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Abstract

77te theory ofrecycling ispresented as thefoundation ofa correct-by-construction methodology toreuse Intellectual Properties (IP)
coresfor building complex digital systems while reducing the number ofiterations in the design process. The recently proposed theory of
latency insensitive protocols lies at the basis ofthe present work. Latency insensitive systems aresynchronous distributed systems, whose
functionality is robust with respect toarbitrary variations in interconnect latency. However, the same robustness isnot guaranteedfor
the performance ofthe design, which indeed may experience a notable degradation. This paper presents a simple, yet rigorous, method
to(l) model the key properties ofa latency insensitive system, (2) analyze the impact ofinterconnect latency onthe overall throughput,
and (3) optimize theperformanceof thefinal implementation.

1 Introduction

As system complexity increases and market windows continue toshrink, effective reuse ofexisting designs orIntellectual Property
(IP) cores seems the only way to produce a reliable design within a reasonable time [6, 19]. In fact, most semiconductor companies
share both astrong will to broaden IP reuse and an open complaint towards the effectiveness ofthe tools offered by the EDA companies
to meet this request [20, 24].

If to permit an easy trade, reuse and assembly of individual components of the chip is the goal, the new design methodologies
should primarily facilitate (if not automatically provide) the solution of the communication and synchronization issues which arise
while assembling pre-designed components. In this perspective, it is necessary to define a methodology which effectively addresses
the increasing impact ofinterconnect delay in future design generations. Despite the increase in number oflayers and in aspect ratio,
the RC delay of an average metal line with constant length is getting worse with each process generation [17, 21] '. This effect,
combined with the increases in operating frequency, die size, and average interconnect length, makes interconnect delay becoming a
larger fraction ofthe clock cycle time [18]. Furthermore, while the number ofgates reachable in acycle will not change significantly
and the on-chip bandwidth that wires provide will continue to grow, the percentage of the die reachable within one clock cycle will
decrease dramatically: we will soon reach a point where more gates can be fit on a chip than can communicate in one cycle [8,16].

On-chip communication has been cheap for a long time. This fact has lead toa number ofarchitectural models that rely on low-
latency to shared global resources. The popularity ofthese models is due to the fact that they provide the most uniform computational
framework and the best functional unit utilization. As suggested in [16], this focus on function rather than communication is the
fundamental conceptual roadblock to overcome. Meanwhile, currently available CAD flows force the designers to iterate many times
between synthesis and layout, because the two steps are performed independently and synthesis uses statistical model that do not estimate
thepost-layout wire load capacitance accurately (timing-closure problem) [6, 14].

Long-term solutions must involve the adoption ofinterconnect structures with predictable performance [6], the definition ofcompu
tational models that explicitly account for communication costs [16], and the development ofmachine architectures which expose their
communication structure to the software compilers [1, 10]. Astep in all these directions is represented by the latency insensitive design
methodology, which has been recently proposed in literature [5]. Furthermore, this methodology may also accelerate the solution of
the IP integration problem: in fact, it is fairly easy to assemble complex latency insensitive systems by reusing synchronously-specified
functional modules because their interaction is controlled by acommunication protocol that is insensitive to the latency ofthe channels
connecting them. Yet, although the functionality ofa latency insensitive system isrobust with respect to interconnect delays, the same
is not necessarily true for its performance. In [5], the authors do not address this problem nor do they suggest atechnique for analyzing
the latency/throughput trade-offs.

Introducing copper metaiization and 1ow-k dielectric insulators helps reduce interconnect delay, but these one-time improvements will not suffice in the long run as
featuresize continuesto shrink [18,19].
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Figure 1: A Sequential Module.

Inthis paper, we introduce the theory ofrecycling asa formal way tocapture the communication and synchronization properties ofa
latency insensitive system, thus enabling theanalysis of the impact ofa particular increase inlatency (ofone, ormore, channels) onthe
overall system performance. This directly addresses thefundamental cause of thetiming closure problem, while reducing the amount
of iterations between logic synthesis and physical design and, ultimately, the entire design process time. Meanwhile, it simplifies the
integration of IP components coming from different sources, thus handling the design complexity byreusing IP cores. Finally, allows
us toderive a procedure thatoptimizes directly thesystem throughput, and that, in thecase ofa design made entirely of pre-designed IP
blocks, provides the best achievable performance.

InSection 2 wediscuss therealization of a hardware design byassembling Register-Transfer Level (RTL) modules asanexample of
a design approach based on IP reuse. The latency insensitive design methodology is summarized andcriticized inSection 3. InSection 4
wegive thedefinition of lis-graph as a formal model to represent thekey properties of a latency insensitive system. Thismodel allows
us to specify the notion of recycling as a rigorous way to model the variations in latency of different wires and to compute exactly its
impact on theperformance of thesystem (Section 5). Finally, Section 6 illustrates theprevious concept through theanalysis of a case
study, an implementation of the MPEG-2 Video Encoder.

2 Assembling IP Cores

Thelatency insensitive methodology together with theideas proposed in thepresent work canbeused todesign complex distributed
systems by assembling IP modules, which may be hardware blocks as well as software modules. However, in therestof this paper we
focus on synchronous digital circuits and wepropose to design them by putting together IP cores having thestructure of Figure 1, i.e.
sequential circuits where: (1) any path between an input port and an output portcontains oneand only one register, which latches the
outputsignal at theendof the path, and (2)boththe state andoutput registers arecontrolled by a common clocksignal. Such modules
arecommonly usedto implement finite statemachines (FSM), butanyarbitrarily complex pipelined datapath canbeseenasa cascade of
stages having this structure. We indifferently refer to circuits with thisstructure as sequential modules, FSMmodules, or RTL modules
and,from now weassume thatall IPcores thatweencapsulate andcompose to derive digital systems have these characteristics.
Example2.1 A Multiplier-Accumulator (MAC) is a very common digital circuit, because it facilitates theimplementation of anopera
tionas 'y{n—lc), which is ubiquitous in filters and vector arithmetic [13]. Fig.2 illustrates an implementation of a MAC circuit:
inX and inY are the input values to be multiplied, inDforces theaccumulator register to be preset to thevalue of i>i5, inTag controls the
index of thepartial sum, and, finally, outT andoutW are theoutputs representing the sequence of indexed partial sums. If inX and inY
are twoA^-bit signals, regM a (2•N)-bit signal, and regA a {{2 •N)+ M)-bit signal (aswell as rcgC, inB andoutO)^ then 2^ repetitive
MPYIACC operations can beperformed without overflow. We decompose the block diagram of the MAC in three major subcircuits,
such that each of them can be realized with an RTL module. Then, we represent the structure of the system with a directed graph as
illustrated in Fig. 3: nodes V2,V3,V4 are associated to modules A/2,Ms,A/4, while nodes vi and V5 represent respectively the input and
theoutput buffers. Theoperations performed at each nodes are defined as follows, where jj,denotes thevalue of thesignal traveling on
arc a' during the «-th clock cycle: node V2 performs while node V3 does two operations, one for each leaving edges,
namely jJ = and

-14-. + s,n-l

if^i_, = 1
if^;_, =0

Finally, node V4 composes the current result ofaMAC operation with a tag index, i.e. ©^^_i and 5*® = j^_2. Table 1illustrates
a possible MAC behavior spanning 12 clock cycles, during which the following computationsare performed: nin = x„ •y„, w„ = Zn®t„,
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Figure 2: Block Diagram of a MAC circuit.
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Figure 3: Graph representing the RTL structure of the MAC.
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The advantage ofproviding an RTL specification ofa digital system using sequential modules is that it iseasy to derive the timing
constraints imposed by each ofthem. In fact, the longest combinational path inside amodule dictates the minimum clock period 7t/ which
makes itoperate correctly. Therefore, the task ofspecifying a large digital circuit can be decomposed in sub-tasks aimed to specify RTL
modules having close Tti. This approach permits to handle the complexity of the overall design, by separating functional specification
from performance analysis: once all modules are composed, the final system works correctly as far as itisrunning with aclock satisfying
the constraint imposed by the slowest module, i.e. a clock having a period n > max,{7i/}. Thanks to its simplicity, this approach has
been the basis ofmost digital design methodologies during last two decades, but its effectiveness is based on the assumption that the
delay ofany path connecting two modules is comparable to delay ofthe combinatorial paths inside the slowest modules in the system.
Until the interconnect delay has been small with respect togate delay, it has been easy toeffectively decompose the system insuch a
way that inter-module combinational delays and intra-module wire delays are comparable. As discussed inthe previous section, this is
in not going to be the case for chip realized with DSM technologies. On the other hand, to estimate the delay ofglobal interconnect early
in the design process (e.g. atthe floorplan phase) isextremely difficult and may easily lead to over-constrain the design, thus resulting in
poor performance. We argue that todesign high-performance complex digital system isnecessary a methodology which (1) facilitates
the composition ofsequential modules in pipeline mode and (2) allows the potential insertion ofextra-stages between one module and
the other with the only purpose ofbuffering signals propagating on long wires. Anew approach based on these ideas has been recently
presentedin literatureand we discuss its pros and cons in the next section.

3 Latency Insensitiye Systems

In [5], Carloni etat. have proposed a methodology to design very large digital systems by assembling IP cores exchanging data
on point-to-point communication channels in accordance with a latency insensitive protocol. The protocol guarantees that a signals
composed of functionally correct modules, behaves correctly independently from the delays of the channels connecting the modules.
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Table 1: Example of a behavior of the MAC circuit

As a consequence,a hardware implementation of the system can be automaticallysynthesizedsuch that its functional behavior is robust
withrespect to largevariations in wiring delaysbetween modules. In fact,a long wirehavinga delay largerthat thedesired clockperiod
can be pipelined in shorter segment by inserting special memory elements calledrelaystations,which buffer thesignals traveling along
the wire. The latency insensitive methodology can be summarized as follows:

1. the designer specifies a systemas a collection of sequential modules (calledpearls), whose interactionrelieson the synchronous
hypothesis, i.e. signals take one clock period to move from one pearl to another;

2. eachpearl is encapsulated within an automatically generated shell: a shellis simply a collection of buffering queues (onefor each
port) plus the control logic that interfacesthe pearl with the latency insensitiveprotocol;

3. traditional logicsynthesis and place& route steps are applied to derive the layout of the chip implementing the system;

everywire whoselatencyis greaterthan theclock period is segmented by distributing on it the necessaryamountof relaystations.

The only pre-condition required by this methodology is that the sequential modules be stallable, meaning that theiroperation can be
frozen foranarbitrary amount of time without losing theirinternal state. Thisisa weak requirement because most hardware systems can
be made stallable, for instance, implementing a gated clock mechanism. Observe that the final implementation of a latency insensitive
system doesn't necessarily have to be synchronous, in the sensethat is controlled by a single clock signal reaching every pointon the
chip. Forinstance, therelay stations as well as theoverall communication architecture can be realized using asynchronous logic.

Thebig advantage of a latency insensitive design is that its functionality is robust with respect to arbitrarily large variations in wire
delays as proven in [5]. Unfortunately the same can notbe saidfor the performance of thedesign. In fact, the mechanism to implement
a latency insensitive communication architecture is based on thedistinction between informative event andstalling event. According to
the synchronous specification of the system, at each clock cycle n every sequential module receives a new informative eventon each
input port and emits an informative event on each output port, the latter being the result of the processing based on the informative
events received up to cycle (n —I). Hence, no stalling events travel between the modules at the specification level. However, the
presence of relaystations in the final implementation doesintroduce stalling events: in particular, the initialization value stored inside
each relay station is a stallingevent. According to the latency insensitive protocol, if a module receives one (or more) stalling event
at a given clock cycle it means that misses one (or more) data item to perform the computation and, therefore, it is forced to stall,
generating a newstalling event for each output port (meanwhile the informative events received on the other input ports are stored in
the shell queues). This mechanism does not affect the overall performance if the design does not present anyfeedback path between
the sequential modules, but obviously this a condition too strong to demand. In [5] Carloni et al. do not present an analysis of the
impact of their ideas on the system performance. In the following section we propose a formal model to analyze the properties of a
latency insensitive system, which allows us to define the notion of recycling as an elegant way to capture the latency variations of the
communicationchannels and to compute exactly the final throughput of the system.

4 Latency Insensitive System Graphs

In this section, we formally introduce latency insetisitive system graphs (lis-graphs) as a way to model the structure of a latency
insensitive system, and we give the notionof lis-graph behavior, which allows us to captiu-e their communication and synchronization
properties.

Definition 4.1 A lis-graph G = {s,t,V,A,w) is a weighted directedconnected graph (V,A, w), where w{ai) G for each arc a/ GA,
with twospecial nodes: a sources with0 indegreeand I outdegree, and a sink / GV with0 outdegreeand 1 indegree.

^Z* denotes thesetofnon-negative integers.



Figure 4: Lis-graph for the MAC of Figure 3.

Definition 4.2 Given a lis-graph G= (j,r,V,i4, u'), the single arcasleaving source s iscalled source arc, while the single arcat entering
t is called sink arc. The core ofa lis-graph G is thedirected graph (V \ {5,r},i4 \ {^5,0,}, w).

Using lis-graphs we can focus on the structure of a latency insensitive system, without getting lost into the details of the logic
inside each module. Every lis-graph node (but source andsink) is associated to a pearl/shell pair, while the weights on thearcs denote
the amount of relay stations on the corresponding channels. The source and the sink model the interaction of the system with the
environment inside which it operates. As we know from the previous section, the initialization value stored inside inside each relay
station isa stalling event, while the output register ofeach module is initialized with aninformative event according to thesynchronous
specification of the system. Therefore, an arc a/ with weight ^(a, ) = 3 indicates that during the first cycle of system operation there
are 3 stalling event occupying the3 buffering spots on the corresponding channel. At the subsequent cycle the first stalling event will
be withdrawn bythereceiving module Mr at theendof thechannel, while thefirst informative event will be puton thechannel by the
sending module Ms', this informative event will be readbyMronly3 cycles later, after the remaining two stalling events.

The fact thatchanging the number of relay stations on somechannels doesnotchange the functionality of thesystem motivates the
following definition of lis-graph equivalence.

Definition 4.3 Two lis-graphs G = (5, ?, V, A, w) andG' = {s,t,V,A, h/) differing onlyfor some weights aresaidstructurally equivalent,
or, simply, equivalent (G = G'). The reference lis-graph ofa class of equivalent lis-graphs is the graph Gref = {s^t,V^A^Wref) s.t.
Vfl; =0).

Example 4.1 The graph of Fig. 3 represents the RTL structure of theMAC circuit of Fig. 2. This graph is also thecore of lis-graph
G= {s,t,V,A) ofFig. 4,with V= {^,vi,V2,V3,V4,V5,f} and A= {as,ai,a2,a2,a4,a5,a6,a7,as,ag,aio,a[}, which isobtained adding the
source and the sink vertices. •

Two distinct arcsof a lis-graphs which respectively enterand leave thesamevertex are in a dependency relation.
Definition 4.4 Given a lis-graph G= {s,t,V^AyW),for all vertices ui,U2,v £ V, arcs a\ = (mi ,v) anda2= (v,M2) are in a dependency
relation a\ <d 02 (a\ depends on 02). If and only if a\ <d 02. is o. predecessor of 02 and 02 is a successor of a\. Given an arc a,
(BiRfE'D{a) andS11CC{a) denote respectively the setsofpredecessors andsuccessors ofa. Obviously, (PiRfET){as) = S11CC{at) = 0
holds for any lis-graph.

Example 4.2 Referring to the lis-graph of Fig. 4, wehave 03 <d ae and as <d 09. Then, iPifi'E(D{a6) = {03,04}, while SUCCia^) =
{07,08}. Further, a self-loop a = (v,v) depends on all arcs entering v (including itself), while all the arcs leaving v depend on it. In
Fig. 4, this is thecase ofaj = (vt,V7), forwhich (PIRJE'D{a7) = {01,^2,06,07} and SUCC{a7) = {o7,a8}-

Weare not interested incapturing theparticular valueof a signal traveling on a wirefroma module to another at a given clockcycle,
butwewantto know whether thatsignal represents an informative eventor a stalling event. The progressive traceof a signal(associated
to a channel represented by an arc in the lis-graph) is used to represent an interleaved stream of informative events andstalling events:
thevalue j of a natural number in a trace denotes theordinal of the j-th informative event while thex symbol denotes a stalling event.
Definition4.5 Let s be a signal with L informative events, let K be the indexof the last informative event, and /er T C E4 be the set
of indices of the stallingevents between 1and K, where IN is theset ofnatural numbers. Theprogressive trace, (or, simply, trace) a of
signature Land co-signature set(or, simply, co-signature) T isan infinite sequence ofsymbols o/INU{x} s.t. then-th term is

" \ J if^n isthe j-th element in s s.t. Sn'f^x

Given a progressive trace a, its signature is denoted as ||a||, while its co-signature set isdenoted as (a).

Example 4.3 Consider arc 07 of the lis-graph of Fig 4. This arc represents the feedback path of module M3 in the MAC of Fig. 2.
Consider thebehavior reported inTable 1and observe particularly thevalues of signal P associated to regC. Now, assume that a latency
insensitive implementation of the MAC presents only one relay station, placed exactly in the middle of this feedback path. Hence
*^(^7) = 1 , while w(fl/) = 0 for 1^ 7. Since the initialization value stored in any relay station is x, the sequence of events on the
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Figure 5; The Lis-graph of Example 4.4.

0(05) =123456789 10 llT T...
o(ai) = t1 2tt3t45tt6t78tt9t 10 11 tttt...
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a(o,) = 1 2TT3t45TT6T7 8tt9t 10 II tttt...

Figure6: Behavior Pof Example 4.4, having ||P|| = 11.

feedback path '\s = z z\1 zaX b\ z zi xzzx ••• The corresponding progressive trace, having signature ||a|| = 10 and
and co-signature (o) = {1,3,5,7,9,11,13,15,17} isa = TlT2x3x4T5T6T7T8T9xT... The subtrace of a from the7-th to the
12-th term is 07.12 = x4 x5 x6 andits signature is ||o7,i2|| = 5. •

Only after receiving at each input channel the y-th informative event, a module is able to produce (at the next clock cycle) the
(7 + l)-th informative event for each of its output channels. If this is not the case, it means that one or more input channels present a
stalling event. Therefore, the module stalls, "consuming" the stalling events, producing output events onall output channels, and storing
those informative events which cannotbe processed in theshell queues. Tocapture theessence of this mechanism weusethenotion of
lis-graph behavior.

Definition 4.6 Given a lis-graph G= {s,t,V,A, w), a trace assignment (a(fli),...,a(a|/i|)) is a tuple ofprogressive traces in one-to-one
correspondence with thearcs ofA. For eacharc a-, £ A, a(fl,) denotestheprogressive trace associatedto a-,.

Definition4.7 A\xiYiB\\ox^ofalis-graphG = {s,ty,A,w)isatraceassignment{r5{a\),... ,a(a|yi|))5./. V/€ \A\then-thtermofcs{ai)
is

o„{ai)=i

X (f/j € (l,w(a,)|
1 ifn = w(a,) -I-1
(ll^n-i(a/)|| + 1) if (« > w(a,)-1-2) and

(||a„_i(fljt)|| <Z.)a/id
Vat € VIRJETtiai)

(ll^n—('"a)!! ^ 11^^/1-1 (''»)II)
x Otherwise

(1)

where LeJN iscalled the behavior signature (also denoted as jjpjj). The setofbehaviors ofGisdenoted as 1B(G).

Example 4.4 Given the lis-graph ofFig. 5, the behavior P= (cj(aj),CT(ai),a(a2)»cy(a3),a(ar)) with signature ||P|| = 11 is illustrated
in Fig. 6. Notice that trace 0(05), being associated to the source arc a,, is independent from the other traces. Observe that iv(ai) = 1
and w(a2) = 2, the first symbol ofa(ai) as well as the first two symbols ofa(a2) are x. Then, consider that TfRfE'D{a2) = {fli} and
TfRJE(D{a7,) = {a2}. For all n GIN, the n-th term oftrace 0(02) depends on the (n-3)-th term ofa{a\) since w(a2) = 2 and the n-th
term oftrace 0(03) depends on the (n-I)-th term of cy(a2) since w(a3) = 0. Finally, arc a, and a\ have a common set ofpredecessors
containing a, and 03. However, cy(a,) and cy(ai) depend "practically" only on trace 0(03), since (1(03) is constantly lagging behind
a(aj) with respect to the amount ofinformative events seen up to any instant. In particular, the «-th term oftrace 0(0,) depends on the
(/i-l)-th term of0(03) because w{a,) = 0,and the n-th term oftrace CT(ai) depends on the (n-2)-th term of0(03) because w{a\) = 1. •

Thedefinition of lis-graph behavior is reminiscent of thefiring semantic of an event graphs a common abstraction used to model
discrete event systems [2]. In fact, the presence ofeither xora natural number on an arc a,- = (vy, Vit) can be seen as the result of the
processing completed byvertex vj in accordance with thelis-graphfiring semantic expressed bythefollowing rules:

• Independence Rule: Every vertex vj fires thefirst informative event (corresponding tonatural number 1)independently. However,
a trace associated to arc a,- = (vy,v;t) with weight w(fl,) starts with ^(a/) stalling symbols and only the (H'(a/) -I- l)-th symbol
corresponds to the value 1 independently "produced"by vy.

• And-Causality Rule: Every vertex vy fires the n-th event only after the (n —I)-th event has appeared on all arcs entering vy.



Thisfiring semantic isequivalent to Definition 4.7andsuggests thata lis-graph models a cyclic system [2]. Obviously, this is trueas far
as thecoreof the lis-graph contains at least onecycle among some of its nodes (in the most trivial casetheonlycycle could besimply a
self-loop as in Figure 4). For cyclic systems, the cycle time Ti of arc a-, is defined as

7] = lim ^ (2)
/I—oo n

where r,(/i) denotes thetimeat which trace CT(fl/) associated to arc presents the /i-th informative event (i.e. natural number n). Since
the system is cyclic, for all arcs a,-, 7]- = 7 and the previous equation gives the cycle time T of the entire system. The cycle time is
equal to the inverse of the system throughput ^ (i.e., the rate at which informative events appear on the channels) and, represents the
key performance metric for the system: for all informative events n > 1,the difference |(f,(l) -1- 7 •«) is bounded [4, 9,22] We
naturally refer tocycle time 7(G) and throughput i&(G) ofa lis-graph G, meaning the cycle time and thethroughput ofthe system model
by G. Furthermore, thecycle time coincides with themaximum cycle mean of lis-graph G,defined as

X(C) = m«MC) = 0,

where X{C) isthe cycle mean ofacycle CofG, w(C) is the sum ofthe weights ofthe arcs on C, and |C| isequal to the number ofarcs
on C Acycle whose mean coincides with the maximum cycle mean is said critical. The maximum cycle mean can be found solving
the Maximum Cycle Mean Problem, for which many algorithms have been proposed, dating back to Karp's Algorithm [15]
Example 4.5 Lis-graph G= (j,r, V,A) ofFig. 5contains one cycle C= (ai ,02,03) with |C| = 3. Since »v(ai) = 1, w(a2) = 2, w(a3) = 0,
the maximum cycle mean ofGisX(G) =(=2. Then, the throughput isd(G)= = 1, •

If no cycles are present in the lis-graph core, both cycle time and throughput are equal to 1. This confirms the intuition, because
lis-graphs with no cycles represent pipelined systems with no feedback paths: hence, for any possible weight assignment on the arcs,
there exists a natural number k after which, all x in the system have been ejected through the sink t and only informative events travel
on the channels, thus delivering the best possible communication throughput. Ifthe lis-graph core contains only one strongly connected
component, all its cycles can be detected in 0((l^l + 1^1) • + O) operations, where K is the number of cycles in the graph [23].
Finally, the most general case is when the lis-graph core contains more than one strongly-connected component: being adirected graph,
a lis-graph can be efficiently partitioned in strongly-connected components using Tarjan's Algorithm [25]. Then, the maximum cycle
mean can be determined for each strongly connected component and the largest ofthese means is clearly the maximum cycle mean for
the lis-graph.

5 Recycling

As discussed in Section 3,moving from the specification ofasystem to the final layout, the latency ofsome communication channels
may be higher than the clock period, due to the length and the delay ofthe wires implementing them. In particular, from the analysis of
the layout we can determine for each wire what is the smallest multiple ofthe desired clock period which is larger than its delay. Ifthis
multiple is greater than 1then the wire is marked illegal. The presence ofillegal wires in the layout implies that the final implementation
is not correct. To capture this concept in our model we attach to each arc ofthe corresponding lis-graph avalue denoted as the length of
the arc.

Definition 5.1 Alis-graph G= (r,r, V,A,w,l) isannotated iffa length /(a,) e IN isassociated to each arca,- GA.

Definition 5.2 LetG={s^t, V,A, w,/) be anannotated lis-graph. Gislegal iff Va; GA, (w(fl/) > liai) -1). An arc OiGA s.t. (w(a,) <
l{aj) —I) is an illegal arc.

All the definitions given for lis-graphs are naturally extended toannotated lis-graphs.
Now, thanks to the latency insensitive methodology, we can correct the final layout by introducing the necessary amount ofrelay

stations to make sure that the delay ofeach wire is less than the desired clock period. Similarly, anon-legal annotated lis-graph Gcan be
transformed into an equivalent legal annotated lis-graph G' by simply incrementing the weights ofits arcs by the appropriate quantity.
Since Gs G', for all behaviors of Gthere is acorrespondent equivalent behavior of G'. This transformation is called recycling.
Lemma 5.1 LetG= {s,t,V,A,wd) be a non-legal annotated lis-graph. Alegal annotated lis-graph G' = {s,t,V,A,w',l) equivalent to
Gis obtainedfrom Gby adding the quantity Avi'(a/) = /(a/) —1—w{ai) to the weight ofarc a/, where /G[1, |A|].

The usual definition of the cycle mean ofacycle Cis X(C) = as in [2, 15]. We added the term |C| to the numerator, because the firing ofalis-graph node takes
one time unit, modeling the fact that every module ina latency insensitive system issequential.

''See [9] for asurvey ofthe proposed algorithms.



o(as) = 1 2 3 4 5 6 7 8 9...
o(ai) = T 1 2 3 4 5 6 7 8 9...
0(02) = T 1 2 3 4 5 6 7 8 9...

0(03) == 1 2 3 4 5 6 7 8 9...

0(04) == 1 2 3 4 5 6 7 8 9...

0(05) == 1 2 3 4 5 6 7 8 9...

oiae) == 1 2 3 4 5 6 7 8 9...

0(07) == 1 T 2 3 4 5 6 7 8 9...

o{as) == T T 1x2345678 9...

0(09) = 1 X x2x345678 9...

o(aio) == 1 X x2x345678 9...
a{a,) = 1 2 xx3x45678 9...

Figure 7: Case(a)of Ex.5.1: ^(C) = 1,(A^(G,G') = 0).

Proof. Forall / € [l,|i4|], = w(a,) + Aw(a,) = /(a,) —1. Hence, by definition 5.2, G' is legal. Further G' = G, since G and G'
differ only for their weights. •

Although recycling is an easy way to correct the final implementation of the system and satisfy the timing constraints imposed by
the clock, it doesn't come without a cost. In fact, augmenting the weights of some arcs of G (i.e., inserting memory elements on the
communication channels) may increase the maximum cyclemean of G (i.e., increase the cycle timeof the system modeled by G and,
symmetrically, decrease its throughput). This is always the case if any arc a„ whose weight w(a/) is augmented, belongs to the set
of critical cycles of G, simply because the numerator in Equation 3 increases by the quantity AH'(a,) while thedenominator remains
unaffected. It may also happen that increasing the weights of some arcs makes a non-critical cycle of G becoming a critical cycle
of G'. In any case, after completing the recycling transformation, we may exactly compute the consequent throughput degradation
Ad(G,G') = i&(G) —"©(G'), using oneof thefollowing methods:

solvetheMaximum Cycle Mean Problem for graph G', andsimply set (G') = 1 .

5^'

afterestablishing the set ^ of cycles having at leastonearc whose weight has beenaugmented, increment thecyclemeanof each
element Cof-J? by the quantity p •S/Aw(a,), where <2/ are the arcs ofCwhich have been corrected. Let X* be the maximum
among all these cycle means, then

Aff(G,G') = X*-X(G)
ifX*<A.(G)
otherwise

Example5.1 Consider the lis-graph G = {s,t,V,A,w) of Fig.4, representing theMAC of Fig.2. Let usstudy thefollowing twocases:
(a) Assume that all arcs have zero weights, i.e that the vector of weights associated to {oj,a\,02,03,04,05,06,07,as,a9,a\o,a,) is

w= (0,0,0,0,0,0,0,0,0,0,0,0). Now, assume that aftercompleting the implementation of the MAC, the wires associated to arcsa\,
02 and ag are illegal wires, e.g. the first two have a delay between 1 and 2 clock periods, while the third one has a delay between2
and 3 clock periods. Hence, we annotate the lis-graph with the vector of arc lengths / = (!,2,2,1,1,1,1,1,3,1,1,1). Then, to avoid
illegalarcs we must insertat leastone relay stationon both arc a\ and 02and two relay stationson arc ag. In other wordswe transform
the weight vector intow' = (0,1,1,0,0,0,0,0,2,0,0,0). Notonlythe final design is functionally equivalent, buttheperformance of the
system remains unaffected! In fact, the added relay stations will contain x symbols as initial valuesand will provoke a certain amount
of stalling in the down-link nodes (in particular, node V2 will stall once, while node V3 and V4 will stall twice), but after few instants
the systemwill reach its steady stateprocessing data with throughput 'O(G') = 1. The corresponding lis-graph behavior is illustrated in
Fig. 7.

(b) On the other case, assumethat only the wire associated to a? has a delay larger than 1 clock period, particularly between 2
and 3 clockperiods. Then we legalize the annotated lis-graph G' by setting only ^(07) = 2, while the otherweights could stayequal
to0. Since ^{07) belongs toa cycle of the lis-graph (it is a self-loop!), the system throughput becomes •d(G') = 5, with degradation
A"6(G,G') = 66%, as illustrated in Fig. 8. •
Observing case (a) of the previousexample, we see that the shell encapsulating the module corresponding to node V3 must have a queue
of length 1 at the input port of the feedback path associated to 07. Similarly, the shell corresponding to node V4 must have a queue of
length 2 at the input port of the path associated to 05. All the other shells do not need to have any queue. Since the arcs having non-zero
weight are not part of any cycle (i.e. no relay stations are inserted on feedback paths), this queues are necessary only for the few clock
cycles elapsing before the system reaches its steady state. Instead, for case (b), we see that we would need to insert infinite queues at the
input ports of the paths associated to a2,a4,as and ae. Since infinite queues can not be realized in practice, the only choice is to adapt
the throughput of the rest of the system to the one of cycle 07. This is why a critical cycle dictates the throughputof the overall system.
In this particular case to "slow down" the rest of the system is sufficient to reduce the input throughput. From a theoretical point of
view, this can be achieved by simply adding a self-loop to the source node and putting a couple of extra relay stations on it. Obviously,



= 1234567! 9...

o(ai) = 1234567! 9...

0(02) = 1234567! 9...

0(03) = 1234567! 9...

CT(fl4) = 1234567! 9...

0(05) = 1234567! 9...

= 12345678 9...

a{an) = tt1tt2tt3tt 4TT5TT6TT7TT8Tt9...
o{ai) = 1tt2tt3tt4t t5tt6tt7tt8tt9...
a(fl9) = 12tt3tt4tt5 tt6tt7tt8tt9...
o(aio) = I2tt3tt4tt5 TT6'rT7TT8TT9...
a(a,) = 123tt4tt5tt 6xt7tt8tt9...

Figure 8: Case (b) ofEx. 5.1: i&(G') = 4,(A^(G,G') = 66%).

in practice, this corresponds to slow down the environment inside which the system operates. In general, iflis-graph Gcontains more
than one strongly connected component, the recycling transformation must be decomposed in two steps:

1. (legalization). After deriving the the annotated lis-graph G', legalize it by augmenting the weights ofthe wires by the appropriate
quantity, as specified in Lemma 5.1;

2. (equalization). Compute the maximum throughput •ft(5jt) = ^ C]0,1] which is sustainable by each strongly connected component
Sk e G' (recall that ft(5jt) is equal to the inverse ofthe maximum cycle mean A.(5ji). Equalize the throughputs by adding aquantity
Hk € Z* to the denominator ofeach 0(5^). This corresponds to augment by aquantity nk the weight ofthe critical cycle Q € 5jt, i.e.
to distribute nk extra relay stations among the corresponding paths. To find the quantities nk is necessary to solve the optimization
Problem8.2 specified in the Appendix.

As Example 5.1 illustrates, the key to avoid big performance losses while recycling alis-graph Gis to avoid being forced to augment
the weights ofthose arcs which belong to acritical cycle CofG. Furthermore, as Equation 3suggests, for the same vv(C), the smaller
is the cardinality |C| ofthe cycle the worse is the loss in throughput for G. The worst case is clearly represented by self-loops.

These considerations must be kept in mind while partitioning the functionality ofthe system in tasks to be assigned to different IP
cores. Itis true that the latency insensitive methodology guarantees that no matter how bad is the final implementation ofthe system (in
terms oflengths ofthe wires realizing the communication architecture), it is always possible to fix itby adding relay stations. Still, to
achieve good performance, one should adopt a design strategy based on the following guidelines:

• all modules should put comparable timing constraints on the global clock (i.e. the delays ofthe longest combinatorial paths inside
each module should be similar);

• modules whose corresponding lis-graph nodes belong to the same cycle should be kept close while deriving the final implemen
tation.

In general, the insertion ofrelay stations should be completed by an automatic tool as part ofthe physical design process (similarly to
the buffer insertion techniques available in current design flows [7]). In fact, the real advantage ofthe latency insensitive methodology is
the new freedom offered to "move around the latency" once the final implementation has been derived: not only problematic layouts can
be fixed without changing the design ofthe individual modules, but also latency/throughput trade-offs can be explored and optimized up
to the late stages ofthe design process. Meanwhile, the traditional design methodology, which relegates this exploration atthe floorplan
level, is losing effectiveness, because the interaction among the components ofamodem system on silicon is becoming too complex, as
the following case study illustrates.

6 Case Study: MPEG-2 Video Encoder

Examples ofSOC are not abundant in literature. We have chosen an MPEG-2 Video Encoder [3] as an example for illustrating our
method. This encoder has been first (in 1996) implemented as achip-set with two integrated circuits, and three years later as a single
chip [11,12]. Figure 9 illustrates its functional diagram. We assume that this diagram corresponds also to the block diagram ofthe final
implementation and that, ateach clock cycle, every block in thepipeline provides a new informative data item to the down-link block; in
other words, atevery cycle, on each arc we have either astalling symbol or adata value which isnot adon't care for the receiving block.
We understand that this may not always be the case at this level ofgranularity, because, for instance, the Quantizer may take more than
one clock cycle to produce aresult which can trigger a new computation ofthe down-link Inverse Quantizer. Still, the presence ofthese
types ofdon t cares may only help from the performance point ofview and, in any case, to address the relationships between them and
the latency insensitive protocols goes beyond the scope ofthis paper. The lis-graph Gfor the MPEG-2 Video Encoder is reported in
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Figure 10: The Lis-graph of the MPEG-2 Video Encoder.

Fig. 10 and contains 6 distinct cycles:

Ci = {09,010,012}

C2 = {^9,011,^14,012}

C3 = {o\t,on,a\%,a\9,a2o)
C4 = {0^,0^,00,02,ai,a9,a\o,o\2}
Q = {oA,OS,00,02,0i,09,0\\,0u,0\{]
Co = {o0iO2,O%,O9,O\\,a\s,O\2,O\%,O\9,O2a}

Most arcs arecommon to more than onecycle, e.g. 09 is contained inCi,C2,C4,C5, and Co ,but others arecontained only inonecycle,
e.g. oi9 is partonly of Co- Finally, somearcs, such as 03 are notcontained in anycycle. We already know that increasing the weight
of these arcs does not affect the system performance. But, what about the ones belonging to one or more cycles? Can we compute
the degradation in performance in advance? As a matter of fact, yes. Figure 11 reports the results of the analysis that can be done
based on the lis-graph model. Thesix curves in thechart are associated to the above cycles and their shapes should be interpreted as
follows: each point ofcurve C, shows the amount of system throughput degradation which isdetected after setting the total sum w(C/)
of the weight of thearcs of C/ equal to integer x, with x G[0,20]. Obviously, the underlying assumption is thatC,- is a critical cycle of
G, andthis limits the choice of those arcs of C/ whose weights canbe augmented. For example, assume thatw(C2) = 5, asa result of
summing ^(09) = 4,w(flii) = l,w(ai4) = 0, and w{o\2) = 0. In this case C2 is definitely nota critical cycle. In fact, its cycle mean
is A,(C2) = ^ = I = 2.250, while, even ifH'(aio) = w{o\2) —0,cycle Q, with w{Ci) = ^{09) —4, has a larger cycle mean, exactly
MCi) = ^ = 1 =2.333.
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Figure 11: Analysis of Throughput Degradation for the MPEG-2.

As Figure 11 confirms, the best way to avoid losingperformance is to increasethe weights of thosearcs thatbelongto biggercycles.
While performing the recycling transformation this may or may not be possible: for example if the length of arc aio is big,cycle Ci
will ultimately dictate the systemthroughput. However, in general the latency insensitive methodology allowsus to push around relay
stations withoutneed of re-designing any module. This, may be useful for example to reduce the length of an arc such as ag, which
belongs to both big and small cycles, while increasing in exchange the length of aiq, which is only part Ce: assuming that, before
re-balancing, l{ag) = 3 andl{a\g) = 1,while, after re-balancing, they become respectively 1and 3,andassuming thatallother arcshave
unit lengths, we have a final throughput of = 0.833 instead of 5 = 0.6, a 38% improvement.

7 Conclusions

A methodology based on thetheory of latency insensitive protocols has been recently proposed in literature [5]: a latency insensitive
system is a synchronous digital system composed by functional modules exchanging data on point-to-point communication channels
in accordance with a communication protocol that allows them to operate independently from the latencies of the channels. As a
consequence, a hardware implementation of the systemcan be automatically synthesized such that its functional behavioris robustwith
respect to large variations in wiring delays between modules. However, the method does not guarantee the same robustness for the
performance ofthe design, which indeed may experience a notable degradation. In [5], the authors donot address this problem nor they
suggest a technique foranalyzing the latency/throughput trade-offs. We have presented thedefinition of lis-graph as a formal model to
analyze theproperties ofa latency insensitive system. The model allows ustospecify the notion of recycling asa rigorous way tocapture
the latency variations of thecommunication channels and to compute exactly the final throughput of thesystem. Bydiscussing a case
study (an industrial MPEG-2 Video Encoder) we have illustrated how the present work enables the exploration of latency/throughput
trade-offs atany stages of thedesign process, thus facilitating theintegration ofpre-designed IPcores ona single chip. Future work will
focus on theapplication of these concepts to the optimization of thecomputation/communication trade-offs that arise while designing
software compilers forthose machines which have a communication architecture with variable latency [1].
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8 Appendix

PairEqualizer {a.b.a'.b') {
/* Find pair («.«') s.t. ^ V
n = h' = 0; d = b\ d' = b'

while

d' = d' + n'

}
else {

d = d + n

}
}
return {n.n')

)

Figure 12: Algorithm to solve Problem 8.1.

Let Z* denote the set of nonnegative integers, Z"^ the set of positive integers, and Q"^ the set of positive rationale numbers. For all
GZ"^, (0< a < /?), let ^a.b ' Z"*" —> Q"*" be the infinite sequence whose n-term is(l)a.j,(n) = Clearly, ^a,h is decreasing monotone

andconverging to 0. Thefollowing lemma shows thatforallpairs {a,b), there exists a positive integer Bsuch thatonetermof sequence
^a,b{n) isequal to ^ and, furthermore, that thesequence touches all thevalues fory= 1,2,..., while converging to0.

Lemma 8.1 Va,/? GZ+,(0 <a<fr). 3BgZ+,(5> [Jl). s.f. VjeZ\ 3nGZ* ((l>a.fe(«) = 5^7).
Proof. For all a, GZ"*", (0 < a < ^>), and for all j GZ* suppose . Then, n= a•{B + j) —b. Now, let B= f|], then a•Bis
the smallest integer greaterthan (or equal to) b and for all y GZ"^, 71 is a nonnegative integer. •

Any two sequences ^a.b share an infinite set of commonterms. The following lemmaprovides a pair of equations to find
one of these common terms.

Lemma 8.2 'da,b,a',b' e ,{0< a < b),{0 < a' < b'), 3 n,n' GZ* s.t. (j)a,fe(7i) = («').

Proof. For all a,b,a',b' GZ*,(0 <a < b),{0 <a' < b'), let (3 = and P' = f^]. Then, apply Lemma 8.1 for the two sequences
^a,b,^a',b' with B= max{p,p'}. Therefore, Vy GZ\ GZ* s.t. (^a,b{") = S+y = D

However, we are interested in finding the first common term between two sequences i^a.b and ^a',b'- Since the two sequences are
decreasing monotone this means that weare looking forthepair ofpositive integers n,n' s.t. ^a.b{^) = ^a'.6'(nO and n+ n' is minimum.
This problem can becasted asthe following instanc^f the Integer Linear Programming (ILP) problem.
Problem8.1 Given: Two pairs of nonnegative integers {a,b),{a',b') G(Z*)^ and such that a <b^ a' < b'.
Minimize: The costC = n + n' overall nonnegative integers n,«' GZ*.

Subject to
b + n b'-^n'

(4)

Lemma 8.2 guarantees that this problem hassolution, since there exists an infinite number of pairs («,«') which satisfy constraint (4)
Fig. 12 reports a a simplealgorithmto solve this problem.

Problem8.1 can be extended to the case of K pairsof nonnegative integers as follows.

Problem8.2 Given: Kpairs of nonnegative integers {a\,b\)^{a2,b2)y... y{aKybK) € (Z*)^
Minimize: The cost C = njt overall nonnegative integers /ijt GZ*.

akSubject to: 3B, V/:g[1,A:], (
bk+n/c

= R) (5)

The solution of this problem can beobtained byapplying recursively theprocedure inFigure 12 ona binary tree computational struc
ture, where each node corresponds to one call of the procedure. In fact, the final solution is independent from the order adopted to
subsequentlyselect pairs of fractionsto equalize.

13


	Copyright notice 1999
	ERL-99-53

