needed to double the amplitude of the current drive to 1.2 A in order to maintain the

discharge. This required increase in current can be estimated from analysis as shown in

Appendix A. The light ions reached equilibrium at about 128 RF cycles < 1000 RF cycles.

Next, we switched back to the real masses, the originalcurrent drive and cross-sections. But

we, kept the same kinetic energies as the light ions by decreasing the ion velocities by a

factor of y/Mreai/Miight = 10. The simulation only needed an additional 128 RF cycles to
reach a final "real ion" equilibrium. The total running time of this two step simulation was

1.2x10^ seconds which is a factor of4.1 less than the base simulation running time of5x10^

seconds; Gain = 4.1.

3.2.3 Light ions and implicit

Further reduction inrun timecanbemade byusing an implicit scheme together with the light

ion speedup. This enabled us to increase the timestep by a factor of8: AtimpUdt = SAtbase-

The running time was 2.7 x 10® seconds, representing a Gain of 4.4 over the light ions only

case. As in the 100 mT argon discharge, we did not get a Gain of 8 because the implicit

code is roughly twice as costly as the explicit code. As expected, the Gain of 4.4 in the 10

mT argon model is larger than the Gain of 4.1 in the 100 mT argon model because, at the

lower pressure, less time is spent with the collision handler. The total Gain in time from

using a combination of light ions and an implicit code is Gain = 4.4x4.1 = 19.

3.3 100 mT oxygen discharge

Our third model is a 100 mT current-driven oxygen discharge. As with the 100 mT argon

model, the length of the system was 2 cm, and the amplitude and frequency of the current

18

100 mT O2

Model Base Subcycling Subcycling,

Weighting

Total time(s) 3x10^ 1.5x10-^ 1x10^

GAIN 1 20 30

VteAte/Ax 0.22 0.22 0.22

^imax^^i/Ax 6.2x10-3 0.5 0.5

<1

0.071 0.071 0.071

ViAti 8.9x10"^ 0.071 0.071

A^e/Aa: 5.0 5.0 5.0

^peAtg 0.043 0.043 0.043

Table 3: Oxygen 100 mT: base, subcycling, subcycling and variable weights runs. Run time

went from 3.5 days to 2.8 hours.

drive was 0.4 A and 13.56 MHz respectively. The oxygen model had three species, electrons,

Oj ions and 0~ ions. Because oxygen is electronegative, we expect the Oj and 0~ popula
tion to be much larger than the electron population. Hence, we started the simulation with

about 5x10^ Oj, 5x10^ 0~ ions and 5x10^ electrons. The initial densities were all uniform

in x, with Maxwellian electrons at Tg = 2 eV and Maxwellian Ojand O" at Ti = O.OSeF.

[See Table 3].

3.3.1 Base run

We conducted the base run for 1000 RF cycles. Because ofthe large number ofparticles, the

run took 3x10^ seconds or 3.5 days (slightly less than (1.05xl0^/2xl0^)x(time to run 100

mT argon model for 1000 RF cycles). But, even after 1000 RF cycles, the density profiles

were still evolving, suggesting that the simulation did not reach equilibrium. The number of

ions in the simulation did not change appreciably over the 1000 RF cycles, but the number

of electrons did drop sharply to about 1.5x10^ electrons.

19

3.3.2 Subcycling

In an argon discharge, where there is roughly an equal number of electrons and ions, the

maximum Gain due to subcycling is limited to 2. However, in an oxygen discharge the

number of ions can be much larger than the number of electrons so that the Gain due to

subcycling can be far greater. We used a subcycling factor of A; = 80; that is, the ions were

processed onlyevery SOAte- When run for 1000 RF cycles, the computing time was 1.5x10^

seconds, representing a Gain of 3x10^/1.5xlO'̂ = 20 > 2. Towards the end ofour oxygen

simulation, we had 5x10^ 0^ ,5x10^ 0~, and 1.5x10^ electrons. In the non-subcycling case,

for every 80 Atg, we process 80(5x10^) + 80(5x10^) + 80(1.5x10^) = 8.12x10® particles.

In thesubcyling case, for every 80 Atg, we process 5x10^ + 5x10'̂ + 80(1.5x10^) = 2.2x10®

particles. This means that we expect a maximum Gain of about 8.12xl0®/2.2xl0® = 37.

We obtained a lesser gain because we initiated the simulation with 5x10® electrons. Also,

as mentioned in the 100 mT argon case, although subcycling reduces the time spent pushing

and accumulating particles (typically the costliest procedures), it does not reduce the time

spent handling collisions or calculating fields.

3.3.3 Subcycling and variable weights

Next, we did a simulation using both subcycling and variable weights. As before, we used a

subcycling factor k = 80. We used a variable weight factor w = 10; that is, each ion computer

particle represented 10 times as many real particles as an electron computer particle. This

reduced the number ofOj and 0~ from 5x10^ each to 5x10® each. So instead ofprocessing,

5x10'̂ + 5x10"^ + 80(1.5x10®)= 2.2x10® particles every SOAtg, we only had to process

5x10® + 5x10® + 80(1.5x10®)= 1.3x10® particles every 80Ate- This implies a Gain =

2.2xl0®/1.3xl0® = 1.7. The subcycling run with variable weights took 1x10^ seconds to

run 1000 RF cycles. Compared to the subcycling run without variable weights the Gain =

1.5x10^/1x10^ = 1.5, very close to the expected gain of1.7. The total Gain from subcycling

and variable weights is Gain = 20x1.5 = 30. Note that increasing Ate by using an implicit

scheme willadd little Gain here, as there are relatively few electrons to move, and the implicit

20

code is roughly twice as costly as the explicit one.

4 A Parallel PIC-MCC Speedup Method

Parallel PIC methods have been previously studied by various researchers using different

schemes. See for example Ref. [11] and its references. Most parallel PIC schemes employ a

"Eulerian" decompostion scheme in which each processor is assigned a fixed spatial partition

of the grid as well as all the particles within that partition. The processors also share the

field solve computation.

Our parallel PIC scheme is complementary to the Eulerian decomposition scheme de

scribed above. In our ld3v PIC-MCC simulations of RF discharges, the field solve typically

takes only '^1 % of the total computation time. Even in 2d3v, the field solve can be a small

fraction of the total workload when fast field solve techniques such as FFT schemes are used.

This suggests that significant speed Gains can be achieved by a simple scheme in which only

the particle processing (e.g., pushing and accumulating) is paralleledwithout paralleling the

field solve.

4.1 Description of parallel particle processing

In our scheme, the particles are randomly and equally divided among the CPUs regardless

of their positions within the grid. EaCh CPU sees the entire spatial grid but only a random

portion of the particles. The steps to the parallel particle processing scheme are as follows:

1. Each CPU advances its allotment of particles and linearly weights its particles to the

grid.

2. The contributions of all the CPUs are summed to find the total densities of each species

on the grid.

3. These densities are received by one of the CPUs. This CPU (designated the "root"

CPU), uses the information to calculate the total charge density and solve for the

21

electric field. Then, it broadcasts the result to the other CPUs.

Alternatively, the total densities ofthe species can be broadcast to all the CPUs. Then,

each CPU can conduct its own field solve to advance its particles.

Note that this parallel particle processing method yields significant gains only if the field

solve is a small fraction of the total work load.

As described above, the physical region for simulation is the same for each processor;

(i.e., each processor sees the entire spatial grid). Also, all the particles are randomly and

equally divided among the processors at the outset of the simulation. This implies that we

get an automatic static load balancing: the amount of work done by each CPU is roughly

the same even after many iterations.

This contrasts with the Eulerian decomposition scheme in which the physical region of

simulation is divided among the processors. Any particles in a physical region are handled

by the processor corresponding to that region. In such a scheme, a dynamic load balanc

ing method must also be developed for optimal effect since some spatial partitions may

accumulate more particles than others.

In our case, since the field solve is a smallfraction of the simulation time, it is done by one

processor which broadcasts the results to the other processors. (Or, alternatively, the total

electron and ion densities are broadcast among all the processors, and the field solve is done

individually by each processor). However, problems in which the field solve is a significant

percentage of the workload will greatly benefit from a parallel field solve.

It is often desirable to store the state of a system in a dump file, so that a simulation can

be restarted from the dump point rather than the starting point. To dump the state of the

system in our parallel run, each CPU sends the positions and velocities of its particles to a

root CPU which gathers the information and writes it to a file. When restoring, the root

CPU reads the dump file and distributes the particles randomly among the CPUs.

Diagnostics are an essential part of the simulation. It is very desirable to view graphical

displays of various diagnostics. In a parallel run, displayinggraphics tends to be costly since

22

information must be gathered from all of the CPUs. One solution is to run the parallel

PIC-MCC with the graphics turned off until equilibrium is reached, upon which the state of

the system is dumped. Then, restart the run from the dump file using the single processor

PIC-MCC with the graphics turned on. Another solution is for root to gather the diagnostics

information from each CPU and then display the diagnostics. This is very costly to do at

each timestep, so root can be constrained to gather and display a diagnostic only if the

diagnostic window is open. In conjunction with this, root can refresh the graphics after

many timesteps (e.g., 100) rather than after every timestep in order to further cut down the

time spent doing graphics.

4.2 MPI; Message Passing Interface Library

The Message Passing Interface Library (MPI) contains a suite of useful functions for writing

parallel codes in both C and Fortran. We used the MPICH implementation developed

at Argonne National Lab and Mississipi State University [12]. The text by Pacheco [13]

is an excellent introduction to parallel programming with MPI and contains many useful

references. The following is a brief description of the MPI routines used in our parallel

particle processing code. The routines use either a point to point communication procedure

or a tree scheme. That is, a source CPU sends data directly to each of its target CPUs

(point to point scheme), or all the CPUs collectively participate in distributing the data

(tree scheme). These schemes are displayed in Fig. 4. Note that for a point to point scheme

the communication time increases as Nproc —1? where Nproc is the number of processors,

while, for a tree scheme, the time increases as log2 Nproc

• MPI_Bcast: Broadcasts data collectively from a source CPU to many target CPUs

(tree scheme).

• MPI_Reduce: Sums the data of CPUs together and sends the result to root (tree

scheme).

• MPI_Allreduce: Sums the data of CPUs together and sends the result to all the

CPUs (tree scheme).

23

• MPI.Gatherv: Gathers variable size arrays from different CPUs and concatenates

them together (tree scheme).

• MPI_Send & MPIJEleceive: Send and receive data from a source CPU to a target

CPU (point to point scheme).

Point to Point Scheme Tree Scheme
(root = 0) (root = 0)

time ~log^Nproc

A A
01234567 4

Figure 4: A point to point scheme communication model compared to a tree scheme com

munication model. From Pacheco [13].

The MPI libraries can be configured for a particular computing environment. For ex

ample, the MPICH distribution of MPI comes with libraries configured for shared memory

systems such as symmetric multiprocessors (SMPs). Also members of the UC Berkeley Net

work of Workstations (NOW) project, headed by Prof. David Culler, have written MPI

libraries optimized for their distributed network of Sun Ultra 170 workstations[14]. Using

the libraries especially configured for the computing environment significantly reduces the

communication time among the CPUs.

In our simulation, MPI_Send and MPI_Receive are used only in the initial stage of the

simulation, when the particles are divided up among the CPUs. MPLGatherv is only used

when gathering data to display diagnostics or to store in a dump file.

If we use the first method in step 3 for calculating the electric field E, then MPLReduce

is used to sum the electron and ion density data of all the CPUs and send the result to

root. Then, root calculates E after which MPI_Broadcast is used to send the result to all

24

time ~

the CPUs. If we use the alternative method, then MPI_Allreduce is used to sum the electron

and ion density data of all the CPUs and send the result to all the CPUs. Then, each CPU

individuallycalculates the field solve to advance its particles. Note that except for the initial

stage of the simulation, we primarily use a tree communication scheme.

The size of the electric field array is equal to the number of grid points Ng while the

size of the density array is equal to the number of species times the number of grid points

(Ns y.Ng) . This is because the electric field and the electron and ion densities are calculated

at the grid points, and each species has its own density data. The two alternative field solve

methods took about the same time in a IdSv simulation, where the sizes of the arrays passed

among the processors are relatively small (~ 10^ elements). However, for a 2d3v simulation,

where the sizes of arrays passed among the processors can be significantly larger ('^ IC^),

the second method provided better communication speeds. For the simulations below, we

used the first method to do ld3v simulations while we used the second method for 2d3v

simulations.

4.3 Estimating Gains in parallel particle processing

The total time to run the simulation is given by

^tot —iinit "1" -Nsteps^p/iys) (1^)

where tinu is the initial time spent in setting up the simulation, tphys is the time it takes to

complete one physics loop as depicted in Fig. 2, and Nsteps is the number of timesteps. Since

Nsteps > 1, typically,

I'tot ~ ^stepsl'phys'

The time to execute a physical loop can be divided into three parts:

I'phys I'part "1" I'field "b I'commi (16)

where tpart is the time to process (e.g., push or accumulate) particles, tfidd is the time to

conduct the field solve, and tcomm is the communication time among the processors, tpart is

proportional to the number of particles Npart^ while tfield is proportional to the number of

25

grid points Ng in the system. Also, since we use a tree scheme to communicate among the

processors, tcomm is proportional to logg Nproc- Then, we can write:

^phys ~ ^l^part/^proc d" C2iV^ + C3 log2 Nproo

where ci, C2 and C3 are constant coefficients that depend on machine architecture and config

uration. Note that as the number ofprocessors Nproc increases, tpan decreases, tfields remains

the same, and tcomm increases. In order, to obtain any benefit from the parallel particle pro

cessing, we require both tjieu and tcomm to be much less than tpart- The Gain for using n

processors can be estimated by:

Gain =WC^proc =n)
^physi^proc —l)

Note that for a fixed Ng, the larger the number ofparticles Nparu the more the first term in

(17) dominates so that the Gain (18) becomes more linear with Np
iproc

5 Applications of Parallel Particle Processing Method

In this section, we apply the parallel particle processing method described in the previous

section on ld3v and 2d3v RF argon discharge models. For the ld3v simulations, we used a

modified version ofPDPl in which we incorporated the parallel particle processing scheme.

For the 2d3v simulations, we used a similarly modified version of oUr 2d3v electrostatic

PIC-MGC code PDP2[15]. We used a 2 CPU Intel Pentium 11 symmetric multiprocessor

(SMP) machine ("the Dual"), a 4 CPU Intel Pentium Pro SMP machine ("the Quad"),
and a distributed network ofSun Ultra 170 workstations ("the NOW"). The Dual machine

contained two 400 MHz Pentium 11 CPUs, 512 KB level-2 cache and 512 MB of memory.

The Quad machine contained four 200 MHz Pentium Pro CPUs, 256 KB of level-2 cache,

and 256 MB of memory. Each workstation on the NOW contained a 167 MHz Ultral CPU,

512 KB level-2 cache, and 128 MB ofmemory. In general, we found that when passing large

arrays (as in the 2d3v models) among processors, larger cache and memory sizes on the

machines significantly reduced the communication times.

26

Gains Id

CPUs Dual

156K 78K 39K

Quad

156K 78K 39K

NOW

156K 78K 39K

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 2.00 1.98 1.95 1.97 1.98 1.96 1.99 1.92 1.88

3 2.92 2.94 2.79 2.96 2.72 2.61

4 3.95 3.87 3.57 3.80 3.58 3.11

5 4.43 4.11 3.72

6 5.19 4.58 3.77

7 5.83 5.39 4.30

8 6.80 5.56 4.50

Table 4: Gains for ld3v model with number of particles varying from 39,000 to 156,000

running on the Dual and Quad SMPs, and the NOW.

5.1 Application to ld3v RF discharges

We applied the parallel particle processing to a ld3v 100 mT parallel plate argon discharge

with a plate separation of 5 cm driven by a sinusoidal voltage source of 1000 V at a frequency

of 13.56 MHz. The total number of grid points in the system was 601. The total initial

number of particles was varied from 39,000 to 156,000. We took timings after running the

simulation for 5000 timesteps. The resulting Gains are listed in Table 4. Figure 5 is a plot

of the Gains for the Quad and the NOW. We see that for a fixed number ofgrid points iVg,

the Gain becomes more linear as the number of particles N^art in the simulation increases.

27

"D
CO

O

CO
c

'cO
CD

2 -

8

7

I 6

O 5

CO
c

"cO
CD

156 K

o—^ 78 K

39 K

^•'

*

x:--

No. of CPUs

- - - - - 156 K

c>--o 78 K

^---^ 39 K

3 4 5 6

No. of CPUs

/y

,

/'

_---o

Figure 5: Gains for the IdSv model for the Quad SMP, and for 8 nodes of the NOW.

28

Gains 2d

CPUs Dual

812K 490K 360K

Quad

812K 490K 360K

NOW

812K 490K 360K

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.93 1.93 1.92 1.89 1.88 1.88 1.93 2.00 1.88

3 2.64 2.66 2.68 2.78 2.86 2.79

4 3.30 3.37 3.35 3.80 3.88 3.52

5 4.77 4.38 4.31

6 5.22 5.08 4.86

7 6.04 6.00 5.05

8 6.89 6.51 5.82

Table 5: Gains for 2d3v model with number of particles varying from 360,000 to 812,000

running on the Quad and Dual SMP, and the NOW.

5.2 Application to 2d3v RF discharge

2d3v PIC-MCC simulations typically have a much larger number ofparticles than ld3v PIC-

MCC simulations. But they also usually have a much larger number ofgrid points and a

much more complex field solve than their ld3v counterparts. Thus, the field solve can be a

much larger fraction ofthe total workload in 2d than in Id. But by using FFT techniques to

solve for the E field, we managed to get the field solve down to less than a few percent ofthe

total workload in our 2d3v PIC-MCC simulations. FFT methods are fast since they are of

order 0{Ng\og2Ng) while other matrix solves are typically of order 0{Nl). However, FFT
field solve methods become very complex and cumbersome if there are internal structures

such as conductors and dielectrics inside the computational grid. So, our current 2d3v FFT

field solve requires that there be no such internal structures inside the grid. For a discussion

of FFT techniques, see Chapter 12 and Section 19.4 in "Numerical Recipes in C" [16].

29

u

TJ
CC
3

O

CO
c

"co
O

•D
OJ

2 -

7 -

O 4
H— ^

CO
_c
"cO 3
CD

2

— - 812 K

G- — -©490 K

^ — ^ 360 K

No. of CPUs^

812 K

o—O490K

360 K

/•

<2ir.^

M-

y

.V

%4

,4L
3 4 5 6

No. of CPUs

if

ilf'

Figure 6: Gains for the 2d3v model for the Quad SMP, and for 8 nodes of the NOW.

30

We applied the parallel particle processing to a 2d3v 100 mT rectangular argon discharge

with a size of3 cm by 6 cm. The discharge was driven by a sinusoidal voltage source of250

V at a frequency of 13.56 MHz. The grid size was 65 by 129 (or 8385 grid points). The

total initial number of particles was varied from 360,000 to 812,000. We took timings after

running the simulation for 500 timesteps. The resulting Gains are listed in Table 5. Figure 6

is a plot of the Gains for the Quad and the NOW. In general, we see that parallel particle

processing can yield significant Gains even in 2d3v models, provided that the number of

particles Npart is much greater than the number of grids Ng, and the communication time

does not become too significant. In other words, tfield and tcomm must be much less than

^part i^l (f^)*

As expected, as Npart/Ng increases, so does the linearity of the Gain on the NOW.

However, this is only true to some extent on the Dual and Quad. The Gain does become

more linear on the Dual and Quad as the above ratio increases, but only to some extent.

Eventually, the Gain saturates because in an SMP machine all the CPUs must share the

bus lines which communicate with the memory and cache. When we increased the scale of

the problem by increasing Npart, these communication lines became saturated. In contrast,

for the NOW, each CPU is on a different machine with its own communication bus to its

own memory and cache. Thus, when we increased the scale of the problem, the bus lines

did not saturate, and the linearity of the Gain increased. This saturation of linearity was

only noticeable in the 2d3v models. In the ld3v models, the scale of the problem is so much

smaller that we were not able to saturate the communication bus in the SMP machines.

5.3 Actual vs. estimated Gains

Recall that by using (17) and (18), we can estimate the Gains of the parallel particle pro

cessing scheme for our ld3v and 2d3v models. Let us do this for the Quad SMP machine.

We found the coefficients ci and C2 by profiling our PIC-MCC codes when running our

models on one processor of the Quad. (Recall that ci is the particle processing coefficient

and C2 is the field solve coefficient.) Prom this we learned that for the ld3v code, ci=1.4

31

CPUs Id 2d

156K 78K 39K 812K 490K 360K

Act. Est. Act. Est. Act. Est. Act. Est. Act. Est. Act. Est.

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.97 1.98 1.98 1.97 1.96 1.94 1.89 1.98 1.88 1.97 1.88 1.96

3 2.92 2.95 2.94 2.90 2.79 2.80 2.64 2.95 2.66 2.92 2.68 2.89

4 3.95 3.89 3.87 3.79 3.57 3.58 3.30 3.90 3.37 3.83 3.35 3.77

Table 6: A comparison ofactual vs. estimated Gains for the IdSv and 2d3v models running

on the Quad SMP.

/isec and C2=1.0 //sec. Whereas, for the 2d3v code, ci=6.9 fisec and C2=3.6 fxsec. The

communication coefficient C3 can be estimated by writing a test program to measure how

long it takes to pass the relevant-sized arrays among the processors in the Quad, Prom this,

we learned that for the Quad Pentium-Pro SMP using the shared memory MPI libraries,

C3=0.55 ms for the ld3v models, and 03=7.6 ms for the 2d3v models. Then by using (17)

and (18), we obtained the estimated Gains for the ld3v and 2d3v models from using 2, 3,

and 4 processors respectively.

The estimated and actual Gains for the Quad are listed in Table 6 for both the ld3v and

2d3v models. Prom the Table, we see that the estimated and actual gains match up very

well in the ld3v models but not in the 2d3v models. This isbecause we are underestimating

icomm for the 2d3v models. Recall that the communication bus becomes saturated in SMP

machines when the scale of the problem is very large. This effect is not incorporated into

^comm = C3log2 iVproc which Only measures how long it takes to pass relevant-sized arrays

among the processors. We also neglect any synching time among the processors. These

effects are small in ld3v models, where the size of the arrays passed among the processors

as well as the general scale of the problem are much smaller than in 2d3v models.

32

6 Other Developments

Other approaches are also being made to speedup PIC-MCC codes. For example Cartwright

et al[17] have developed a hybrid Boltzmann-PIC-MCC scheme to speedup simlations of DC

discharges. The bulk of the electrons reach thermodynamic equilibrium with the ions each

timestep, using the Boltzmann relation for the electrons with a PIC ion source term. A small

number of high energy electrons (e.g., higher than the lowest excitation energy threshold)

are treated as PIC electrons. The Boltzmann electron approximation neglects effects faster

than ion time scales, decreasing the computation time by about the square root of the mass

ratio between the ion and the electron. Thus, it is ideal for investigating long time-scale low

frequency phenomena in DC discharges.

Bowers[18] has developed a particle sorting algorithm in order to improve memory band

width in a 2d3v PIC simulation. In a typical PIC simulation, for every timestep, we need

to (1) Load the particle information, (2) Load the electric field, (3) Load the charge density,

(4) Store the particle information, and (5) store the charge density. Typically, about 100

bytes of data movement is needed for every particle. If the particles are located randomly

with respect to the computational grid, all the memory accesses described above are likely

to be cache misses. This cache "thrashing" problem increases with larger grid size as less of

the grid will be able to fit in the cache. However, if the particles are sorted with respect to

the grid, then accesses 2,3,5 (and maybe 4) will be likely cache hits. This reduces memory

bandwidth and increases performance. The sort can be done while pushing the particles so

that no extra passes through the particle list are needed. Once the particle list is sorted, one

can further speedup up the simulation by doing the push and accumulate in a single pass

rather than in two separate passes. In other words, we need only access the particle list once

per timestep. But care must be taken to assure that there are no holes in allocation due to

particle loss at walls. This combined push/sort/accumulate scheme has produced speedup

on typical 2d3v simulations by 30-50 %. In ld3v simulations cache thrashing is not a major

problem because the entire computational grid can usually fit in the cache.

33

7 Summary

As stated earlier, a majorobjective is to make first-principles, self-consistent PIC-MCC codes

run fast enough to be useful to plasma processing machine designers and experimentalists,

on their time scale. We take this to mean running at least as fast as experimentalists can

"cut metal," say, in a matter of hours.

We have shown that PIC-MCC RF discharge simulations can be accelerated by large

factors on single processor machines by employing both physical and numerical methods.

Note that acceleration schemes and Gains tend to be model dependent. On a modest 233

MHz Dec Alpha machine, we reduced the run time from (a) 20 hours to 3.1 hours (Gain =

6) for the 100 mT argon runs, (b) 14 hours to 45 minutes (Gain = 19) for the 10 mT argon

runs, and (c) 3.5 days to 2.8 hours (Gain = 30) for the 100 mT oxygen runs. We also found

that an improved density profile can further reduce the run time for the 100 mT argon model

by a factor of 4.

We also found that paralleling the particle processing canlead to significant Gains in ld3v

and 2d3v PIC-MCC simulations even when the field solve is not paralleled. We avoided the

conventional Eulerian decomposition approach in which the computational grid is divided

among the processors. Instead, each processor sees the entire grid, and all the particles are

randomly divided among the processors. Our relatively simple scheme also has theadvantage

of static automatic load balancing. We found that as the ratio of the number of particles

to the number of grids increased, our Gains became more linear with processor number.

An additional requirement for our scheme is that the field solve is a small percentage of

the overall simulation. This is easily realized in ld3v simulations. In 2d3v simulations,

we required fast Poisson solvers such as the ones which employ FFT schemes. The only

disadvantage of the FFT schemes is that they do not usually allow for internal dielectrics

and conductors within the grid. Finallly, we should add that we often find it necessary to

use a large number of particles to reduce the noise level in our diagnostics. In this case,

the parallel particle processing scheme is ideal since the larger the number of particles, the

better the performance.

34

8 Acknowledgments

We are especially grateful to DOE Contract DE-FG03-97ER54446 and ONR Contract N00014-

97-1-0241. There also has been continued support from LLNL, plus collaborations in the

plasma processing area, for most of a decade, for which we are very grateful. We are al

so grateful to the Millennium Project and NOW Project at the University of California at

Berkeley for the use of their computers and to Kevin J. Bowers for informative discussions

on field solve techniques in 2d3v PIC-MCC simulations.

A Current increase needed for light ion runs

As mentioned above, we needed to increase the amplitude of the RF current drive in the

light ion runs of the 10 mT argon model in order to maintain the discharge and produce

density profiles similar to the base runs. The required increase in current can be estimated by

using the expression for bulk density derived in Chapter 11 of Lieberman and Lichtenberg's

text [19] for a homogeneous discharge model. In this simple model, the ion density is uniform

everywhere in the plasma and sheath regions while the electron density is uniform and equal

to the ion density in the bulk region but zero in the sheath region.

In this case, the bulk density n is found to be,

1
n = -

2 [use^iSc + Se)

J is the applied current density, Um is the electron momentum transfer collision frequency,

Ve = yJSkBTe/iirme) IS the average electron thermal velocity, Lp is the bulk plasma length,
ub = yJ^BTe/Mion is the Bohm velocity, Ec is the collisional energy loss per electron-ion pair
created, and Se is the mean kinetic energy lost per electron lost.

We assume Tg « 2 eV and the sheath width s « 1 cm. For our 10 mT argon simulations,

the electrode spacing L = 0.05 m. So, Lp = L —2s ^ 0.03 m.

Let us first calculate n for our 10 mT argon base case with Mion = Mreai- Then, ub =

(wB)reaZ = \/kBTe/Mreai and Vg = 9.5x10® m/s. I'm = UgasKeu where Kei is the rate constant

35

me(VmLp +2v^)Y'̂ j

for electron-neutral elastic collisions. Kei{Te = 2eV) w 7.1 x 10 '̂* m~^/s for an argon

discharge. At 10 mT, rigas = 3.2 x 10^° m"^. Thus, VrnLp = 6.8x10® m/s, and VmLp + 2ve =

2.6x10® m/s. So, for the base case,

•• rme(2.6 X10®m/s)^ '̂'̂
"^Teal —2

(^B)rcQ/6^(^c ~l~ ^e)
Jreal (20)

For the light ion case, we have Mian = Mught = Mreai/100. Then, ub = =

10(uB)rea/j while Ug = 9.5x10® m/s is unchanged. Recall that we increased the electron-

neutral cross sections in our light ion runs by the factor ^jMreai/Mught = 10. Thus,
[^m)iightLp = l^(i'm)baseLp = 6.8x10® m/s, and VrnLp + 2^6 = 8.7x10® m/s. So, for the

light ion case.

me(4.2 X10®m/s)
"^light —

l^{UB)reaie^{Sc-\-Se)

Dividing (20) by (21), we obtain

"^real ^yJreal
"^light Jlight

1/2

'light (21)

(22)

Thus, in order to get the densities to be similar in the 10 mT argon base and light ion

runs, we need to roughly double the current drive in the light ion runs.

36

References

[1] C. K. Birdsall. Particle-in-Cell Chctrged-Particle Simulations, Plus Monte Carlo Colli-

sions with Neutral Atoms, PIC-MCC. IEEE Transactions on Plasma Science^ 19(2):65-

85, 1991.

[2] V. Vahedi and M. Surendra. Monte-Carlo Collision Model for Particle-in-Cell method:

Application to Argon and Oxygen Discharges. Comp. Phys. Comm., 87:179-198, 1995.

[3] Some of our PIC-MCC codes can be downloaded from our website at

http://ptsg.eecs.berkeley.edu.

[4] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall. Simultaneous Potential

and Circuit Solution for Id Bounded Plasma Particle Simulation Codes. J. Comput.

Phys., 104:321-328, 1993.

[5] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. McGraw-

Hill, 1985.

[6] V. Vahedi, G. DiPeso, C. K. Birdsall, M. A. Lieberman, and T. D. Rognlien. Capaci-

tive RF Discharges Modelled by Particle-in-Cell Monte Carlo Simulation. I: Anaylsis of

Numerical Techniques. Plasma Sources Sci. Technol., 2:261-272, 1993.

[7] J. U. Brackbill and B. I. Cohen. Multiple Time Scales. Academic Press, 1985.

[8] S. E. Parker. Particle Simulation of Bounded Plasmas with a Wide Range of Space

and Time Scales. PhD thesis, Department of Nuclear Engineering at the University of

California at Berkeley, 1990.

[9] I. Kouznetsov. University of California at Berkeley. Private communication.

[10] D. J. Cooperberg, V. Vahedi, and C. K. Birdsall. PIC-MCC with Variable Particle

Weights. In Proc. International Conf. on the Numerical Simulation of Plasmas, Valley

Forge, PA, 1994.

37

[11] E. Akarsu, K. Dincer, T. Haupt, and G. C. Fox. Non-linear Hybird Boltzmann-PIC Ac

celeration Scheme. In Proc. SuperComputing'96 Conf., Pittsburgh, PA, 1996. The article

may be downloaded from the website http://www.supercomp.org/sc96/proceedings.

[12] The MPICH implementation of the MPI libraries can be downloaded from ft-

p://info.mcs.anl.gov.

[13] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers, Inc.,

1997.

[14] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau, B. Chun, S. Lumetta, A. Main-

waring, R. Martin, C. Yoshikawa, and F. Wong. Parallel Computing on the Berke

ley NOW. In Proc. of ISPP'97 (9th Joint International Symposium on Parallel

Processing), Kobe, Japan, 1997. The article may be downloaded from the website

http://now.CS.Berkeley.EDU/Papers2.

[15] V. Vahedi, C. K. Birdsall, M. A. Lieberman, T. D. Rognlien, and G. DiPeso. Verifica

tion of Frequency Scaling Laws for Capacitive Radio-Frequency Discharges Using Two

Dimensional Simulations. Phys. Fluids B, 5:2719-2729, 1993.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C, The Art ofScientific Computing, 2ndEdition. Cambridge University Press, 1992.

[17] K. L. Cartwright, J. P. Verboncoeur, and C. K. Birdsall. Non-linear Hybird Boltzmann-

PIC Acceleration Scheme. In Proc. International Conf. on the Numerical Simulation of

Plasmas, Santa Barbara, CA, 1998.

[18] K. J. Bowers. University of California at Berkeley. Private communication.

[19] M. A. Lieberman and A. J. Lichtenberg. Principles ofPlasma Discharges and Materials

Processing. John Wiley and Sons, Inc., 1994.

38

	Copyright notice 1999
	ERL-99-58

