

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FROM PRE-HISTORIC TO POST-MODERN

SYMBOLIC MODEL CHECKING

by

Thomas A. Henzinger, Oma Kupferman and Shaz Qadeer

Memorandum No. UCB/ERL M99/56

1 November 1999

FROM PRE-HISTORIC TO POST-MODERN

SYMBOLIC MODEL CHECKING

by

Thomas A. Henzinger, Oma Kupferman and Shaz Qadeer

Memorandum No. UCB/ERL M99/56

1 November 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia,Berkeley

94720

From Pre-historic to Post-modern

Symbolic Model Checking***

Thomas A. Henzinger Orna Kupferman Shaz Qadeer

Department of EECS, University of California at Berkeley, CA 94720-1770, USA
Email:{tah, orna, shaz}9eecs. berkeley. edu

Abstract. Symbolic model checking, which enables the automatic verification
of large systems, proceeds by calculating with expressions that represent state
sets. Traditionally, symbolic model-checking tools are based on backward state
traversal; their basic operation is the function pre, which given a set of states,
returns the set of all predecessor states. This is because specifiers usually employ
formalisms with future-time modalities, which are naturally evaluated by iterating
applications of pre. It has been recently shown experimentally that symbolic model
checking can perform significantly better if it is based, instead, on forward state
traversal; in this case, the basic operation is the function post, which given a set
of states, returns the set of all successor states. This is because forward state
traversal can ensure that only those parts of the state space are explored which
are reachable from an initial state and relevant for satisfaction or violation of the

specification; that is, errors can be detected as soon jus possible.

In this paper, we investigate which specifications can be checked by symbolic
forward state traversal. We formulate the problems of symbolic backward and
forward model checking by means of two p-calculi. The pre-p calculus is based on
the pre operation; the post-p calculus, on the post operation. These two /i-calculi
induce query logics, which augment fixpoint expressions with a boolean emptiness
query. Usingquery logics, weare able to relate and compare the symbolic backward
and forward approaches. In particular, we prove that all w-regular (linear-time)
specifications can be expressed as post-p queries, and therefore checked using
symbolic forward state traversal. On the other hand, we show that there are
simple branching-time specifications that cannot be checked in this way.

1 Introduction

Today's rapid development of complex and safety-critical systems requires verification
methods such as model checking. In model checking [CE81,QS81], we ensure that a
system exhibits a desired behavior by executing an algorithm that checks whether a
mathematical model of the system satisfies a formal specification that describes the
behavior. The algorithmic nature of model checking makes it fully automatic, and thus
attractive to practitioners. At the same time, model checking is very sensitive to the size
of the mathematical model of the system. Commercial model-checking tools need to cope
with the exceedingly large state spaces that are present in real-life examples, making

* An abbreviated version of this paper appeared in the Proceedings of the 10th International
Conference on Computer-aided Verification (CAV), Lecture Notes in ComputerScience 1427,
Springer-Verlag, 1998, pp. 195-206.

** This work is supported in part by ONR YIP award N00ai4-95-l-0520, by NSF CAREER
award CCR-95D1708, by NSF grant CCR-9504469, byARO MURI grant DAAH-04-96-1-0341,
and by the SRC contract 97-DC-324.041.

the so-called state-explosion problem perhaps the most challenging issue in computer-
aided verification. One of the important developments in this area is the discovery of
symbolic model-checking methods [BCM+92]. In particular, use of BDDs [Bry86] for
model representation has yielded model-checking tools that can handle very large state
spaces [CGL93].

Traditional symbolic model-checking tools have been based on backwardstate traver
sal [McM93,BHSV''"96]. They compute with expressions that represent state sets using,
in addition to positive boolean operations, the functions pre and pre, which map a set of
states to a subset ofits predecessor states. Formally, given a set Uofstates, theset pre{U)
contains the states for which there exists a successor state in U, and the set pfe{U) con
tains the states all of whose successor states are in t/. By evaluating fixpoint expressions
over boolean and pre operations, complicated state sets can be calculated. For example,
to find the set of states from which a state satisfying a predicate p is reachable, the model
checker starts with the set U of states in which p holds, and repeatedly adds to U the
set pre{U), until no more states can be added. Formally, the model checker calculates
the least fixpoint of the expression U = pVpre{U). Symbolic model-checking techniques
were first applied to branching-time specifications, and later extended to linear-time
specifications, both via translations into fixpoint expressions [BCM''"92,CGH94].

As an alternative to symbolic model checking, in enumeraiive model checking states
are represented individually. Traditional enumerative model-checking tools check linear-
time specifications by forward state traversal [Hol97,Dil96]. There, the basic operation
is to compute, for a given state, the list of successor states. Forward state traversal has
several obvious advantages over backward state traversal. First, for operational system
models, successor states are often easier to compute than predecessor states. Second,
only the reachable part of the state space is traversed. Third, optimizations such eis on-
ihe-fly [GPVW95] and partial-order [Pel94] methods can be incorporated naturally. For
example, in on-the-fly model checking, only those parts of the state space are traversed
which are relevant for satisfying (or violating) the given specification.

Some of the advantages of forward state traversal can be eeisily incorporated into
symbolic methods. For example, we may first compute the set of reachable states by
symbolic forward state traversal, and then restrict backward state traversal for model
checking to the reachable states. This method, however, is unsatisfactory; for example,
it cannot find even a short error trace if the set of reachable states cannot be computed.
We present a tighter, and more advantageous, integration of forward state traversal with
symbolic methods. In symbolic forward state traversal, we replace the functions pre and
fre by the functions post and post, respectively, which map a set of states to a subset
of its successor states. Formally, given a set U of states, the set posi{U) contains the
states for which there exists a predecessor state in U, and the set post{U) contains the
states all of whose predecessor states are in U. Then, we evaluate fixpoint expressions
over boolean and post operations on state sets. It has recently been shown that certain
branching-time as well as linear-timespecifications, such as response (i.e., •(p —O9)),
can be model checked by symbolic forward state traversal [INH96,IN97]. We attempt a
more systematic study of what can and what cannot be model checked in this way. In
particular, we show that all w-regular (linear-time) specifications (which include all LTL
specifications) are amenable to a symbolicforward approach, whilesome CTL (branching-
time) specifications are not.

For this purpose, we define post-p, a fixpoint calculus that is based on post operations
in the same way in which the traditional p-calculus, here called pre-p, is based on pre
operations [Koz83]. While pre-p expressions refer to the future of a given state in a

model, post-fi expressions refer to its past. Therefore, in stark contrast to the fact that
every LTL and CTL specification has an equivalent expression in pre-p., almost no LTL
or CTL specification, including response, has an equivalent expression in post-p. In order
to compare pre and post logics, rather, we need to define query logics, whose formulas
refer to a whole model, not an individual state. Query logics are based on the emptiness
predicate S. For a specification 4>, which is true in some states of a model and false
in others, the query is true in a model iff <j) is false in all states of the model.
The query logic post-p^ contains all queries of the form S{<i>) and for post-p
expressions <f>. On the positive side, we prove that every w-regular (Biichi) specification
has an equivalent query in post-p^. As with the translation from Biichi automata to pre-p
expressions [EL86,BC96], the translation from Biichi automata to queries is linear
and involves only fixpoint expressions of alternation depth two. Moreover, we show that
every co-Buchi specification has an equivalent query in alternation-free post-p^, which
can be checked efficiently (in linear time). On the negative side, we prove that there
are CTL specifications that are not equivalent to any boolean combination of post-pjj
queries.

Symbolic forward model checking combines the benefits of symbolic over enumerative
state traversal with the benefits of forward over backward state traversal. In [INH96,IN97]
the authors present experimental evidence that symbolic forward state traversal can be
significantly more efficient than symbolic backward state traversal. Our preliminary ex
perimental results confirm this observation. In addition, we give some theoretical justi
fications for the symbolic forward approach. We show that unlike enumerative forward
model checking (which is traditionally based on depth-first state traversal) and unlike
symbolic backward model checking, the symbolic forward approach guarantees a.s.a.p.
error detection. Intuitively, if a model violates a safety specification, and the shortest er
ror trace has length m, then the breadth-first nature of symbolic forward model checking
ensures that the error will be found before any states at a distance greater than m from
the initial states are explored.

The remainder of this paper is organized as follows. In Section 2 we define the logics
pre-p and post-p, and the query logics they induce. In Section 3, we translate Biichi au
tomata into equivalent post-p^ queries of alternation depth two, and co-Biichi automata
into equivalent alternation-free post-p^ queries. We alsoshow that the translation guar
antees a.s.a.p. error detection for safety specifications. In Section 4, we compare the
distinguishing and expressive powers of the various pre, post, and query logics. Finally,
in Section 5 we put our results in perspective and report on some experimental evidence
for the value of symbolic forward model checking.

2 Definition of Pre and Post Logics

2.1 Pre and post /i-calculi

The /i-calculus is a modal logic augmented with least and greatest fixpoint operators
[Koz83]. In this paper, we use the equational form of the propositional //-calculus, as
in [BC96]. The modalities of the //-calculus relatea set of states to a subset of its prede
cessor states. Therefore, we refer to the //-calculus by pre-p.

The formulas of pre-p are defined with respect to a set P of propositions and a set
V of variables. A modal expression is either p, ->p, X, <p\/ ijj, (p Axj), BOy?, or VOy?) for
propositions p ^ P, variables A' £ V, and modal expressions p and Let 7 be a finite
subset of the set of natural numbers. An equational block B = (A, {Aj = y?,- | i G /})
consists of a flag A G {p,i^} and a finite set of equations A',- = pi, where each A',- is

a variable, each y?, is a modal expression, and the variables A',- are pairwise distinct. If
\ = fi, then 5 is a fi-block; otherwise B is a u-block. For the equational block B, let
vars{B) = {A',- | i € /} be the set of variables on the left-hand sides of the equations
of B. A block tuple B = (Bi,..., B„} is a finite list of equational blocks such that the
variable sets vars{Bj), for 1 < j < n, are pairwise disjoint. For the block tuple B, let
vars{B) = Ui<i<n For every variable A' E vars{B), let expand,^{X) be the
modal expression on the right-hand side of the unique equation in B whose left-hand
side is A. A pre-p. formula <f) = {B,Xo) is a pair that consists of a block tuple B and a
variable Xq E vars{B). The variable A'o is called the root variable of <j). The formula <f> is
a pre-fi sentence if every variable that occurs in some modal expression of B is contained
in vars{B).

The semanticsof a pre-fi formula is defined with respect to a Kripke structure and a
valuation for the variables. A Kripke structure is a tuple K = {P,W, R, L) that consists
of a finite set P of propositions, a finite set W of states, a binary transition relation
R CW x W total in both the first and second arguments (i.e., for every state w eW,
there is a state w' such that R{w,w') and there is a state w" such that R{w",w)), and
a labeling function L .W that assigns to each state a set of propositions. The set
P of propositions contains the distinguished proposition init \ a state w EW is initial if
init E L{w). We define four functions pre, fre, post and post from 2^ to 2^ as follows.
For any set U CW of states, let

pre{U) = {it; E W I there exists a state w' E U with R{w, u;')},
pre{U) = {it; E W I for all states w' with R{w, w'), we have w' E U),
post{U) = {it; E W I there exists a state w' E U with i2(u;',it;)},
post{U) = {it; E W I for all states w' with R{w', it;), we have w' eU].

A K-valuation for a set V of variables is a function P : V —* 2^ that assigns to each
variable a set of states. If f and F' are A'-valuations for V, and V C V is a subset of
the variables, we write r[r'/V'] for the A'-valuation for V that assigns r'{X) to each
variable A' E V", and r{X) to each variable A' E V\ V.

Given a Kripke structure K = {P,W,R,L) and a A'-valuation F for a set V of
variables, every modal expression tp over the propositions P and the variables V defines
a set <p^{F) C W of states: inductively, p^{F) = {w E W \ p E L{w)}, {~'p)^{F) =
{wEW\p^ L{w)}, X^{F) = F{X), {<p V^)^(A) = p^'{F) U^^'(A), i<p AV)^(A) =
ip^{F) n V^'(r), i30<p)^iF) = prei<p^iF)), and (VOv?)^(r) = pre{ip '̂(F)). Given A',
every block tuple B = {Bi,..., Bn) over P and V defines a function B^ from the A'-
valuations for V to the A'-valuations for V: inductively, if n = 0, then B^{F) = A; if Bi
is a ^-block, then B^{F) is the least fixpoint of the function if Bi is a i/-block, then
B^{F) is the greatest fixpoint of p. The monotonic function F^p from valuations to
valuations is defined by

(r'yy'i - / ea:panrf(A:)^((B2,.. .,B„) '̂(A[A7t;ar5(Bi)])) if A'E i;ars(Bi),^e.rU){^) - \{{B2,..-,Brr)^(F[F'/varsiBi)])){X) otherwise.

Note that for a pre-p sentence <f> = (B,A'o), the function B^ is a constant function.
Given A', the sentence 4> defines the set <f>^ = B^(A)(A'o) ofstates (for anychoice of A).
For a state w E W and a pre-p sentence (f>, we write w (f> if w E <f>^. For a Kripke
structure A', we write A' ^ and say that A* satisfies <j>, if there is an initial state xv

of K such that w <f>} The model-checking problem for pre-fi is to decide, given a
Kripke structure K and a pre-fi sentence <f>, whether K |= <f).

Given a block tuple B = (Bi,..., B„), the block B,- depends on the block Bj if i ^ j
and some variable that occurs in a modal expression of B,- is contained in vars{Bj). The
pre-p sentence <i> = (B, A'o) is aliemaiion-free if the dependency relation on the blocks of
B is acyclic (i.e., its transitive closure is asymmetric). The model-checking problem for
the alternation-free fragment of pre-p can be solved in linear time [CS91].

The logic posi-p is obtained from the logic pre-p by replacing the future modal op
erators 30 and VO by the past modal operators 30 and V0, with the interpretations
(30^)'^(r) = posi{(p'̂ {r)) and (V09?)^(r') = posi{(p^{F)). The semantics of posi-p
can alternatively be defined as follows. For a Kripke structure K = {P,W, R, L), define
the Kripke structure K~^ = {P,W, L), where iff R{w'̂ 'w). For Apost-p
sentence <f>, define to be the pre-p sentence obtained from <j) by replacing each oc
currence of 30 and V0 by 30 and V0, respectively. Then, for every state w of A', we
have w |=a- w

2.2 Query logics

We define query logics that are based on pre-p and post-p. The sentences of pre-p refer
to the future of a given state in a Kripke structure, and the sentences of post-p refer
to its past. By contrast, the sentences of query logics, called queries, refer to the whole
structure and thus enable us to translate between pre and post logics. The query logics
are obtained from pre-p and posi-p by adding a predicate S on sentences, called the
emptiness predicate. For a logic £, the query logic contains the two queries
and for each sentence (p of £. The query logic Ce is richer and its queries are
constructed inductively as follows:

- where is a formula of £,
- ->6i and Oi V where 6i and 62 are queries of Ce.

The satisfaction relation (= for queries on a Kripke structure A' is inductively defined as
follows:

- A' {= €{<p) iff for all states s of A', we have s ^ (f>,
- K [= -161 iff K ^ 61, and K [= V^2 iff A' [= 61 or A' [= 62 •

While our motivation for query logics is theoretical, for the purpose of comparing pre
and post logics, query logics are also practical. This is because once the state set <j>^
has been computed (either explicitly or implicitly, using HDDs), the evaluation of the
query £{<P) requires constant time. Therefore, checking a query in pre-pe or post-pc is
no harder than model checking pre-p or post-p, respectively.

2.3 Equivalences on Kripke structures induced by pre and post logics

Let K = {P, W, R, L) and K' = (P, W, R', L') be two Kripke structures with the same set
of propositions. A relation ^ C W x W is a pre-bisimilarity relation if for all states w and
w', we have that implies (1) L{w) = L'{w'), (2) for every state v with R{w,v),
there is a state v' with R\w',v') and 0{v,v'), and (3) for every state v' with R'{w',v),

^ Note that we work, for convenience, with the dual of the usual requirement that all initial
states satisfy a pre-p sentence.

there is a state v with R{w,v) and l3{v,v'). Note that, in particular, /3{w,w') implies
that either both w and w' are initial, or neither of them is initial. The pre-bisimilarity
relation ^ is a pre-bisimulaiion between K and K' if for all states w GW, there is a state
w' G W such that (3{w, w'), and for all states w' GW, there is a state w eW such that
P{w,w'). The pre-bisimilarity relation (3 is an inU-pre-hisimulaiion between K and K' if
for all initial states wEW, there is an initial state w' GW' such that w'), and for
all initial states w' E W', there isan initial state weW such that j3{w, w'). Therelation
0 CW xW' \s a. posi-bisimulaiion (resp. inii-post-bisimulaiion) between K and K' if /3
isa pre-bisimulation (resp. init-pre-bisimulation) between A'~^ and K'~^. Thefollowing
is an easy extension of a well-known result forpre-/i [BCG88].

Proposition 1. Lei K and K' be two Kripke structures.

- There is an init-pre-bisimulation (resp. init-post-bisimulation) between K and K' iff
for all sentences <l> ofpre-fi (resp. post-p), we have K ^ (p iff K' ^ <f).

- The following three statements are equivalent:
(1) There is a pre-bisimulation (resp. post-bisimulation) between K and K'.
(2) For all queries 6 ofpre-(resp. post-p^), we have K ^ 9 iff K' ^ 9.
(3) For all queries 9 ofpre-pe (resp. post-ps), we have K 9 iff K' [= 9.

3 Intersection of Pre and Post Logics

Ofparticular interest is the intersection of the query logics pre-p£ and post-p£. It contains
the queries that can be specified in both pre-p£, which often is more convenient for
specifiers, and in post-pe, which often is more efficient for symbolic model checking. In
this section we show that essentially all linear properties lie in this intersection. On the
other hand, there are simple branching properties that do not lie in the intersection.

3.1 In

Consider a Kripke structure K = {P, W,R, L). An observation of K is a subset of the
propositions P. An error trace of K is a finite or infinite sequence of observations. A
linear property of K is a set of error traces.- Many useful linear properties, namely,
the w-regular linear properties, can be specified by finite automata. A finite automaton
A = {P,S, So,SFir, £) consists of a finite set P of propositions, a finite set S of states,
a set So C 5 of initial states, a set Sp C S of accepting states, a binary transition
relation r C S x S, and a labeling function £ : S 2^ that assigns to each state a
set of propositions. The following definitions regarding paths apply equally to Kripke
structures and automata. A path tt = uo,tti,... of K (resp. A) is a finite or infinite
sequence of states such that for all i > 0, we have R{ui,Ui+i) (resp. r(u,-, u,+i)). The
path TT is initialized if uq is an initial state. By /n/(7r) we denote the set of states that
appear in tt infinitelyoften. The labeling functions L and £ are lifted from states to paths
in the obvious way.

With each finite automaton A we associate a sentence 3A that is interpreted over
a Kripke structure K with the same propositions eis A. The model-checking problem
for automata is to decide, given K and A, whether K |= 3A. We define K |= 3A
if there exist an initialized path tti of K and an accepting initialized path ten of A

^ Recall that we work, for convenience, in a setting that is dual to the one that considers linear
properties to consist of all non-error traces.

such that L{'K\) = ^(Tro); such an observation sequence is called an error trace
of K with respect to A. Which paths of A are accepting depends on the interpretation
we place on the automaton A. We consider here three different interpretations: safety
automata, Biichi automata, and co-Biichi automata. For each interpretation we reduce
the model-checking problem for automata to the model-checking problem for post-pi^, by
translating automata into equivalent post-p^ queries. The post-p^ query 9 is equivalent
to the automaton A if for every Kripke structure A', we have K ^ 3^1 iff K |= 6.

In all translations, we will make use of the following. With each state s of the automa
ton A, we associate two variables, A% and y\'̂ . In addition, we use the two variables Xp
and X'p. For each state s of j4, let 7, be a variable-free and modality-free expression that
characterizes states locally, namely, 7, = Ape£(«)F^ Ap{?£(a) ""P- Now, let Ba be the fol
lowing//-block, which consists of |5|-1-1 equations, with vars{BA) = {A', | s 6 5}U{A'f}:

Y _ r 75 A(mi7 VVtepre(5) 30A't) if s G5o,
175 AVtepre(5) 30A'« if s^ So,

= V/e5. A'/.

Note that the size of Ba is linear in the size of A.

Safety automata A safety property of a Kripke structure K is a set of finite error traces.
The regular safety properties can be specified by safety automata. A safety automaton
is a finite automaton A such that a path 7r of A is accepting if 7r is a finite path and its
last state is an accepting state of A. It is not difficult to see that the safety automaton
A is equivalent to the posi-p<^ query 6a = ~'^{{{Ba)^Xf)).

If a finite error trace exists, during model checking, we would like to find it as soon
as possible. By evaluating the query 9a as follows (in the standard way), this can indeed
be guaranteed. The evaluation of the //-block Ba over a Kripke structure A' proceeds
in iterations. Let X^{i) C W denote the value of variable A' G vars{BA) after the
/-th iteration, and let r^(i) denote the A'-valuation that assigns to each variable in
A' G vars{BA) the value X^{i). Initially, AA^(O) = 0 for all A' G vars(Byi). In all
subsequent iterations, the value of each variable A' G vars{BA) is updated according
to the equation X^{i -{- 1) = expand{X)^{f^{i)). Since the modal expressions in Ba
are monotonic, once Xp{m) 0 for some m, we know that Xp (n) ^ 0 for all n > m.
Hence, we can detect that K |= as soon as Xp (m) is nonempty. The following theorem
guarantees that if there is an error trace of length m, then we will find it in m iterations.
In other words, using symbolic forward state traversal, we will explore only states up to
distance m from initial states.

Theorem 1. For every safety automaton A, an equivalent alternation-free post-p^ query
6a can be constructed in linear time. Further, for every Kripke structure K, if the shortest
error trace in K with respect to A has length m, then Xp (m) ^ 0, whereXp is the root
variable of 9a-

Biichi automata Safety automata cannot specify infinite error traces. For that, we use
Biichi automata. A Buchi automaton A is a finite automaton such that a path tt of A is
accepting if /n/(7r) 0 5^ ^ 0; that is, some accepting state of A occurs infinitely often in
T. It is well-known [EL86,Dam94,BC96] that for every Biichi automaton A, there exists
a pre-pi query such that for every Kripke structure A', we have A' ^ 3A iff K |=
We now show that there exists also a post-p^ query 9a with the same property, thereby

proving that the model-checking problem for Biichi automata lies in the intersection of
pre-fi^ and posi-fi^. We define two equational blocks: a i/-block Bi and a //-block Bo.
The block Bi contains the following |5f| + 1 equations, with t;ars(Bi) = {A"', I / €
Sf}U{X'p.}:

Xj = Xj A\/tepre(f) 30A|,
x'F = yf,srX'j.

The block B2 contains an equation for each state s £ S\Sf, defined by

Xg = 7« AV/epre(a) 30A'̂ .

Then, $a = ->S{{{Bi, B2,Ba), Xp)). Notice that, as with pre-p^ [BC96], the translation
is linear in the size of the Biichi automaton. Also, the equational blocks Bi and B2
depend on each other and the alternation depth of 6a is two. Since Biichi automata are
expressively equivalent to the cj-regular languages, the query logic posi-p^ can specify
all w-regular properties.

Theorem 2. For every Biichi auiomaion, an equivalent post-p^ query of altemaiion
depth two can he constructed in linear time.

In particular, since all sentences of the linear temporal logic LTL can be translated to
Biichi automata [VW94], Theorem 2, together with [EL86], impliesthat all LTLsentences
lie in the intersection pre-p^ D post-p^. Hence, LTL model checking can proceed by
symbolic forward state traversal. Since the translation from LTL to Biichi automata
involves an exponential blow-up, the translation from LTL to post-p^ is also exponential.

Co-Biichi automata Recall that the translation from Theorem 2 results in formulsis
of alternation depth two. It has been recently argued [KV98] that a linear property
given by a co-Biichi automaton can be translated into an alternation-free pre-p^ query.^
Consequently, the model checking of linear properties that are specified by co-Biichi
automata requires time that is only linear in the size of the Kripke structure. We now show
that every co-Biichi automaton A can also be translated into an equivalent alternation-
free post-p^ query 6a, thereby proving that the model-checking problem for co-Biichi
automata lies in the intersection of alternation-free pre-p^ and alternation-free post-p^.
A co-Buchi automaton A is a finite automaton such that a path tt of A is accepting if
/n/(7r) C Sf', that is, all the non-accepting states of A occur in jt only finitely often.
We define an equational //-block B^ that contains the following |5f| + 1 equations, with
vars{Bz) = {X'j\f eSF}^{X'p):

Xf = Xj AVtepre(/)nSf 30A'(,
X'f = V/eSf Xj.

Then, 6a = -i€{{{B3, Ba), Xp)). Notice that 6a is alternation-free and linear in the size
of A.

Theorem 3. For every co-Buchi automaton, an equivalent alternation-free post-p^ query
can be constructed in linear time.

^ The results in [KV98] refer to sentences of the form VA, for deterministic Biichi automata
A. Since an h;-regular language can be specified by a deterministic Biichi automaton iff its
complement can be specified by a co-Buchi automaton, the corresponding result for 3A, for
co-Buchi automata A, follows by duality.

3.2 Out

We now show that there exist branching temporal-logic specifications that cannot be
model checked by evaluating post-fis queries. A posi-pe query 9 is equivalent to a
pre-p sentence 0 if for every Kripke structure A', we have K ^ ^ iff K (= 9. Con
sider the pre-p sentence <pi = {A' = 30p A 30A'})), A'), which is equivalent to
the CTL sentence 3D30p, and consider the Kripke structures K\ and K[appearing
in Figure 1. It is easy to see that there is a post-bisimulation between K\ and A'{.

A'i:

Fig. 1. A'l and K[are post-bisimilar but not pre-bisimilar.

Hence, by Proposition 1, no post-ps query can distinguish between them. On the other
hand, while the structure A'l satisfies <l>i, the structure K[does not satisfy <f>i. Using
a similar argument, it can be shown that the pre-p sentence that is equivalent to the
CTL sentence 30(r A 30p A 3O7) can distinguish between two structures that have
a post-bisimulation between them, implying there is no equivalent post-ps query. In
terestingly, the pre-p sentence ((Bi, B2), AT) with Bi = (t/,{AT = AT A30AT}) and
Bo = {p,{AT = pV30AT}), which is equivalent to the CTL sentence 3D30p, and which
is not equivalent to any LTL sentence [CD88], does have an equivalent query in posi-p^.
The query is ->£^(((53, B4),AT)), with B3 = {u,{Xi = p AAT, AT = AT A30AT}) and
Ba = (p, {AT = inii V3©AT}).

Proposition 2. There exist pre-p sentences (in fact, CTLsentences) that have no equiv
alent post-p£ queries.

4 Hierarchy of Pre and Post Logics

Let C\ and Co be two logics whose sentences are interpreted over Kripke structures. The
logic £2 is as expressive as the logic C\ if for every sentence of £1, there is a sentence
^2 € Co such that for every Kripke structure A', we have A' |= (j>\ iff K }= 02- The logic
Co is more expressive than C\ if Co is as expressive as C\ but C\ is not as expressive as
Co. The logic £2 is as distinguishing as the logic £1 if for all Kripke structures A' and A'',
if there is a sentence <f)i of £1 such that K ^ (f)i but K' (f>\, then there is a sentence <f>o
of Co such that A' |= (f>o but A' ^ <f>o. Finally, the logic Co is more distinguishing than
C\ if Co is as distinguishing as C\ but £1 is not as distinguishing as Co. In this section,
we study the distinguishing and the expressive powers of pre-p and post-p and the query
logics they induce. For this purpose, the sentences of query logics are the queries.

Fig. 2. K2 and A'2 are init-post-bisimilar but not post-bisimilar

Proposition 3. The disiinguishing powers of pre and post logics are summarized in ike
figure below. An arrow from logic Ci to logic C2 indicates that Ci is as distinguishing as
£2- A line without arrow indicates incomparahility.

Proof. Proposition 1 implies that the distinguishing powers of pre-fi^ and pre-p.£ co
incide, and similarly for post-p. In order to prove the incomparahility results, we show
that the four relations init-pre-bisimulation, init-post-bisimulation, pre-bisimulation, and
post-bisimulation are all distinct. Recall that there may be states in a Kripke structure
that are not reachable from an initial state, as there may be states from which no initial
state is reachable. Consider the Kripke structures A'2 and A'̂ appearing in Figure 2.
There is an init-pre-bisimulation and an init-post-bisimulation between A'o and A'^, but
no pre-bisimulation or post-bisimulation. Hence, (post) pre-bisimulation is more distin
guishing than (init-post) init-pre-bisimulation. Now consider the Kripke structures A'l
and A'l appearing in Figure 1. There is a post-bisimulation and an init-post-bisimulation
between A'l and A'|, but no pre-bisimulation or init-pre-bisimulation. Also, there is
a pre-bisimulation and an init-pre-bisimulation between A'f^ and but no post-
bisimulation or init-post-bisimulation. Hence, pre-bisimulation and post-bisimulation as
well as init-pre-bisimulation and init-post-bisimulation are incomparable. •

Proposition 4. The expressive powers of pre and post logics are summarized in the
figure below. An arrow from logic Ci to logic Ln indicates that C\ is as expressive as £2-
A line without arrow indicates incomparahility.

Proof It is easy to see that if a logic £2 is not as distinguishing as a logic £1, then
£2 is not £is expressive as £1. Therefore, most of our expressiveness results follow from

10

the corresponding results about distinguishability. In addition, as a Kripke structure K
satisfies a sentence <f> iff K satisfies the query -iS{init A 0), the query logics pre-^^ and
post-p^ are more expressive than pre-p and post-p, respectively. In order to prove the
advantage of the full query logics pre-ps and post-p£ over its subsets pre-p^ and post-p^,
it is easy to see that no query of the query logics pre-p^ and post-pi^ is equivalent to the
query £{p) VS{q). •

5 Discussion and Experimental Results

5.1 Intersection of pre and post logics

While previous works presented symbolic forward state-traversal procedures for model
checking some isolated linear and branching properties [INH96,IN97], we attempted to
study more systematically the class of properties that can be model checked using both
symbolic forward and backward state traversal. In particular, we showed that all w-
regular linear properties (which includes all properties expressible in LTL) fall into this
class, while somesimple branching properties (expressible in CTL) do not. Furthermore,
every query that can be specified in both pre-p^ and post-p^ cannot distinguish between
structures that are both pre-bisimilar and post-bisimilar. Yet the exact characterization
of the intersection pre-p^ n post-p^ remains open. In [GK94], the authors identified a
set of temporal-logic sentences called equi-linear. In particular, a pre-p sentence is equi-
linear if it cannotdistinguish between two Kripke structures with the samelanguage (i.e.,
observation sequences that correspond to initialized paths). Clearly, all LTL sentences
are equi-linear. However, some CTL sentences that have no equivalent LTL sentence are
alsoequi-linear. For example, it is shown in [GK94] that while the CTL sentence 3D30p
is not equi-linear, the CTL sentence 3D30p is equi-linear. Motivated by the examples
from Section 3.2, we conjecture that equi-linearity precisely characterizes the properties
that can be model checked using both symbolic forward and backward state traversal.
Formally, we conjecture that a pre-p sentence is equi-linear iff there is an equivalent
post-p^ query.

5.2 Union of pre and post logics

In this paper, we primarilythink ofpost-ps as a language for describing symbolic model-
checking procedures for temporal-logic specifications. Furthermore, we have focused on
specification languages that contain onlyfuture temporal operators. Since LTL with past
temporal operatorsis no more expressive than LTL withoutpast operators [LPZ85], every
LTL-fpast sentence can also be translated into an equivalentpost-pi^ query. In addition,
post-p also permits the easy evaluation of branching past temporal operators that cannot

11

^evaluated using pre-//. For example, the sentence ^^{grant —>• {->inii)\/yVreq), where
W is a past version of the "weak-until" operator [MP92], specifies that grants are given
only upon request. Assuming a branching interpretation for past temporal operators
[KP95], this sentence has an equivalent posi-fi^ query, but no equivalent pre-ps query;
that is, it can be model checked bysymbolic forward state traversal but not by symbolic
backward state traversal.

While the intersection pre-pe n post-pe identifies the queries that can be model
checked by both symbolic forward andbackward state traversal, it is the "union" (pre-//U
post-p)£^ that identifies the queries that can be model checked at all symbolically, by
mixed forward and backward state traversal.® Furthermore, it is the alternation-free
fragment of {pre-p Upost-p)£ that identifies the queries that can be model checked effi-
cienily. Thus it is also of interest to ask which temporal logics can be translated into the
(alternation-free) union of pre and post query logics. Such temporal logics can have both
future and past temporal operators. In particular, it is easy to see that every CTL-t-past
sentence (under the branching interpretation for peist) has an equivalent query in the
alternation-free fragment of (pre-pU posi-p)^.

5.3 Experimental results

In our experiments, we performed BDD-based symbolic model checking on a parameter
ized sliding-window protocol for the reliable transmission of packets over an unreliable
channel. The parameter to the protocol is WINSIZE, the number of outstanding unac
knowledged messages at the sender end. In the protocol, the messages are modeled as
boolean values. We checked whether all computations of the protocol satisfy the partial
specification 0, whichstates that if the produced message msgP toggles infinitely often at
the sender end, then so does the consumed message msgC at the receiver end. Formally,
the specification <f) is given by the LTLsentence 00{msgP ^ Q-tmsgP) —^ •0(ms^C ^

C)->msgC). We note that this sentence cannot be handled by the methods presented in
[1NH96,1N97].

In the table below we list the running times (in seconds) for different values of
WINSIZE for checking 0 using VIS [BHSV"^96] for both symbolic forward and backward
state traversal. The quantity within the parentheses is the number of boolean variables
used to encode the state space of the protocol. It is folk wisdom in symbolic model
checking that using don't-care minimization based on unreachable states can dramati
cally improve the running times. So we also applied first symbolic forward state traversal
to compute the set of reachable states and then symbolic backward state traversal for
model checking, using the unreachable states eis don't cares. These results are shown in
the last column. A dash indicates an unsuccessful verification attempt. In the future, we
hope to compare our approach also against enumeraiive forward state-traversal methods
for LTL model checking.

* By the unton pre-nUposi-p we refer to the logic with all four modal operators 30. VO. 30.
and VO. It has, of course, strictly more sentences than the union of the sets of pre-p and
post-p sentences.

^ In fact, not only can model checking algorithms be extended from pre-p to {pre-p Upost-p)£
without extra cost, the satisfiability problem for the union is also no harder than the satisfi
ability problem for either pre-p or post-p [Var98].

12

WINSIZE Forward Backward Reach-optimized backward
2 (30) 18 222 91

3(45) 300 4584 -

4 (50) 5231 - -

Acknowledgments

We thank Rajeev Alur, Bob Brayton, Ed Clarke, Allen Emerson, and Orna Grumberg
for helpful discussions, and Carl Pixley for drawing the authors' attention to [INH96].

References

[BC96] G. Bhat and R. Cleavland. Efficient model checking via the equational /t-calculus. In
Proc. 11th IEEE Symposium on Logic in Computer Science, pp. 304-312, 1996.

[BCG88] M.C. Browne, E.M. Clarke, and 0. Grumberg. Characterizing finite Kripke structures
in propositional temporcd logic. Theoretical Computer Science, 59:115-131, 1988.

[BCM''"92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 10^° states and beyond. Information and Computation, 98{2):142-170, 1992.

[BHSV'*'96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli. F. Somenzi, A. Aziz, S.-T.
Cheng, S. Edwards, S. Khatri, T. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary,
T.R. Shiple, G. Swamy, and T. Villa. VIS: a system for verification and synthesis. In CAV
96: Computer Aided Verification, LNCS 1102, pp. 428-432, Springer, 1996.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE Trans,
on Computers, C-35(8), 1986.

[CD88] E.M. Clarke and I.A. Draghicescu. Expressibility results for linear-time and branching-
time logics. In Proc. Workshop on Linear Time, Branching Time, and Partial Order in Logics
and Models for Concurrency, LNCS 354, pp. 428-437, Springer, 1988.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proc. Workshop on Logic of Programs, LNCS 131, pp. 52-71,
Springer, 1981.

[CGH94] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In CAV 94: Computer Aided Verification, LNCS 818, pp. 415 - 427, Springer, 1994.

[CGL93] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In Decade of Concurrency - Reflections and Perspectives (Proc. REX School), LNCS
803, pp. 124-175, Springer, 1993.

[CS91] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal /i-calculus. In CAV 91: Computer Aided Verification, LNCS 575, pp.
48-58, Springer, 1991.

[Dam94] M. Dam. CTL* and ECTL* as fragments of the modal //-calculus. Theoretical Com
puter Science, 126:77-96, 1994.

[Dil96] David L. Dill. The Mur^ Verification System. In CAV 96: Computer Aided Verification,
LNCS 1102, pp. 390-393, Springer, 1996.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
//-calculus. In Proc. 1st Symposium on Logic in Computer Science, pp. 267-278, 1986.

[GK94] O. Grumberg and R.P. Kurshan. How linear can branching-time be. In Proc. 1st
International Conference on Temporal Logic, LNAI 827, pp. 180-194, Springer, 1994.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi
cation of linear temporal logic. In Protocol Specification, Testing, and Verification, pp. 3-18,
Chapman, 1995.

[H0I97] G.J. Holzmann. The model checker SPIN. IEEE Trans, on Software Engineering,
23(5):279-295, 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy de
signs. In Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 400-404,
1997.

13

[INH96] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on forward state
traversal. In Proc. lEEE/ACM International Conference on Computer Aided Design, pp.
82-87, 1996.

[Koz83] D. Kozen. Results on the propositional /r-calculus. Theoretical Computer Science,
27:333-354, 1983.

[KP95] O. Kupferman and A. Pnueli. Once and for all. In Proc. 10th IEEE Symposium on
Logic in Computer Science, pp. 25-35, 1995.

[KV98] 6. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time
to branching-time. In Proc. 13th IEEE Symposium on Logic in Computer Science, 1998.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs,
LNCS 193, pp. 196-218, Springer, 1985.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1992.
[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking. In CAV

94: Computer Aided Verification, LNCS 818, pp. 377-390, Springer, 1994.
[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.

In Proc. 5th International Symp. on Programming, LNCS 137, pp. 337-351, Springer, 1981.
[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Interna

tional Coll. on Automata, Languages, and Programming, LNCS, Springer, 1998.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and

Computation, 115(l):l-37, 1994.

14

	Copyright notice 1999
	ERL-99-56

