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0. ABSTRACT

The repetitive scanpath eye movement, EM, sequence enabled an approach to the representation
of visual images in the human brain. We supposed that there are several levels of "binding" ---
semantic or symbeolic binding; structural binding for the spatial locations of the regions-of-
interest; and sequential binding for the dynamic execution program that yields the sequence of
EMs. The scanpath sequences enable experimental evaluation of these various bindings that
appear to play independent roles and are likely located in different parts of the modular cortex.

EMs play an essential role in top-down control of the flow of visual information. The scanpath
theory proposed that an internal spatial-cognitive model controls perception and the active
looking EMs. Evidence supporting the scanpath theory includes experiments with ambiguous
figures, visual imagery, and dynamic scenes. It is further explicated in a top-down computer
vision tracking scheme for telerobots using design elements from the scanpath procedures. We
also introduce procedures --- calibration of EMs, identification of regions-of-interest, and analysis
and comparison programs ---- for studying scanpaths. Although philosophers have long
speculated that “we see in our mind’s eye”, yet until the scanpath theory, no strong scientific
evidence was available to support these conjectures.

Keywords: top-down vision, scanpath theory, representation, structural binding, sequential
binding, read-out mechanisms, computer vision

1. INTRODUCTION

Vision. Human vision is complex. The essential problem is how to match bottom-up, BU,
confirmatory signals coming both from the wide peripheral visual field, with only low resolution,
but with high sensitivity for moving objects, and from multiple high-resolution glimpses by the
centrally located fovea, a small, circa one-degree region. These foveal regions-of-interest, ROISs,
are sequentially visited by a string of fixations, shifted by a string of saccades, rapid eye
movement, EM, jumps, and are simultaneously matched by top-down, TD, symbolic, spatial and
sequential representations or bindings of the hypothesized image.

When the retinal field is mapped onto the visual cortex, there is a considerable geometrical
magnification of the signals coming from the fovea, and a consequent reduction of signals
coming from the periphery. The log-polar distortion (Figure 1) is a rather good depiction of the
geometry of the visual image mapped onto the visual cortex.(Dow et al. 1981; Schwartz 1984)
When the high-resolution fovea is fixated on a particular part of the picture, such as the sailboat at
the edge of the beach, that ROI is magnified on the visual cortex. Contrariwise, those parts of the
image lying on the periphery of the retina are minified, so that only color and textural
segmentation of large areas can be appreciated at the low resolution of the periphery. Two such
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foveal and peripheral representations (Figure 1) provide an indication of the kind of BU
information coming into the visual brain.

FIGURE 1 Log-Polar Distortions of a Picture o
Two fixations (left and right panels below) on original picture (upper) show log-polar dl§tonlons
with high cortical magnification (irregular shapes, lower left and lower right) of successive foveal
ROIs (circles), as well as minification of peripheral regions likely captured as textured or colored
segments (surrounding small squares, lower).

Scanpath EMs. Observations of repetitive sequences of EMs while a subject looks at a picture
led Noton and Stark (Noton and Stark 1971a; Noton and Stark 1971b; Noton and Stark 1971¢) to
the experimental definition of the scanpath as an idiosyncratic alternation of glimpses (called
fixations or foveations) and rapid jumps of eye position (called saccades) to various ROIs, in the
viewed scene. (Crosby 1990; Jeannerod, Gerin, and Pernier 1968; Locher and Nodine 1974;
Mackworth 1978; Mackworth and Bruner 1970; Mackworth and Morandi 1967; Mandler and
Whiteside 1976; Parker 1978; Schifferli 1953; Senders, Fisher, and Monty 1978; Yarbus 1967)
EMs and attention shifts are very closely linked; it is only in an unusual laboratory situation that
the two can be putatively separated; psychologists generally study attention shifts without
measuring EMs, and neurologists study EMs without measuring attention shifts.(Mackeben and
Nakayama 1993; McPeek, Maljkovic, and Nakayama 1999; Nakayama and Joseph 1998)

Examples of two such EM ‘scanpaths (Figure 2) are shown for the classical ambiguous figure,
“Two Faces or a Vase” (Figure 2, left column). Depending upon the TD internal cognitive
model, the subjects "sees" one or another of these two interpretations.(Ellis and Stark 1979; Stark
and Ellis 1981) Some control over the current interpretation can be induced by 'priming' the
subject with a non-ambiguous distortion of the ambiguous figure (Figure 2, right column). Not
only does the subject report on the interpretation, but her EMs show quite different patterns (left
column), easily noted to be appropriate for the comparison of two faces in one case (upper row)
or viewing the vase in the other case (lower row). Of course, the actual picture viewed after the
priming was the same in both cases. This evidence from Ellis and Stark(Ellis and Stark 1979)
supports the scanpath theory (Fig. 2 provided by Privitera and Weinberger, 1998).

FIGURE2  EMs while Looking at an Ambiguous Figure: The Ellis Experiment
Identical ambiguous figures of vase (lower left) and two faces (upper left). EMs superimposed on
ambiguous figures as they were actually seen following exposure to priming stimuli (right).

Dynamic Scenes. We introduce our EM recording and analysis methods in the context of an
ongoing experimental study of interest to our research group, that is, the nature of scanpath EMs
when looking at dynamic displays (Figures 3 and 4). Animations, constructed graphical scenarios
(Figure 4), showed a set of moving cars on intersecting roads.(Blackmon et al. 1999) Subjects
were clearly interested in the possibility of collisions. Their internal models evidently developed
dynamical internal representations that guided their EMs to follow these objects of interest.
Snapshots at five-second intervals, of a fifteen second presentation of a reduced dynamical
graphic display, are shown (Figure 3) with time along the oblique axis. EMs were recorded
throughout, and the heavy dots represent the location of EM fixations and thus, of the fovea
during the five seconds preceding each of the snapshots.

FIGURE3  Dynamic Display with EMs
Animation of dynamical scenarios (illustrated as snapshots every five seconds time proceeding
from lower left to upper right). EM positions (black circles) taken every 50ms are integrated over
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the preceding Ss, and are superimposed onto snapshot images; they represent the basic data
captured for this experiment.

Scanpath Theory. The scanpath theory proposed that an internal spatial-cognitive model
controlled both perception and the active-looking EMs of the scanpath sequence (Noton and Stark
1971a; Noton and Stark 1971b; Noton and Stark 1971c) and evidence for this came from new
quantitative methods, experiments with ambiguous figures (Figure 2),(Ellis and Stark 1979; Stark
and Ellis 1981) and more recently from experiments on visual imagery (Brandt et al. 1989;
Brandt and Stark 1997; Kosslyn 1980) and from MRI studies on cooperating human subjects.
(Kosslyn 1994) (See Appendix M.) The scanpath theory is illustrated (Figure 4) with the actual
EM positions (upper left). After analysis of the EMs into fixations and smooth pursuits (upper
right) the foveations and smooth pursuit tracking episodes are numbered in sequence.

Smooth pursuits are EMs that continually track a moving object; in so doing, they place the fovea
on top of the moving target.(Weirda and Maring 1993) Thus, a smooth pursuit may appear to the
perceiving brain as would a fixation on a stationary target. Of course, the brain is informed by
efferent copy of the EM commands of the motion of the eyes as well.(Lawden et al. ) We treat
these smooth pursuits in a similar fashion to fixations for the purposes of the scanpath theory and
apply the quantitative measures we use to analyze the scanpath (see below).

The string of such glimpses, both fixations and smooth pursuits, is shown in a more abstract form
(lower right) with string labels, “FABCBE.” A non-iconic representation of an operational model
capable of generating such a scanpath (lower left) includes both fixations (lettered boxes) and
commands to EMs to shift the fovea (circles with arrows). Glimpses and EM commands
alternate. These sequences are not deterministic, but rather probabilistic. The solid lines are for
the particular experiment illustrated (Figure 4), while the dashed lines represent other
experimental scanpaths measured during repeat studies.

FIGURE4  Scanpath Theory

EM positions (q 50ms) during dynamic display shown as a connected sequence (upper left) while
the dynamical ROIs visited form a connected sequence (upper right and lower right). By
numbering or letter identification of smooth pursuit or static fixations, this sequential string of
visited ROIs could be defined. A non-iconic model of alternating perceptual ROIs (lettered
squares) and saccadic EMs (circles with arrows) is shown by solid arrows for the experiment
presented. This is the “feature ring” of the scanpath theory. On other presentations of the
stimulus, other ROIs and sequences could be formed (dashed arrows).

Binding. How is the internal model distributed and operationally assembled? The concept of
binding speaks to the assigning of values for the model and its execution by various parts of the
brain. (Stark et al. 1999; Wolfe 1998) We assume that there are several levels of "binding" ---
symbolic or semantic binding, spatial binding for the structural locations of the ROlIs,(He and
Nakayama 1992; Nakayama, He, and Shimojo 1995; Ploner et al. 1999) and sequential binding
for the dynamic execution program that yields the sequence of EMs. The EM scanpath approach
is complementary to studies being vigorously pursued in other laboratories --- on attention shifts,
(Wolfe, Alvarez, and Horowitz in preparation, 2000) without recording concomitant EMs, on
functional magnetic resonance imaging, fMRI (see Appendix M), and positron-emission
tomography, PET, in man, and on the neuroanatomy and neurophysiology of animals. We thus
try to use this current neurological information to localize where these different aspects of the
spatial-cognitive model might exist in the brain.
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Aim. The aim of this study is to attempt to dissect out different forms of binding and to test their
respective contributions to the experimental scanpaths. The use of the scanp?th in robo.tlc
computer vision both illustrates a successful application, and provides a detailed 9perat10nal
explication of the scanpath theory. Finally, we speculate on the nature of perception and the
cortical organization underlying vision.

2. METRICS and ANALYSES

Stimuli. Several sets of stimuli were used -- static and dynamic pictures for the ‘looking
experiments’ and also a series of grid patterns for the ‘visual imagery experiments.” A complex
of computer workstations were interconnected in our Berkeley laboratory Internet; these included
an Indigo SGI for display, the SGI and a PC-586 for collection of EM data, the PC-586 alone for
choice, CH, experimental display and data collection, and for analysis either of these work
stations. Each of the computers was dedicated to running a part of the complex experiment.
Software generated the protocol, displayed the stimuli, recorded the EMs, analyzed the collected
data, compared (vector) sequences of fixations for analysis, and displayed the intermediate and
final results. Software ranged from special lab programs to Matlab toolboxes for certain
functionalities.

2.1. Visual Imagery Scanpath Experiments with Grid Picture

Simple grid with a pattern of alphabetical symbols is viewed by the subject for two seven-second
periods (Figure 5, upper row, left two grids). The EMs show somewhat repetitive scanpaths for
these 7-second looking periods (middle row, left two grids). Next a blank grid is displayed
(upper row, third grid). When asked to engage in visual imagery (Kosslyn 1980; Kosslyn 1994;
Kosslyn and Osherson 1995; Singer, Greenberg, and Antrobus 1971) and to imagine the previous
pattern, the subject makes a scanpath (middle row, third grid) very similar to those made when
looking at the patterns. (Brandt et al. 1989; Brandt and Stark 1997; Stark, Choi, and Yu 1996)
However, at this time there is no external pattern, only the subject's memory, that is, the internal
cognitive spatial model, to guide the EMs. Then the subject is asked to draw the pattern from
memory (right grids); this is useful as an operational instruction to impress upon the subject to
localize carefully the components of the pattern to be remembered. Finally, a finite-state
automata is derived from the experimental data (bottom row, middle) whose frequency of
transitions is indicated by number and strength of connecting arrows; these could also be placed
as coefficients in a Markov matrix (bottom row, right). (Brandt et al. 1989; Brandt and Stark
1997) Figure 5 has been modified from Stark, Choi, and Yu, 1996.(Stark and Choi 1996)

FIGURE 5 EMs while Engaged in Visual Imagery: The Brandt Experiment

Scanpath EM sequence is almost the same for the second looking presentation (middle row,
second grid) as for the first visual imagery presentation (middle row, third grid). During the
visual imagery presentation, no information about the location of the alphabetic symbols, Fs, was
available; thus, the remembered representational model must have controlled the scanpath in a
TD fashion. Quantitative metrics could be obtained in the analysis procedure (lower row) by
creating a finite state automata (middle) for generating the scanpath; then transition probability
coefficients could be arranged in a Markov matrix (right) for later statistical analysis.

2.2. EMs

EM Recording. A video camera system for EM tracking was convenient, but as with all EM
recording systems, required repeated calibration.(Llewellyn-Thomas 1968) With calibration any
drifts or non-linearities could be removed. Fixation identification algorithms separated the raw
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EM s into fixations, rapid saccadic EMs, and smooth pursuits (Figures 4, 5, and 6) so that further
analysis could be done on the loci and sequences of fixations considered as a string of loci of
glimpses, the vector of active looking. Besides recording EMs, we also introduce another
experimental technique. Here, the subject is asked to click a mouse cursor onto various ROIS in
the picture, or grid pattern, displayed on the computer screen. When presented with an empty
grid, the subject must depend only upon memory bindings.

EM Analysis. EM experiments must be carried out carefully. Calibrations are used to linearize
the data and to avoid drift. While the trajectories of the EMs may be displayed (Figure 5), the
locations of fixations and smooth pursuits and of saccadic Ems are usually automatically
identified. This is easier for static stimuli, than for dynamic stimuli (Figure 6), but with
classification programs EM identification is quite feasible (Figure 7). The programs in our
laboratory have a long history dating back to 1959, at Yale University, going through our stay at
M.LT., the University of Illinois, and our long residence (31 years) at Berkeley. Although it is
impossible to list all the names of the persons contributing to these programs, we must mention
Robert Payne, Alan Sandburg, John Semmlow, Christian Freksa (Stark et al. ) (especially for the
scanpath analysis), A. Terry Bahill, Michael Clark, An Nguyen, Yun Choi, Yong Yu, and most
recently, Y. F. Ho.

FIGURE 6  EM Trajectories and Classification

Trajectories of EMs displayed as functions of vertical and horizontal angles (solid lines) and time.
Location of the dynamic objects shown as dashed and continuous lines (lower), or for one
comparison as a dashed line for horizontal angle (upper). Note saccades, S, and smooth pursuits,
SP, that show up clearly; these and other types of movements (see text) could be identified and
analyzed (lower steps and labels).

FIGURE7  EM Classification Program

Flow diagram for EM calibration, linearization, differentiation to obtain velocities, and then
analysis into various categories of EM types. The program could also resolve conflicts among
specific EM identification algorithms (see text).

2.3. Analyses of the Vectors of Looking

Following the analysis of the EMs, the series of fixations is defined as a string. These strings
represent actions of a finite-state automata (Figure 5, bottom row). The probabilistic transitions of
the finite state automata-model is the basis for further analysis, including the resultant metrics
comparing these strings --- Sp, Ss, Y-matrices and parsing diagrams (Figure 8). (Additional
explanation of the string-editing algorithm is provided in Appendix A and in Figure 26.)

We compare each pair of strings, to see how many letters they have in common,; this matches the
locations of the fixations and gives an Sp similarity index for the similarity of loci. We further
compare each pair of strings as to the order of the string letters; this provides Ss, the similarity
index for sequence strings.(Choi, Mosley, and Stark 1995; Hacisalihzade, Stark, and Allen 1992;
Kruskal 1983; Privitera, Krishnan, and Stark 1999; Privitera and Stark 1998; Stark and Ellis
1981; Stark and Choi 1996; Wagner and Fischer )

Simplified scanpaths are compared (Figure 8, upper row). Two different scanpaths (left) with no
locational similarity, Sp = 0, and no sequential similarity, Ss =0, may be compared to two
scanpaths with exact similarity, Sp = 1 and Ss = 1 (right), and to a pair of scanpaths with exact
locational similarity, Sp = 1, but with no sequential similarity, Ss = 0 (middle). Pairwise
comparisons of all scanpaths were assembled in Y-matrices. A Y-matrix is an ordered array of
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the string similarities, either Sp or Ss, to enable further sorting and averaging. .Two simplified Y-
matrices (middle row) show such arrays and their row and column labels (Subject- 1, S1, and
Subject 2, S2, are two of the five subjects; Picture 1, P1, and Pict 2, P2, are two different
scenarios). Finally, sorted and averaged values are collected into parsing diagrams (lower row).
The Parsing Diagram enables comparisons among these averaged similarity coefficients: R, for
repetitive scanpaths, same subject looking at the same picture at different times; Local =L,
different subjects, same picture; Idiosyncratic = I, same subject, different pictures; Global = G,
different subjects, different pictures; Random = Ra, random strings compared.

FIGURE 8  Simplified, or Toy, Diagram Illustrating Metrics for Comparing Scanpaths; and
Parsing Diagram for the Dynamic Scanpath Experiment

Quantitative methodology diagrammed to show similarity indices, Sp and Ss (upper panel).

These pairwise comparisons are organized into Y-matrices (middle panel) and then indices

segregated, averaged, and placed into parsing diagrams (lower panel). Note statistical tests

indicated by bolding, as well as arrows (see text). These two parsing diagrams summarize the

experimental base from a dynamic scanpath study (see text).

2.4. Analyses of Dynamic Scanpath Experiment

To illustrate further how we use our analytic methods, we describe the Ss parsing diagrams for
the dynamic scanpath experiment (Figure 8, bottom panel).(Stark et al. 1999) Numbers in
parentheses are standard deviations; bolded values represent significant differences (at a p value
<0.01) from the Ra, random values of 0.16 (p <0.01). ANOVA analysis provided tests of

significance, and arrows represent significant differences with respect to the G, global value; this
was considered a ‘bottom anchor.’

An important distinction is that between Repetitive similarity, R, (Figure 8, upper left box) and
Random similarity, Ra. When using different dynamic scenarios with the same general
background, the same subject with the same stimulus showed a repetition value, R, of 0.45. This
indicated that 45% of the sequences were congruent, and should be compared with the randomly
expected Ss, Ra value of 0.16. However, when scanpaths for the same subject looking at
different scenarios were compared (Figure 8, bottom row, left parsing diagram), yielding the Ss-I
value, the sequences were only 21% similar. This quantitative comparison documents that the
scanpath theory generating the sequential EMs developed quite different sequences for different
scenarios, that is, for different patterns of motion of the automobiles in the graphical

scene.(Blackmon et al. 1999; Stelmach, Tam, and Hearty 1992) We could conclude that different
scenarios were viewed by different scanpath sequences.

A different result was obtained when different viewpoint motions were compared (Figure 8,
bottom row, right parsing diagram), for the same scenario. The three viewpoint motions were
panning, zooming, and static. Panning, or horizontal scanning, and zooming, or near/far
approach of a camera, are standard movie filmic maneuvers; static means the camera point-of-
view is at rest. The scenario remained the same, and the idiosyncratic similarity index, I, was
0.38. We could conclude that viewpoint motion did not make the scanpath sequence different for
different motions. Statistical analysis, ANOVAs, supported these conclusions. For both sets of
experiments, the similarities for different subjects, L, are almost the same as the R values. This
may be due to the fact that the sequential motions of the different cars capture the attention of
different subjects in a similar way, perhaps in a bottom-up fashion, or in cortical area MT.
(Blackmon et al. 1999; Born and Tootell 1992; Culham et al. 1998; Flagg 1978; Tootell et al.
1995a; Tootell et al. 1995b)

15 October 1999 -6-



Invited paper, accepted for publication in JE/ 2000, special issue on Electronic Imaging and Human Vision

2.5. Protocols and Subjects

As indicated above, we could use a second method of ‘read-out’ -- ‘choice,” CH, clicking on a
mouse cursor position, instead of measuring EMs. Of course, we studied the similarities and
differences between the usual scanpath experiments, classical read-out method 1, allowing
subjects to freely gaze at the picture stimuli (e.g.,Figure 9), and the new second method of read-
out, CH, by asking subjects to move a cursor over the stimuli pictures and click deliberately on
ROIs. (See Results, Section 3.1.)

Another experimental task was to indicate the remembered patterns in the visual imagery :
experiment. We presented subjects with grids containing patterns of alphabetic symbols, letters,
and asked them to image the pattern. The subjects then moved a cursor over blank grids and click
deliberately on imagined or remembered loci. In this way, the ‘CH’ method provided for an
objective 'read-out' of the structurally and sequentially bound memory traces. Further, we
compared similarities and differences between this "cursor-CH" method and a third method of
readout, that is, utilizing a locomotory pattern. In this third method, ‘walking,” WK, we asked
subjects starting from a fixed initial position to walk over a blank grid marked on the floor and
stop sequentially on those grid squares that represented remembered loci of the alphabetical
letters.

Subjects were students visiting in our laboratory who participated without pay; according to the
rules of the Berkeley Committee for the Protection of Human Subjects they could terminate the
experiment at will if they experienced any discomfort. They received oral and written and also
‘operational’ instruction, viewed a few preliminary pictures or grids, and usually were able to
complete an experiment in less than twenty minutes. Operational instructions enforced a pattern
of behavior by requiring the subjects to carry out procedures that serve as additional re-
enforcement.

3. RESULTS: STRUCTURAL AND SEQUENTIAL BINDING

Our experimental results on binding, explained in detail below, compare the memory similarities
between different read-out modes. Two different protocols compare EMs vs choice, CH, while
looking at a set of pictures (Figures 9 and 10), and choice, CH, vs walking, WK, while
remembering a set of grid patterns (Figures 11 and 12). Different ‘read-out’ motor behaviors,
indicating remembered patterns, were analyzed in the same way, and with the same methodology.
Pairwise comparisons between scanpaths were carried out with each read-out mode (see Figures
10 and 12, left and middle parsing diagrams), and then, between all pairs of one-mode-against-the
other mode (see Figures 10 and 12, right parsing diagrams).

By studying the within-mode similarities against the across-mode similarities we can assign
quantitative numbers to the relative strengths of inherent and of read-out binding. In addition,
we enriched the experimental protocols by examining the phenomenon of "consolidation"; by this
term is meant the memory coherence within repeated response patterns that may be stronger than
the memory persistence from stimulus to response. (For additional results, see Section 4, Results:
Symbolic Binding, and also Appendix B, Consolidation).

A moderate stressor to reduce accuracy of memory was the use of interruptions, often with other
sets of experimental grids. Another stressor we used was to tilt the grid and require the subject to
adjust his display of the remembered pattern to the tilted blank grid. Most often, a training
period, whereby the subject made horizontal and vertical lines on tilted pictures, was introduced.
Experiments (not illustrated herein, see Stark 1999(Stark et al. 1999)) utilizing this "tilting"
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paradigm demonstrated the robustness of the structural binding to adaptation, producing 45-
degree rotations of the blank grids and the memory pattern. (We wish to thank Dr. G. M. N
Gauthier, CNRS, University of the Mediterranean at Marseilles-Luminy, for suggesting the tilting
paradigm to us. (Gauthier et al. 1979; Gauthier et al. 1994))

3.1. Choice, CH, Compared with Ems; Picture Viewing

The alteration of the scanpath protocol, substituting mouse-cursor location and clicking for
measured EM fixations, has many experimental advantages.(Stark et al. 1999) However, it had to
be carefully evaluated by comparisons between EM fixations and choice, CH, loci in a variety of
studies. In developing and expanding the protocol, we had subjects look at a number of pictures
and then we studied their EMs (Figure 9). The methodological procedures to go from raw EMs
(upper left) to identified fixations (upper right) were necessary. Linearized EMs of a subject
looking at a cave painting of a horse (upper left) were transformed by a "fixation algorithm" to a
sequential string of fixations (upper right, circles), with connecting vectors representing saccades
and their sequence (upper right, arrows).

Next, sequential string of CHs, produced by mouse cursor and clicks (lower left, squares) are
also connected by vectors (lower left, arrows). Then, these two strings can then be compared as
to identity of their loci, within a distance determined by a K-means algorithm, to calculate the Sp
and Ss similarity indices between EMs and CH procedures.(Privitera and Stark 1998) A K-means
algorithm proceeds by calculating a parameter, such as distance, through each distance value, and
then determines the optimum distance in terms of a criterion such as the highest Sp match. Asan
extra bonus for the reader, consider that this cave painting, and artistic work created 31,000 years
ago has perhaps been equaled but not surpassed in the ensuing millenia of human social
prehistory and history. The scanpath theory has awakened new interest in the neurology of

artistic communication. (Elderfield 1998; Zangemeister, Sherman, and Stark 1995; Zeki and
Moutoussis )

FIGURE 9 EMs Compared with Choice, CH: Selection of ROIs Compared

Linearized EMs (upper left) were analyzed into fixations and saccades (upper right) while the
subject looked at a cave painting of horses. Loci chosen by mouse clicks (lower left) could then
be compared (lower right) with EM fixations (see text).

As explained in the Methods section, many pairwise comparison indices are collected and sorted
using the Y-matrices. Averaged results are then organized in the parsing diagram (Figure 10: Sp,
upper row; Ss, lower row). EM comparisons (middle column) document that the R values, 0.62
and 0.26 are significantly different from Ra and from G, the two bottom anchors (bolding or
heavy arrows indicate p < 0.01). Note that while Sp-L has a relatively high value, indicating that
different subjects selected similar ROIs, the Ss-L value is lower suggesting that different subjects
utilized different sequences for the same picture and similar loci across subjects. The Ss-Ra
values throughout are much lower than the Sp-Ra values, since there are many ways to establish
sequences among similar loci. Almost identical results are found for CH comparisons (left
column), with somewhat higher coherences, perhaps due to the more deliberate TD selection
mental process for cursor clicks vs natural EMs.

Now when we compare EMs and CH (right column) we find related distributions of similarity
indices; R values are large and significantly different form G and Ra. The R-Sp index is large,
indicating similarity of objects across modes; that is, it coheres for both read-out modes. Thus it
appears that almost none of the structural binding is related to read-out mode differences.
However, because the cross-mode R-Ss value equal to 0.17 is less than the R-Ss values for either
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choosing or EMs, we must, in this case, partition the sequential binding between inherent and
readout components.

FIGURE 10  Parsing Diagrams; EMs Compared with Choice, CH

Sp (upper) and Ss (lower) parsing diagrams for the choice compared with EM study. Intramodal
read-out comparisons (left and middle panels) as well as intermodal read-out comparisons (right
panel). Results described in text. :

3.2. Choice, CH, Compared with Walking, WK; Grid Viewing

In another set of experiments, we presented grids (see Figures 5 and 11) to be memorized and to
be recalled. Again two modes of response were compared: --- using a cursor moving over a blank
grid presented on a computer screen, or walking, WK, over a large grid outlined over the
laboratory floor (Figure 11). (Stark et al. 1999)

Squares with alphabetical symbols represent grid patterns that the subject could look at for a
period of three seconds for each of two presentations (Fig. 11, two left-most columns). Subjects
were then asked to move the cursor sequentially to each of the visually imaged locations of the
symbols and to click the mouse buttons (this took about ten seconds) to indicate the remembered
alphabetically-labeled grid squares (Fig. 11, four right-most columns); thus providing an output
string of remembered alphabetically-labeled grid squares. There was a fixed initial position from
which the subjects started each time. Experiments were also carried out with subjects instructed
to walk freely over a large grid placed on the floor; again, there was a fixed initial position from
which they started each time. They were also instructed to stand with two feet in the appropriate
grid-spaces for a brief moment, to indicate each labeled locus; in this way, the experimenter
could record the sequences of stops. Again, this provided an output string of remembered
alphabetically-labeled grid squares. CH and Walking, WK were alternated without additional
refreshment (Fig. 11, blank regions, second and fourth rows).

Also CH and WK could be presented with refreshment (Fig. 11, fifth and sixth rows). This
refreshment (two leftmost grids, sixth row) allowed a modified, reinitialized, sequential pattern to
be developed in the subject’s representation (compare fifth and sixth rows). (For additional
results, see Appendix B: Consolidation.) (See also 4. Results: Symbolic Binding; compare
control experiment with refreshment (Figure 15, upper) with the top anchor experiment without
refreshment (Figure 16, upper), and also the summary of Symbolic Binding results (Figure 17).)

FIGURE 11  CH compared with Walking Protocol

Experimental protocol for cross-modal comparison between choice, CH, and walk, WK, read-out
modes. Note similarity of patterning when a second display of stimuli patterns was not given
(absent grids in both sets of upper panels); note difference in patterning when refreshment of
stimulus pattern allowed a new memory schema to be formed (lower panel).

To buttress the qualitative results as shown in Figure 11, we provide quantitative assessments
from the similarity indices. The results came from many pair-wise comparisons for four subjects,
naive with respect to the purpose of the experiment, but performing quite well in the task; their
similarity indices were sorted using the Y-matrices and averaged in the parsing diagrams (Figure
12: Sp, upper row, and Ss, lower row). CH comparisons (Fig. 12, left column) document that the
R values, 0.90 and 0.77, are significantly different from Ra and from G, the two bottom anchors.
Bold values or heavy arrows indicate p < 0.01, that the values differed from Ra (bold) and from G
(arrows). Again, the Ss-Ra values throughout are much lower than the Sp-Ra values, since there
are many ways to establish sequences among similar loci. Almost identical results, 0.91 and 0.81,
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are found for WK comparisons (Fig. 12, middle column) with respect to the R values, both Sp
and Ss.

When we alternate CH and WK without refreshment (Fig. 12, right column), we find somewhat
modified distributions of similarity indices. R values, 0.87 and 0.60 are large and significantly
different from G and Ra. That Sp-R is identical to the values for CH x CH and for WK x WK
indicates that structural binding relied upon an inherent component.. That Ss-R is less than for
CH x CH and for WK x WK indicates that both the inherent and the readout components were
important for sequential binding.

FIGURE 12  Visual imagery: Parsing Diagram for Walking, WK, vs Choice, CH

Sp (upper) and Ss (lower) parsing diagrams for the choice, CH, compared with walking, WK,
study. Intramodal read-out comparisons (left and middle panels) as well as intermodal read-out
comparisons (right panel). Results described in text.

3.3. Modular Cortical Organization: The New Phrenology

A sketch of the lateral view of the human cortex (Figure 13, upper) is presented to help
understand the logic of these different readout experiments. We are trying here to distinguish
between inherent sequential binding, likely located in the prefrontal cortex, from variable
sequential binding, dependent upon readout mode. The modes we are exploring are EM
fixations, as in the classical scanpath experiments, choice, CH, using mouse-cursor positioning
and clicking, and locomotion over a grid on the laboratory floor.

Information about localization in the cortex comes from a variety of sources. Classical
neuroanatomy and analyses of neurological syndrome have existed for several centuries, and had
achieved a considerable degree of sophistication. Experimental ablation and electrical
stimulation physiological studies next came to play. Modern methods, ranging from intrusive
single-unit neurophysiology, to current PET and fMRI are daily supplementing earlier studies
(see Appendix M).(Zeki and Bartels ) We have collected in Appendix N a few significant
references to the neurophysiology in higher-level functions, that are pertinent to new concepts of
modular cortical organization. Note (Figure 13, upper) the ‘what’ ventral pathway from visual
cortex, VC to the temporal cortex, TC, (especially left side) to which we attribute Semantic
Binding. Similarly, note the ‘where’ dorsal pathway from VC to the parietal cortex, PC,
(especially on the right side) to which we attribute Structural Binding. Known connections from
PC to the pre-frontal cortex, PFC, have been shown to be related to temporal sequencing, and to
which we attribute Inherent Sequential Binding. Connections continue to the frontal eye fields,
FEF, to which we attribute one form of Read-Out Sequential Binding. (Although a complete
review of this fascinating area is beyond the scope of the present paper, a number of articles are
referred to in the Discussion and Appendix sections below.)

FIGURE 13  Modular Cortex and Connectivity

Recent studies in neurophysiology and fMRI have established a “new phrenology,” the modular
cortex (upper), with different functions assigned to specific regions of the cortex (see text for
further explanation). Connectivity explored in our experiments on inherent and read-out
sequential binding, and as well, on the influence of symbolic binding, is indicated as numbered
arrows joining labeled regions (lower). (See text for further explanation.)
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3.4. Inherent vs Read-out Sequential Binding

Now, we may consider the connectivity of the modules of the modular cortex (Figure 13, lower),
as an aid to define the logic of the results of these experiments.

A summary of coefficients comparing within-mode and across-mode experiments (Sp, left
columns, and Ss, right columns) provided the basic similarity coefficients from the parsing
diagrams (Figures 10 and 12). These were then normalized (Diff & N % columns) as
percentages, by setting the bottom Ra anchor to 0% (e.g., 0.27, Figure 14, upper left panel), and
the within-mode R values as 100% (e.g., 0.67, Figure 14, upper left panel). The two experimental
protocols, CH x EMs (upper panels) and CH x Walking, WK (lower panels), have yielded
reasonably consistent results.

For Sp, we subtract the R values for across-mode from the within-mode values; the resulting
normalized percentage numbers are 85% and 94% for the inherent component of structural
binding. Since for structural binding, the inherent component dominates, this may be interpreted
as putting the parietal lobe structural memory as too early in the process to be disturbed or altered
by read-out mode differences.

For Ss, we again subtract the R values for across-mode from the within-mode values; the
resulting normalized percentage numbers are 50% and 74% for the inherent component of
structural binding. We see that for sequential binding, although the inherent component is larger
(2/3rds), the readout component is significant (1/3rd) and thus both components are important in -
sequential binding. This may be interpreted as allowing the pre-frontal lobe inherent sequential
memory to be somewhat altered by readout mode located further back in the frontal lobe; these
regions are, of course, different for EM, for hand movement and for locomotion.

To summarize, structural binding is inherent; that is, it is the same independent of readout modes.
Sequential binding has strong components for both inherent and for readout binding; that is, the
readout mode contributes strongly (about one-third) to the memory of the sequence.

FIGURE 14  Inherent vs Readout Sequential Binding

Sequential read-out experimental findings can be summarized as almost 100% inherent binding,
for spatial or structural similarity of patterns (middle column). However, sequential bindings are
markedly influenced by read-out mode; only two-thirds of the binding is inherent (right column).

4. RESULTS: SYMBOLIC BINDING

How Can We Experiment on Symbolic Binding? The naming of a pattern, or its symbolic
binding, plays an important role in this scanpath memory process. Quantitative experiments were
carried out by Yang and Stark (Yang and Stark 2000) to explore this phenomenon. Subjects were
asked to remember lettered grids under a variety of conditions. Often, they were presented only
with the letter, or symbol, of the pattern, and asked to remember the grid pattern that they
previously were able to reconstruct. Interruptions, such as becoming familiar with and
reconstructing other grid patterns, were most often interjected between the learning phase and the
test-of-memory phase.

Control Experiment: Same Pattern, Same Label with Refreshment. An important control
experiment was to test the ability of subjects to carry out pattern reconstruction by memory
(Figure 15, upper panel, upper row). Here, subjects were presented for a few seconds with two
identical lettered grids, immediately followed by four successive blank grids wherein the subject
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attempted to reconstruct the previously seen patterns. Subjects were then interrupted with other
tasks. Next, the identical lettered grid was presented (Figure 15, upper panel, lower row), and the
subjects attempted again to reconstruct the labeled pattern identified only by label, onto four
successive blank grids. Subjects were able to carry out this task very well, with Ss values of 0.71
(s.d. =0.32), and Sp values of 0.80 (s.d. = 0.24).

FIGURE 15 Control Experiment and Main Experiment

Experimental protocol for the control (upper panel) and main experiment (lower panel) to analyze
the influence of symbolic binding. A major result is the influence of dissimilarity of labeling on
the dissimilarity of the sequential pattern. Clearly, the spatial loci are the same, and thus, the
structural similarity remains high. (Note that refreshment in the form of two additional looking
stimuli are presented in both experiments (lower pair of grids in each of the panels).)

Main Experiment: Same Pattern, Different Label with Refreshment. The main experiment again
tested whether subjects attempted to re-remember a newly presented pattern identical to an old
remembered pattern, with an important, significant difference (Figure 15, lower panel). The new,
identical pattern was labeled with a different symbol or letter!

In both of these sequences, the subject was able to perform consistently over the reconstructions
in the four blank grids (Figure 15, lower panel, upper row and lower row, four right grids).
However, the new symbol encouraged the subject to reinitialize the memory pattern. Thus, the Ss
value fell to 0.46 (s.d. = 0.35), when the first and second presentations were compared. (Note
differences in sequential patterning (Figure 15, lower panel, upper row, compared to lower row).
Of course, the localization of the clicks, Sp =0.76 (s.d. = 0.32) was equally accurate to the

control experiment described above. Only the sequence was newly established because of the
new label.

Top and Bottom Anchor Experiments. The range of values for the Sp and Ss similarity indices
could be established in two more experiments, the top anchor and the bottom anchor (Figure 16).

An experiment quite similar to the control experiment was next performed. Its main difference
was that it allowed for no re-presentation or refreshment of the lettered pattern for the second set
of the memory test blank grids (Figure 16, upper panel; note the absence of the second
presentation of the lettered grids in the lower row, upper panel). Thus, the memory trace
remained more or less the same without additional information relating to the pattern or the letter
being presented. This gave us the highest values, Ss = 0.86 (s.d. = 0.06) and Sp=0.94 (sd. =
0.20). We thus consider this to be the top anchor of the similarity scales.

For the bottom anchor, we used the same letter symbol, but in a completely different grid pattern
(Figure 16, lower panel). As might be expected, the two sets of memory tests, with four blank
grids each, showed little inter-trial coherence or similarity of their patterns, with Ss = 0.07 (sd. =
0.04), and Sp =0.36 (s.d. =0.10). The structural inter-trial coherence and the sequential
coherence are very low, and close to random values; thus, we can use this experiment as a bottom

anchor. Although the subjects were “tricked” by having the same label for different patterns, still
the structural pattern dominated over the symbolic label.

FIGURE 16: Top Anchor and Bottom Anchor Experiments

Experimental protocol to establish the range of values for Sp and Ss similarity. Top anchor
(upper panel) shows high correlation when no refreshment is permitted (two absent grids, lower
row, upper panel). Bottom anchor (lower panel) shows absence of structural and sequential
similarity when a different pattern is presented with the same label.
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Summary of Symbolic Experiment. To summarize the symbolic experiment (Figure 17), we
have been able to establish that in the control experiment, the re-presentation of the same stimulus
with the same label a second time allows some reinitialization of the memory trace. However, the
values remain quite close to the top anchor values, where the absence of a second presentation did
not allow for even mild changes of the memory pattern. Of course, with time and interruption, as
was carried out in our experimental protocol, some decay of the memory pattern occurs.

The main experimental result is that when the same pattern grid is presented a second time, but
with a new label, this new label encourages reintialization of the memory trace. Thus, the second
set of responses are quite different (about 50% loss of coherence for the sequence, Ss, but
essentially no loss of coherence for the pattern, Sp); recall that the same loci were re-presented
with the new label, and thus, Sp should remain quite consistent. The quantitative result, 50% loss
of coherence due to a changed label, comes from averages of many experiments done with a
variety of subjects. Subjects varied, and even the same subject would produce much higher or
lower coherence in different trials. More experiments are necessary to establish if a quasi-
switching occurs between coherent and non-coherent results.

This experiment documents the crucial role symbolic labeling plays in memories of spatial
patterns.(Tanenhaus et al. 1995; Tempini et al. 1998; Thompson-Schill et al. 1997) It also raises
questions and points out suggestive interpretations for connectivity between operations in
different parts of the modular cortex (Figure 13, lower panel).

FIGURE 17  Summary of Symbolic Experiment

Symbolic binding experimental findings can be summarized. Symbolic memory has important
influence on sequential binding, producing an average 50% loss of coherence (compare 0.46 with
0.71, next to bottom row) when the labeling is changed. Since the same loci were re-presented
with a different label, the structural binding, of course, remained the same (compare 0.76 with
0.80, bottom row).

S. PERCEPTION AND CORTICAL REPRESENTATION
5.1. Perception and Sensory Organization

Philosophers have long speculated that we see in our “mind’s eye,” but until the scanpath theory,
little scientific evidence was available to support these conjectures. On the other hand,
philosophers from Plato onwards have thought deeply about these matters, and we have tried to
summarize their views. Using four terms defined by the philosopher Kant, a five-component
visual perceptual schema has been developed to incorporate the relevant concepts of experimental
metaphysics. (The senior author is appreciative of early discussions with Professor W.H.
Zangemeister, (Stark et al. 1986) that led to an early version of Figure 18.) (Kant 1949; Russell
1945; Stark and Choi 1996) We start (Fig. 18, column one) with the world of appearances, the
"chaos" of early Greek philosophers; in our terminology it is called "BU stuff." At one time, we
used "things" for the so-called 'real' outside world, but an anonymous discussant pointed out that
by the time the brain had done figure-ground separation to identify an object as distinguished
from background, and applied knowledge about physical coherence of the object, much of the
perception of the object had already been accomplished! The next stage (Fig. 18, column two),
sensation, represents the inflows of energy onto body sense endings. It now appears that the
filtering expected by Muller for "specific nerve energies" is actually accomplished by "specific
nerve endings,” and specific nuclei on which they project.
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FIGURE 18 Philosophical Approach to Perception

Five stages of the perceptual process (five columns) are illustrated with icons (upper), also .
showing BU and TD processes (curved arrows). See discussion in text regarding philosophical
and physiological sources of this schema.

We call the next stage (Fig. 18, third column), sensory organization, BU physiology, wherein
the Kantian internal constructs of space and time are added. The frog's eye, using ‘bug’ detectors,
can calculate the velocity of a small moving spot accurately enough to keep frogs very well in
bugs. (Ingle 1971; Lettvin et al. 1959) While it took 350 million years of vertebrate evolution to
arrive at the frog's eye, yet another 350 million years was necessary to arrive at the brains of
McCulloch and Lettvin, so that they were capable of demonstrating the elegance of this aspect of
sensory organization of the frog's eye. Since velocity requires both space and time computation,
it is clear that these Kantian internal processes have been captured by evolution. (Itti and Koch
1999; Niebur and Koch 1998)

If we jump ahead (Fig. 18, rightmost column five) to representation, the 'ideals' of Plato and the
'notions’ of Berkeley, we see that our term, ‘TD cognitive models', may perhaps be symbolized
with a file drawer icon. We will return to the question of representation in the third subsection
below. Such models, acting TD onto the critical stage (perception per se, Fig. 18, fourth
column) can be seen to be planned, forceful, determined sets of activities. (Pribram 1971; Searle
1983) In our model for perception, the TD active looking scanpath plays its role as the
operational phase of perception per se. The set of five columns (Fig. 18), dissecting the overall
perceptual process, leads to an important question we can pose for the neurophysiologist, “Where
does TD meet BU?” Our conjecture is --- where TD iconic inputs to levels I, II, and III of the
visual cortex meet BU iconic visual signal information going to levels IV and V in the retinotopic
visual cortex (Figure 19). This is the site of the “iconic matching” process.

5.2. Visual Cortex: Where Does Top-Down, TD, Meet Bottom-Up, BU?

In their famous paper, Pitts and McCulloch conjectured that the inflow information from eye and
lateral geniculate would reach the striate cortex (Figure 19). (McCulloch 1965; Pitts and
McCulloch 1947) This was a BU theory as was the later frog’s eye paper. (Lettvin et al. 1959)

We have now modified this BU approach to add TD perception. The visual cortex has a retino-
topical organization that is apt for matching a TD iconic sub-feature representation with incoming
BU sensory signal flows. Likely some interactive feedback process could match these two maps,
one TD, the other BU, to some criterion of fit (see Microscopic Cortical Processes, below, and
Appendix N). This, then, permits the scanpath, if confirmed to this point, to continue to the next
ROI or sub-feature of the representation. In this way, the TD model moves, fixates, and foveates
the eye, to bring forward successive sub-features for checking. An absence of fitting forces a new
model and a revised scanpath. In this way, the scanpath as an operational mechanism plays an
active role in the overall perceptual process. (Henderson and Hollingsworth 1999)

FIGURE 19  Micro-Cortical Processes
Six levels or layers of the visual cortex, known from neuroanatomy, are suggested as the iconic
matching region, where TD input to the visual cortex, at layers 1, 11, and III, interact with BU

input going to layers IV and V, from retina via geniculate and optic tracts (modified from Pitts
and McCulloch, 1947).
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5.3. Representation

Our results are interpretable in terms of a set of models or schemata (Figure 20). These models
suggest visual patterns of thinking about --- i) procedures for visual perception and recognition,
ii) the macroscopic, and iii) microscopic neuro-anatomical underpinnings of these memory
processes as they are interpreted according to current neurological knowledge, and iv)
quantitative and normalized values for relative strengths to the several components of memory
binding (Figure 20). The connectivity of the cortex is vast; studies by Valentino Braitenberg and
other neuro-anatomists, from Golgi and Cajal on, have illuminated many aspects of this
constrained mesh and link the microscopic and macroscopic views. (See Appendix C, The
Braitenberg Cortex.) Since the classical studies of Hubel and Wiesel, a number of approaches
have developed have developed to further understand the neuroanatomical and
neurophysiological substrates of cortical connectivity. (See Appendix N.)

FIGURE 20  Cortical Representation of Perceptual Processes

Although only the microanatomy of the visual cortex is known well enough to support a graph
theoretical model, yet we have suggested a variety of such graphs for structural, sequential, and
symbolic binding, with loci as per labels in the modular cortex. Geometrical binding is used in
our modeling schema, for syntactical interaction between foveal ROIs and peripheral segments.
Different forms of the graphs do not represent any knowledge about feasible or understood
properties of the brain, but rather stress our ignorance.

Macroscopic Cortical Processes: Where Does Memory Dwell? Recently, especially with the
advent of functional magnetic resonance, fMRI, and its associated imaging technology, there has
been an increase in localization studies on awake cooperating human that has led to a new
'phrenology’ --- this time hopefully based upon more scientific evidence. (Palmer 1975a; Palmer
1992) It is beyond the scope of the present paper to provide a full review; see, however,
Appendix M. (Colby, Duhamel, and Goldberg ; Meystel et al. 1992; Palmer 1975a; Palmer
1975b; Palmer 1992; Palmer 1999; Palmer and Kimchi 1986; Palmer, Neff, and Beck 1997;
Rybak, Golovan, and Gusakova 1993; Umeno and Goldberg 1997)

Of particular interest to our own studies are pathways connecting the visual cortex to other
cortices. The ventral pathway from visual cortex, VC to the temporal cortex, TC (especially left-
side), is the 'what' pathway to which, we attribute Semantic Binding; in similar fashion, the
dorsal pathway from VC to the parietal cortex, PC (especially on the right side), the ‘where'
pathway to which we attribute Structural Binding. Spatial vision and memory and their uses in
animal and human behavior are crucial functions that have been widely studied. (Klatzky 1998;
Klatzky et al. 1990) There are strong known connections (Pribram’s Law) from PC to the pre-
frontal cortex, PFC, that are related to temporal sequencing, and to which we attribute Inherent
Sequential Binding. Then connections continue to the frontal eye fields, FEF, to which we
attribute Read-Out Sequential Binding. Of course, there are different motor areas for different
behaviors used to indicate imaged loci and sequences in our experiments and in normal behavior,
more generally.(Wolfe, Alvarez, and Horowitz in preparation, 2000) Indeed, our experiments
were designed to test some of these physiological-anatomical conjectures and to see if there were
differences between inherent and read-out sequential bindings that could be captured in an
experiment. In 1970, after a lecture by Professor Bela Julesz on his famous random-dot
stereograms, I asked if he thought psycho-anatomical procedures obeyed a transitivity rule. The
question illustrated the possible complexity of cortical connectivity; our diagrams are only a
simplistic beginning.
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We also use as metaphor, a robotic computer vision study (see Section 6 below) that has a
complete TD model of the robot working environment, the robot kinematics and dynamics, the
pose of the robots and the monitoring cameras (see Section 6, below). Here the model directs and
limits the scanning of the video images to known positions of the ROIs in the 2D camera
projections of the 3D-operating world. The model may be displayed on a computer screen for the
supervisory controller to observe. Now, we ask a hypothetical question, "Where in the computer
is the model located?" The answer makes us realize that the model is a collection of non-iconic
programs and parameters, widely distributed in active memory, in rotating memories, in registers,
caches and pointers of the running programs and most often cannot be definitively located. This
metaphor tempers our attempts to fix memory loci in the brain.

Microscopic cortical processes. We know little about microscopic cortical processes.(Desimone
1992; Sillito and Grieve 1991) As Hubel and Wiesel have pointed out, their classical work
served to locate processes, rather than to establish how these processes occur. Similarly, the new
phrenology substantiating the modular cortex, and as well, f studies, serve to fix anatomical
locations. We therefore have used a variety of graphs to express our ignorance of function
(Figure 20, multiple graphs for different functions). (Freksa 1992; Freksa 1997; Schill et al. 1999;
Stark 1993; Stark 1994; Zangemeister, Stiehl, and Freksa 1996) We do not at all suggest that the
differences in these graphic displays represent known functional differences for the macroscopic
modules. Pioneering and future studies of microscopic cortical function are and will be an
exciting subject (Appendix N). What we emphasize is that the different memory functions, or
bindings, in different parts of the modular cortex, must be carried out by some cellular networks
as postulated by McCulloch and Pitts. The cellular anatomical diagram for the visual cortex
alone serves to give body to the above discussion.(Sillito and Grieve 1991; Thompson-Schill et
al. 1997; Zangemeister, Stiehl, and Freksa 1996)

]

6. TELEROBOTIC SCHEME: TD SCANPATH MODE FOR COMPUTER VISION

6-1. Telerobotic Control System

Because the scanpath theory rests upon continuing studies of the human brain, we necessarily
lack a complete operational model. There are some neural models with BU approaches (Rybak,
Privitera), and as well, a general appreciation by the computer vision world of an important future
role for “image understanding.” (Aloimonos and Herve 1992; Bolle, Aloimonos, and Fermuller
1998; Carpenter, Grossberg, and Lesher 1998; Carson et al. 1997; Crevier and Lepage 1997;
Foresti and Pieroni 1998) For some years now, we have developed a vigorous, explicit and
functioning model of the TD scanpath scheme to aid our researches into robotic vision.
(Blackmon and Stark 1996; Buttolo, Kung, and Hannaford 1995; Ho and Stark 1997; Ho and
Stark 1999b; Ho and Stark 1999c; Ho and Stark 2000; Kim et al. 1987; Kim, Takeda, and Stark
1988; Kim, Tendick, and Stark 1987; Liu et al. 1993; Nguyen and Stark 1993; Stark et al. 1988;
Sutro and Lerman 1973; Yu and Stark 1995) We now explain this model in some detail.

Quasi-autonomous robotic systems are designed with human supervisory control (Bejczy 1980;
Ferrell and Sheridan 1967; Moray et al. 1989; Sheridan 1992; Yoerger and Slotline 1987)
restricted to planning and emergency actions (Figure 21). The human operator, H.O., uses the
supervisory control interface and path planner, to generate actual sequences of movements for a
specified task. Each movement is then segmented in serial order, and each segment sent to the
low-level feedback controller as input to the robot plant, whose output is Ya. The robot pose
control signal, U, is indicated. by a skeletal robot model with circles for the VEs, attached to
critical kinematic points of the robot (Fig. 21, upper right inset). Under certain modes of
operation, U is used to control the image processing algorithmic procedure, IP Alg. Under other

15 October 1999 ' -16-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

modes of operation, the previous located VEs, Ym, are used to predict the locations of the VEs in
the next image.

Redundant feedback, Ym, is provided by both GPS sensors (not shown) and by image processing
algorithms operating on the camera capture of the actual position of the robot. This feedback,
Ym, is provided for closed loop operation, as long as it does not widely violate certain
constraints; the measured position, Ym, of the robot is indicated by the skeletal model with Xs
marking the measured locations of the VEs (Fig. 21, lower left inset). Additionally, this
measured output, Ym, acting outside the main control loop, may modify the current and next
segments in the serial output of the higher level controller, and thus, updates the world model for
system consistency. Plant and image noise has been added in simulated runs in related studies
(Ho et al. 1999; Ho and Stark 1997; Ho and Stark 1999a; Ho and Stark 1999b; Ho and Stark
1999¢; Ho and Stark 2000) that have provided estimations of the amount of redundancy necessary
to attain robustness during actual operating conditions.

It is important to note that using the scanpath schema, image processing is controlled in a TD
fashion by the feed-forward model. The model knows the kinematics, dynamics, and pose of the
robot, and its commanded positions at each iteration. It also has a model of the robotic working
environment, RWE. (Zelnio 1991)

FIGURE 21  Feedback Model for Supervisory Telerobotic Control

Control systems diagram for telerobotic scheme showing higher level control, with supervisor
and path planner. The serializer provides input to the basic feedback control loop, with camera
and image processing algorithms, IP Alg, monitoring actual position, Ym, of robot (right inset).

6-2. TD Robotic Vision

The complete model of the robots (Figure 22), consists of compacting vehicles carrying out civil
engineering dam building.(Ho and Stark 1999a) A set of VEs made up of prominent lights is
easily detected by distant cameras. For the image processing aspect of the scheme, it is important
to note that the model of the robot includes the knowledge of the placement of these luminaires
(Figure 22, upper left). In addition, the known camera loci, directions, and optical parameters
enable prediction of the 2D projection of the scene onto any particular camera image plane.(Ho
and Stark 1997; Ho and Stark 1999b; Ho and Stark 1999¢; Ho and Stark 2000; Miyata and Stark
1992) The display mode (Figure 22) indicates the model expectation of each luminaire location
by showing white boxes outlining ROIs (upper right); expected locations may not be the actual
locations and thus may require feedback correction.

As with TD scanpath control, the robot model predicts where the vehicle will move and this
provides anticipatory information for locating the ROIs. According to the scanpath model, the
image processing algorithms will move in sequence from ROI to ROI in the camera plane to carry
out the various image-processing procedures (heavy white arrows, Figure 22, lower left). Thus,
the alternation that occurs in the case of computer vision, is similar to the alternation between TD
motor-control of EMs for successive foveations and the matching of the BU visual signals to the
TD iconic model in the visual cortex in the case of human vision.

After image-processing steps, the display mode indicates the locus of the actual measured VE
with a cross (lower right). The vector of actual locations is then passed to the feedback control
mode, as discussed above. (Ho and Stark 1997; Ho and Stark 1999a; Nguyen and Stark 1993;
Stark et al. 1988; Yu and Stark 1995) :
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FIGURE 22  TD Scanpath Scheme for Robotic Vision

Four image processing steps showing robot vehicles with VEs (upper left) and model ROI-
predicted locations (white squares, upper right). Note scanpath sequence for computer image
processing of ROIs (white arrows, lower left) yielding centroid-calculated loci (white crosses,
lower right).

6-3. TD Model-Based Image Processing

The cornerstone of the algorithms is the model that represents the TD information the system has
about the robotic working environment, RWE.(Ho and Stark 2000) This model consists first of
the robot kinematics; in addition, the dynamic component describes how model configuration
changes over time. The remote camera component describes the pose and geometry of each
camera; finally, the locations and sizes of objects that may interact with the robots are also stroed
in the RWE. As discussed above, the VEs that aid in image processing; their geometrical
representation is also reflected in the model. Now, given this environment, the visual algorithms
perform four main steps in sequence.

TD pre-filtering. The TD model predicts the expected incoming signals, that is the 3D locations
of the VEs using the last known pose of the robots, the kinematic model of the robots and the
control signal history. Using known camera pose and geometry, the 3D locus prediction is then
projected onto a camera frame of reference. An ROI with the resulting location is then assigned.
The estimated apparent size of the feature is calculated in a similar manner, and alters the ROI
size for that feature. Implicitly, the IPA output of the ROI is logically bound to the feature at this
stage. (Bajcsy and Krotkov 1993)

The viewability or detectability of the predicted features is thus aided by the known estimated
locations of all objects in the RWE. For example, occlusion or possible overlapping of the VEs
by the robot itself or by other known objects in the environment can be predicted; a sampling
dependability factor can then be generated. Sensitivity of robot pose to the 2D loci of features
viewed from a given camera may be calculated; the jacobian matrix provides static and dynamic
weightings. Both sensitivity and dependability factors are used to determine the significance of
the sampling in a particular ROI. The dependability factor is of particular importance if the
sampling cost of each ROI is high, say the sampling speed is slow with respect to a limited time
window for IP and thus a sampling priority has to be assigned to each ROI. The sampling
sequence of the ROI, similar to the scanpath sequence, is then generated based upon these factors.

BU Image Processing. The TD model applies an appropriate BU image processing algorithm,
IPA, suitable for the ROI and its feature of interest. In the case illustrated, features are spherical
light sources and the IPAs utilized are adaptive thresholding followed by a centroid calculation.
Video camera images, even under the best condition, are often very noisy (Figure 23, upper).
Indeed our design of the luminaires was an engineering attempt to provide adequate signal/noise
ratios. By restricting the image processing only to the small ROI area, the amount of noise
impinging upon our signal processing is greatly reduced; thus, the adaptive thresholding
techniques yield robust results.(Uttal, Baruch, and Allen 1995) The ROlIs, are indicated as
rectangular vertical boxes (Figure 23, lower), the top border of each is the actual adaptive
threshold, utilized in each local area. The VEs can be clearly distinguished as narrow hilltops
(Figure 23) above these adaptive thresholds, and contribute to the robustness of the BU image
processing procedures controlled in this TD fashion. Indeed, the fovea of the retina and its
magnified cortical representation (Figure 1) must also possess local adaptive advantages of a
similar sort.
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FIGURE 23  Advantages of TD Control of BU Image Processing

Pixel intensity diagram forming a 3D representation of the video image (upper). Note hilltops
representing VEs. By predicting ROI loci using TD model (rectangular boxes, lower), it is
possible to do adaptive thresholding only in a small localized region, and thus, achieve important
signal-to-noise ratio improvements. Clearly, foveal fixation in normal human vision achieves the
same functionality.

TD plus BU post-filtering. The next procedure verifies the integrity of the individual centroid
measurements in the contest of the overall TD model (Figure 21, lower left inset). For a type of
feature, in this instance a spherical VE, the system generates a criterion, such as moment
invariance, to test the for possibility of error due to unexpected effects. Thus, significant
ellipticity of features in an ROI would be marked as unreliable, and thus, weighted less in the data
integration part of the program.

TD Data Integration. The RWE model is next synchronized with the feedback measurements,
Ym, so as to produce a consistent updated model. Each ROI locus creates two constraints in the
estimate of robotic pose. These, the dependability factor, TD model-pose and occlusion
information, and the reliability factor, judged by the fit of the image-prediction to the BU
processed image signal, are fed into an optimization routine that finds the optimal robot pose such
that constraint violations are minimized. If fitting error is high, indicating a failure in the IPA
procedures, re-initialization of the IPA subsystem is performed. (Yu and Stark 1995) Otherwise,

. the resultant estimated robot pose accepted, updates the model and the next IPA iteration is
performed. These stages of the computer vision scheme have not only a sequential structure but
also multiple interactions (Figure 24).

FIGURE 24  Block Diagram Explicating Telerobotic Vision Scheme

Flow diagram schema to aid in understanding steps of our telerobotic TD scanpath approach to
image processing and to supervisory control.

7. SUMMARY

TD vision. This paper has considered the TD aspects of human vision to be equally (or more)
important to vision as a whole than are the usual text book presentations of BU vision with
constellations of psychophysical and neurophysiological experimental paradigms. Recall that
classical experimental designs themselves prejudice the vision scientist to think in unidirectional
input-output terms. We began with the essential role that EMs play, and their function in the TD
control of the flow of visual information. The scanpath theory proposed that an internal spatial-
cognitive model controls perception and the active looking EMs, of the scanpath sequence.
Evidence supporting the scanpath theory (Noton and Stark 1971a; Noton and Stark 1971b; Noton
and Stark 1971c) includes experiments with ambiguous figure and visual imagery. (Brandt and
Stark 1997; Stark and Ellis 1981) Also application to dynamic scenes, although only beginning,
yet has many lessons for further visual studies.(Blackmon et al. 1999) We also have provided an
introduction to the experimental procedures including careful calibration of EMs, definition of
ROIs, and the analysis and comparison programs for studying scanpaths.

The scanpath research and the recent studies on memory binding(Stark et al. 1999) described in
this paper help to understand the dual role played by TD and BU visual processes (Figure 25).
The TD representation in the mind’s eye, and as elaborated in this paper, throughout the brain,
controls not only EMs, but the placement of spatially defined iconic models in the visual cortex.
Here they are matched with BU signal information, arriving from the so-called “real” world.
These BU signals, are known to have a distorted log-polar iconic form (Figures 1 and 25), up to
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and including the primary visual cortex. First note that the picture (Figure 25, top) in the ‘mind’s
eye’ is close to the picture (bottom) in the “real” world, or our species, heavily dependent upon
vision, would have disappeared. Successive EM fixations produce retinal images (three are
shown, just above “real” world picture); from this ensues cortical magnification of foveal regions
and cortical minification of peripheral low resolution segments. At the same time, the TD
representation sends similar iconic representations (three are also shown here, just below the
mind’s eye picture) to the visual cortex for matching; TD scanpath EMs predict the spatial loci
for these matches. At the visual cortex (Figure 25, middle), iconic matching of TD and BU
occurs. (Ballard, Hayhoe, and Pelz 1994; Driels and Acosta 1992; Gould 1967; Groner, Walder,
and Groen 1984)

FIGURE 25 Iconic Matching in Visual Cortex TD Representation and BU Signals

BU retinal image is shifted with each EM fixation to provide a centered and magnified foveal
projection in the visual cortex. These may be matched by predicted TD iconic representations
from the mind’s eye image. Continuous periphery is shown broken into segments, also suitable
for TD symbolic coding,.

Representation. More recently, we have used the repetitive scanpath EM sequence to approach
problems of the representation of the visual image in the brain. We suppose that there are several
levels of "binding" --- semantic or symbolic binding, structural binding for the spatial locations of
the ROIs and sequential binding for the dynamic execution program that yields the sequence of
EMs. The scanpath sequence has enabled experimental dissection of these various bindings that
appear to play independent roles and are likely located in different parts of the modular brain (see
Appendix B for some principles of cortical connectivity, largely abstracted, perhaps with
erroneous simplifications, from Professor Valentino Braitenberg). Cortical localization has
advanced recently with fMRI studies on cooperating humans (see Appendix M) and supporting

animal experiments (see Appendix N); this is not to ignore important sub-cortical loci with likely
major functions.

In experiments carefully described in this paper, it is shown that symbolic binding strongly
influences sequential binding, but can not overwhelm spatial or structural memory. Sequential
bindings themselves appear to be partitioned between inherent and ‘read-out’ memory. The
inherent sequential memory component is closely linked to structural binding, whereas the read-
out components are apparently medified by each of the different motor systems we have explored
--- EMs, hand control of a cursor on a computer screen, and locomotion over a grid on the
laboratory floor. '

Philosophy. The background of visual perception has ancient roots in philosophy. Although
philosophers have long speculated that “we see in our mind’s eye” and that we can have no
certain knowledge of the external chaos or classes of appearances in which we find ourselves, yet
until the scanpath theory no strong scientific evidence was available to support their conjectures.
(The senior author was influenced by the strong TD structures he himself built into so-called
‘artificial intelligence’ programs so that the remaining ‘self-organizing’ was largely a matter of
optimization, itself influenced by successive modifications.) (Stark 1993; Stark 1994; Stark,
Okajima, and Whipple 1962; Stark 1997)

Computer Vision. Use of the TD scanpath for robotic computer vision has proved itself in a
series of applications. Clearly TD information can change an ineffective vision system into a
robust feedback mechanism for control of telerobots. Another positive aspect has been a
complete and explicit demonstration of how a scanpath mechanism works in the artificial system.
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This model may also suggest further directions for extending the sparse experimental data about
the human brain mechanisms controlling our own vision. (Aloimonos and Herve 1992)
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Appendix A: String-Editing Algorithm

The string-editing algorithm is a discrete dynamic programming method.(Bellman and Lee 1984)
Using the operations --- insertion, In, deletion, De, and replacement, Re, the algorithm of Wagner
(Wagner and Fischer ) finds the minimum distance or cost to convert from string2(i) to string1(j);
this defines the matrix (Figure 26, upper matrix). The two strings label the rows, string2(i), and
columns, string1(j), of the matrix . Insertions result in horizontal shifts, deletions, vertical ones,
and replacements produce shifts along the diagonal. Each operation may add to the cost; the
coefficients of the matrix are the hypothetical costs to reach that cell. The middle matrix
describes the stage just after the insertion of a “B” in the preceding step with an added cost of 1
(circled coefficient); the next step enables the “C’s” to match without added cost. At the end
(lower matrix) deletion of “A” (note vertical shift) finally matched string 2(i) to string 1(j), at a
minimum cost of 2 (circled coefficient). Thus, the normalized distance is equal to 0.4 (2 divided
by string length, 5); Ss, the sequential similarity index, is equal to 0.6 (1 — 0.4).

A short “C” program (Figure 26, equations listed to right of matrices) enabled these calculations.
1. Initialize D-matrix to zero. An additional possible step (not herein employed) is to truncate
longer string.

2. Distance of first to null — do this by deleting each character in string j one by one; at most this
will equal string length. Distance of second to null and first to second also calculated and will
also equal at most string length.

3. Using dynamic programming, proceed from row to row and from top to bottom to calculate
minimum distances; this fills out the D-matrix.

4. This triple computation, in addition to replacements, takes into account the effect of deletions
and insertions in sidewise shifting of sting elements, and thus traveling along a minimum cost
discrete path in the D-matrix. Wagner(Wagner and Fischer ) proved these operations will find the
optimim solution; this extended the discrete dynamic programming algorithm.

5. Lowermost right corner of D-matrix will be the minimum total cost of making string2(i)
identical to string1(j). .

6.- An additional possible step (not herein employed) is to assign non-unity costs to each
operation

Our use of string editing in matching loci and sequences in images is a bit unusual. However,
once we have established a finite state automaton and equivalently, a Markov model (see Figure

* 5, lower row), the sequences are inherently in a form appropriate for application of the string-
editing algorithm. The widest use of string-editing algorithms is perhaps in spell-check
programs. The use in matching of double-stranded chromosomes and sequences of nucleic acids
within them, is an important current application. By using perhaps as yet undiscovered principles
of biomechanical mechanisms, it may be possible to assign weightings, or non-unity costs, to
such strand-distorting actions such as caused by insertions or deletions. For example, the
redundant looping often seen in chromosomes may not be permissible for loops that are too short.

FIGURE 26 String Editing Algorithm

Successive stages of the discrete dynamic programming algorithm (matrices at left) document
minimum cost optimization of string editing distance, and thus, accurate measure of string
sequential similarity; computational equations at each stage (to right of matrices).
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Appendix B: Consolidation

Not presented above, but also studied was Sp-st, that is the similarity of the loci to the stimuli loci
(CHx CH, 0.70; WK x WK, 0.69; CH x WK, 0.68) that were less than Sp-coh (CH x CH, 0.90;
WK x WK, 0.91; CH x WK, 0.87), the coherence of a set of remembered loci to one another as a
result of consolidation. This was quantitative evidence that a remembered pattern was often
closely repeated, without however, necessarily being an accurate reflection of the stimulus.

In other experiments, the alternation of CH and WK, was performed with refreshment, such that
the second viewing opportunity enabled them to develop another somewhat different short-term
memory schema. This in turn led to lower WK x CH and CH x WK similarities, Sp = 0.62 and
Ss = 0.25, as compared to values of Sp = 0.87 and Ss = 0.60 above without refreshment.
Contrariwise, the Sp-st value with refreshment, 0.72, was almost the same as the value from the
above experiment, Sp-st = 0.68. This ability to establish a new memory trace could be enhanced
even further by allowing a delay of about ten minutes and also with interjection of other patterns,
and of intercalated tilt adaptation experiments.(Stark et al. 1999) (This topic will be further
developed below in dealing with the symbolic experiment.)

Appendix C: The Braitenberg Cortex

Some principles of cortical connectivity are listed, largely abstracted, perhaps with
erroneous simplifications, from Professor Valentino Braitenberg. (Braitenberg 1977; Braitenberg
1990; Braitenberg 1994; Braitenberg and Schiiz 1998)

1.- The idea of columns of cortical cells may have been initiated by Warren McCulloch
(1945); then Vernon Mountcastle with the somatosensory cortex, and David Hubel and Torsten
Wiesel with the visual cortex, strongly supported this concept in the 1950s.

2.- Six layers or levels of cortical neurons.

3.- Almost all are pyramidal cells; exceptions seem to be truncated or inverted pyramidal
cells, with eponymous names. :

4.- Ponder the constraint of a pair of cortical cells not to connect more than twice with
one another -- one connection in each direction. How then is any pair more connected than any
other pair? By virtue of their connectiveness to a common group of cells. Each cell has about
20,000 outputs (axons) and about 20,000 inputs (dendritic knobs or synapses). If two cells share
none of their other connections then they are ‘unrelated’; if almost all of the connections are to
the same cells then they are closely ‘related’.

5.- For each pyramidal cell the 20,00 inputs and outputs connect almost exclusively to
other cortical cells. On average, only about one output proceeds toward an output motor relay
and only about one input arrives from a sensory waystation. Let not the skeptic deny that most of
our brain computation is within the cortex and not with multiple stages of processing input and
output. Of course, the design of present-day experiments forces this input-output view with
paradigms to test responsivity to stimuli and to observe regular output responses to stimulation.

6.- Lateral axons and their web of connectivity show a decreasing density of connections
with distance. Apical axons to apical dendrites appear to be relatively independent of distance;
this leads to widespread connectivity. Indeed the size and number of a column in a human brain
is sufficient for each column to be connected with every other column of the cortex. For the
mouse with its much smaller brain, this is still true. The lesser number of cells in a column still
suffice for this order of connectivity to the lesser number of columns.

- 7.- Braitenberg and Almut Shutz showed in hamsters that the tremendous growth of
dendritic knobs and axonal connections occurred developmentally before these creatures
experienced the outside world. Similarly, development in Coghill’s salamander embryos went on
apace and functional connectivity reached an appropriate stage even when the salamanders were
raised in anesthetic solution until tested. (Coghill 1929)
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Appendix M : Function Magnetic Resonance Imaging, fMRI

We are excited about the new experimental paradigms using fMRI and PET as a non-invasive
techniques for working with alert, cooperating humans engaged in perceptual and other high-level
tasks. For the benefit of readers, we include a few references to current work ongoing in fMRI.
In general, the neurological studies and neurophysiological findings regarding the modular cortex
have been strengthened and deepened with these ongoing human researches.(Born and Tootell
1992; Coull, Frackowiak, and Frith 1998; Culham et al. 1998; de Jong et al. 1999; Fletcher et al.
1998; Kastner et al. 1998; Kleinschmidt et al. 1998; Kosslyn 1980; Kosslyn 1994; Kosslyn and
Osherson 1995; Mackworth 1978; O'Sullivan et al. 1995; Ploner et al. 1999; Posner and Raichle
1994; Rugg et al. 1998; Tempini et al. 1998; Thompson-Schill et al. 1997; Tootell, Malonek, and
Grinvald 1994; Tootell et al. 1995a; Tootell et al. 1995b; Zeki and Bartels 1998)

Appendix N: Recent Neurophysiology for Perception and Other Higher Level Functions

Classical neurophysiological techniques, and by have enriched our knowledge of the animal
brain, and by analogy, of the human brain; these are reinforced by longstanding and recent
neurological studies. Of course, animal experiments are difficult, especially considering that it is
impossible to have verbal interaction with the subjects of the experiment, so essential for studying
higher-level functions. As mentioned in the paper, the design of neurophysiological experiments
has been forced into paradigms that are exclusively input-output studies. That is, a visual
stimulus has consequences which can be measured in various locations in the animal brain.
Contrariwise, it is all but impossible to measure what the TD functions of the animal brain are
signalling to these regions. However, with great ingenuity, a number of inroads have been made.

Most neurophysiology is neuroanatomy; that is, locations of regions that show activity during
particular sensory processing. Pioneering and future studies in actual microcortical
neurophysiology are expanding with multiple electrode, optical and molecular biological
approaches. (Andersen 1995; Colby, Duhamel, and Goldberg 1995; Desimone 1992; Devalois
1960; Galletti et al. 1996; McAllister, Lo, and Katz 1995; Nelson and Katz 1995; Rogers et al.
1998; Sillito and Jones 1996; Sillito, Salt, and Kemp 1985; Sillito and Grieve 1991; Umeno and
Goldberg 1997; Zeki and Bartels 1998)

15 October 1999 -24-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

9. FIGURE LIST
0. ABSTRACT Keywords

1. INTRODUCTION

Figure 01 Log-polar distortions of a picture

Figure 02 Eye Movements while Looking at an Ambiguous Figure: The Ellis Experiment
Figure 03 Dynamic Display with Eye Movements

Figure 04 Scanpath Theory

2. METRICS AND ANALYSES

Figure 05 EMs while Engaged in Visual Imagery: The Brandt Experiment

Figure 06 EM Trajectories and Classification

Figure 07 EM Classification Program

Figure 08 Simplified, or Toy, Diagram Illustrating Metrics for Comparing Scanpaths; and
' Parsing Diagram for the Dynamic Scanpath Experiment

3. RESULTS: STRUCTURAL AND SEQUENTIAL BINDING

Figure 09 EMs Compared with Choice, CH: Selection of ROIs Compared
Figure 10 Parsing Diagrams; EMs Compared with Choice, CH

Figure 11 CH compared with Walking Protocol

Figure 12 Visual imagery: Parsing Diagram for Walking, WK, vs Choice, CH
Figure 13 Modular Cortex and Connectivity

Figure 14 Inherent vs Readout Sequential Binding

4. RESULTS : SYMBOLIC BINDING

Figure 15 Control Experiment and Main Experiment
Figure 16 Top Anchor and Bottom Anchor Experiments
Figure 17 Summary of Symbolic Experiment

S. PHILOSOPHY AND CORTICAL MODULUES

Figure 18 Philosophical Approach to Perception

Figure 19 Micro-Cortical Processes

Figure 20 Cortical Representation of Perceptual Processes

6. TELEROBOTIC SCHEME

Figure 21 Feedback Model for Supervisory Telerobotic Control

Figure 22 Top-Down Scanpath Scheme for Robotic Vision

Figure 23 Advantages of Top-Down Control of Bottom-Up Image Processing
Figure 24 Block Diagram Explicating Telerobotic Vision Scheme

Figure 25 Iconic Matching in Visual Cortex TD Representation and BU Signals

8. ACKNOWLEDGEMENTS

APPENDIX A: String Editing

Figure 26: String Editing Algorithm

APPENDIX B: Consolidation

APPENDIX C: The Braitenberg Cortex

APPENDIX M: Function Magnetic Resonance Imaging, fMRI

APPENDIX N: Recent Neurophysiology for Perception and Other Higher Level Functions

15 October 1999 -25-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

10. REFERENCES

Aloimonos, Y., and J.Y. Herve. 1992. Exploratory active vision: theory. Proc. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, at Los Alamitos, CA.

Andersen, R. A. 1995. Coordinate transformations and motor planning in posterior parietal
cortex. In The Cognitive Neurosciences, edited by M. S. Gazzaniga. Cambridge, MA:
MIT Press.

Bajcsy, R., and E. Krotkov. 1993. Active vision for reliable ranging: cooperating focus, stereo,
and vergence. International Journal of Computer Vision 11:187-203.

Ballard, D.H., M.M. Hayhoe, and J.B. Pelz. 1994. Visual Representations in Natural Tasks.
Proceedings of the Workshop on Visual Behaviors, at Los Alamitos, CA.

Bejczy, A. K. 1980. Sensors, controls and man-machine interface for advanced teleoperation.
Science 208:1327-1335.

Bellman, R., and E.S. Lee. 1984. History and development of dynamic programming. IEEE
Control Systems Magazine 4 (4):24-28.

Blackmon, T. T., Y. F. Ho, D. Chernyak, L. W. Stark, and M. Azzariti. 1999. Dynamic
Scanpaths: Eye Movement Analysis Methods. IS& T/SPIE's Symposium on Electronic
Imaging.

Blackmon, T. T., and L. W. Stark. 1996. Model-Based Supervisory Control in Telerobotics.
Presence 5:205-223.

Bolle, R., Y. Aloimonos, and C. Fermuller. 1998. Toward motion picture grammars. Third Asian
Conference on Computer Vision. Proceedings, at Hong Kong.

Born, Richard T., and Roger B. Tootell. 1992. Segregation of global and local motion processing
in primate middle temporal visual area. Nature 357 (6378):497-499.

Braitenberg, Valentino. 1977. On the texture of brains: an introduction to neuroanatomy for the
cybernetically minded. Edited by T. Elisabeth Hanna Braitenberg. New York: Springer-
Verlag. '

Braitenberg, Valentino. 1990. The cerebral cortex as site of associative memory. Sistemi
Intelligenti August 2 (2):213-227.

Braitenberg, Valentino. 1994. Vehicles, experiments in synthetic psychology. Cambridge, MA:
MIT Press.

Braitenberg, Valentino, and Almut Schiiz. 1998. Cortex : statistics and geometry of neuronal
connectivity. 2nd ed. Berlin: Springer.

Brandt, S., L. W. Stark, S. Hacisalihzade, J. Allen, and G. Tharp. 1989. Experimental Evidence
for Scanpath Eye Movements During Visual Imagery. Proc. 11th IEEE/EMBS, at Seattle,
WA.

Brandt, Stephan A., and Lawrence W. Stark. 1997. Spontaneous eye movements during visual
imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience 9
(1):27-38.

Buttolo, P., D. Kung, and B. Hannaford. 1995. Manipulation in Real, Virtual, and Remote
Environments. JEEE Systems, Man, Cybernetics SMC-5:4656-4661.

Carpenter, G.A., S. Grossberg, and G.W. Lesher. 1998. The what-and-where filter. A spatial
mapping neural network for object recognition and image understanding. Computer
Vision and Image Understanding 69 (1):1-22.

Carson, C., S. Belongie, H. Greenspan, and J. Malik. 1997. Region-based image querying.
Proceedings, IEEE Workshop on Content-Based Access of Image and Video Libraries, at
San Juan, Puerto Rico.

Choi, Yun, Anthony Mosley, and L. W. Stark. 1995. String Editing Analysis of Human Visual
Search. Optometry and Vision Science 72 (7):439-451.

Coghill, G.E. 1929. Anatomy and the Study of Behavior. Cambridge: Cambridge University Press.

15 October 1999 -26-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Colby, CL, JR Duhamel, and ME. Goldberg. 1995. Oculocentric spatial representation in parietal
cortex. Cerebral Cortex 5 (5):470-481.

Coull, J.T., R.S. Frackowiak, and C.D. Frith. 1998. Monitoring for Target Objects: Activation of
Right Frontal and Parietal Cortices with Increasing Time on Task. Neuropsychologia 36
(12):1325-1334.

Crevier, D., and R. Lepage. 1997. Knowledge-based image understanding systems: a survey.
Computer Vision and Image Understanding 67 (2):161-185.

Crosby, M. E. 1990. How do we read algorithms? Computer 23:25-35.

Culham, Jody C., Stephan A. Brandt, Patrick Cavanagh, Nancy G. Kanwisher, Anders M. Dale,
and Roger B. H. Tootell. 1998. Cortical fMRI activation produced by attentive tracking
of moving targets. Journal of Neurophysiology 80 (5):2657-2670.

de Jong, B.M,, R.S. Frackowiak, A.T. Willemsen, and A.M. Paans. 1999. The Distribution of
Cerebral Activity Related to Visuomotor Coordination Indicating Perceptual and
Executional Specialization. Cognitive Brain Research 8 (1):45-59.

Desimone, R. 1992. Neural Circuits for Visual Attention in Primate Brain. In Neural Networks
Jor Vision and Image Processing, edited by G. A. Carpenter, and S. Grossberg.
Cambridge, MA: MIT Press.

Devalois, Russell L. 1960. Color Vision Mechanisms in the Monkey. Journal of General
Physiology 43 (Supplement):115-128.

Dow, B. M,, A. Z. Snyder, R. G. Vautin, and R. Bauer. 1981. Magnification factor and receptive
field size in foveal striate cortex of monkey. Experimental Brain Research 44:213-228.

Driels, M., and J. Acosta. 1992. The duality of haptic and visual search for object recognition.
Proceedings of the IEEE International Symposium on Intelligent Control, at New York.

Elderfield, John. 1998. Seeing Bonnard. In Bonnard. New York: Museum of Modern Art.

Ellis, Stephen R., and Lawrence W. Stark. 1979. Reply to Piggins. Perception 8 (6):721-722.

Ferrell, W.R., and T. B. Sheridan. 1967. Supervisory Control of Remote Manipulation. IEEE
Spectrum 4.:81-88.

Flagg, B. N. 1978. Children and Television: Effects of Stimulus Repetition on Eye Activity. In
Eye Movements and the Higher Psychological Functions, edited by J. W. Senders, D.F.
Fisher, and R. A. Monty. Hillsdale, NJ: Lawrence Erlbaum Associates.

Fletcher, P.C., T. Shallice, C.D. Frith, R.S. Frackowiak, and R.J. Dolan. 1998. The functional
roles of prefrontal cortex in episodic memory. II. Retrieval. Brain 121 (7):1249-1256.

Foresti, G. L., and G. Pieroni. 1998. Exploiting neural trees in range image understanding.
Pattern Recognition Letters 19 (9):869-878.

Freksa, C. 1992. Using orientation information for qualitative spatial reasoning. Theories and
Methods of Spatio-Temporal Reasoning in Geographic Space. Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space. International Conference GIS - From
Space to Territory, 21-23 September 1992, at Pisa, Italy.

Freksa, C. 1997. Foundations of computer science: Potential theory - cognition. In Spatial and
temporal structures in cognitive processes: Foundations of computer science., edited by
C. Freksa, M. Jantzen, and R. Valk. Berlin: Springer-Verlag.

Galletti, C., P. Fattori, P.P. Battaglini, S. Shipp, and S. Zeki. 1996. Functional demarcation of a
border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey.
European Journal of Neuroscience 8 (1):30-52.

Gauthier, G., J.-M. Hofferer, W.F. Hoyt, and L. Stark. 1979. Visual-Motor Adaptation:
Quantitative Demonstration in Patients with Posterior Fossa Involvement. Archives of
Neurology 36:155-160.

Gauthier, Gabriel M., Jean-Louis Vercher, David S. Zee, and . 1994 Oct. 34 (19): p. 2613-2627.
1994. Changes in ocular alignment and pointing accuracy after sustained passive rotation
of one eye. Vision Research 34 (19):2613-2627.

15 October 1999 -27-



Invited paper, accepted for publication in JE/ 2000, special issue on Electronic Imaging and Human Vision

Gould, J.D. 1967. Pattern recognition and eye-movement parameters. Perception and
Psychophysics 2:399-407.

Groner, R., F. Walder, and M. Groen. 1984. Looking at faces: Local and global aspects of
scanpaths. In Theoretical and Applied Aspects of Eye Movement Research, edited by A.
G. Gale, and F. Johnson. North Holland, Amsterdam.

Hacisalihzade, S.S., L.W. Stark, and J.S. Allen. 1992. Visual perception and sequences of eye
movement fixations: A stochastic modeling approach. JEEE Transactions on Systems,
Man, and Cybernetics 22:474-481.

He, Zijiang J., and Ken Nakayama. 1992. Surfaces versus features in visual search. Nature 359
(6392):231-233.

Henderson, and Hollingsworth. 1999. Higher level scene perception. Annual reviews of
psychology 50:243-271.

Ho, Yeuk F., Hideyoshi Masuda, Hiroshi Oda, and Lawrence Stark. 1999. Distributed Control for
Tele-Operations. Journal of Fujita Technical Research Institute 10;1-7.

Ho, Yeuk F., and L. W. Stark. 1997. Top-Down Image Processing and Supervisory Control
Limitations in Robotics: A Simulation Study. 8th Intl. Conf. on Advanced Robotics
(ICAR '97), July 7-9, at Monterey, CA.

Ho, Y.F.,and L. W. Stark. 1999a. Design Simulation of a Web-Based Supervisory Control
System. International Conference on Web-Based Modeling and Simulation, January.

Ho, Y.F., and L.W. Stark. 1999b. Model-based visual detection and verification system. SPIE:
Electronic Imaging, at San Jose.

Ho, Y.F.,and L. W. Stark. 1999c. Visual Tracking of Tele-Operated Robots Using Model-Based
Algorithms. IS&T/SPIE's Symposium on Electronic Imaging, January 24-29, at San Jose,
CA.

Ho, Yeuk Fai, and L. W. Stark. 2000. Scanpath-Based Model for Visual Tracking of Tele-Robots.
IS&T/SPIE's Symposium on Electronic Imaging, at San Jose, CA.

Ingle, D. 1971. Prey-catching behavior of Anurans toward moving and stationary objects. Vision
Research Supplement 3:447-456.

Itti, L., and C. Koch. 1999. Comparison of feature combination strategies for saliency-based
visual attention systems. SPIE: Electronic Imaging, at San Jose.

Jeannerod, M., P. Gerin, and J. Pernier. 1968. Deplacements et fixation du regard dans
I'exploration libre d'une scene visuelle [French]. Vision Research 8:81-97.

Kant, I. 1949. Prolegomena to Any Future Metaphysics. New York: Bobbs-Merrill Company,
Inc.

Kastner, Sabine, Peter De Weerd, Robert Desimone, and Leslie G. Ungerleider. 1998.
Mechanisms of Directed Attention in the Human Extrastriate Cortex as Revealed by
Functional MRI. Science October 2:108-111.

Kim, Won Soo, Stephen R. Ellis, Mitchell E. Tyler, Blake Hannaford, and L. W. Stark. 1987.
Quantitative Evaluation of Perspective and Stereoscopic Displays in Three-Axis Manual
Tracking Tasks. IEEE Systems, Man and Cybernetics 16:61-72.

Kim, W. S., M. Takeda, and L. Stark. 1988. On-the-Screen Visual Enhancements for a
Telerobotics Vision System. Proceedings of the IEEE International Conference of
Systems, Man, & Cybermnetics, at Beijing.

Kim, Won Soo, Frank Tendick, and L. W. Stark. 1987. Visual Enhancement in Pick-and-Place
Tasks: Human Operators Controlling a Simulated Cylindrical Manipulator. IEEE J. of
Robotics and Automation 3:418-425.

Klatzky, R.L. 1998. Allocentric and egocentric spatial representations: definitions, distinctions,
and interconnections. In Spatial Cognition. An Interdisciplinary Approach to
Representing and Processing Spatial Knowledge, edited by C. Freksa, C. Habel, and K.
F. Wender. Berlin: Springer-Verlag.

15 October 1999 -28-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Klatzky, Roberta L., Jack M. Loomis, Reginald G. Golledge, Joseph G. Cicinelli, and et al. 1990.
Acquisition of route and survey knowledge in the absence of vision. Journal of Motor
Behavior March 22 (1):19-43.

Kleinschmidt, A., C. Buchel, S. Zeki, and R.S. Frackowiak. 1998. Human Brain Activity During
Spontaneously Reversing Perception of Ambiguous Figures. Proceedings of the Royal
Society of London. Series B: Biological Sciences 265 (1413):2427-2433.

Kosslyn, S. M. 1980. /mage and Mind. Cambridge, MA: Harvard University Press.

Kosslyn, Stephen Michael. 1994. Image and Brain: The Resolution of the Imagery Debate.
Cambridge, MA: MIT Press.

Kosslyn, Stephen M., and Daniel N. Osherson, eds. 1995. Visual cognition. 2nd ed. Cambridge,
MA: MIT Press.

Kruskal, J.B. 1983. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM Review 25:201-237.

Lawden, M.C., H. Bagelmann, T.J. Crawford, T.D. Matthews, and C. Kennard. 1995. An effect
of structured backgrounds on smooth pursuit eye movements in patients with cerebral
lesions. Brain 118 (1):37-48.

Lettvin, J.Y., H.R. Maturana, W.S. McCulloch, and W.H. Pitts. 1959. What the Frog's Eye Tells
the Frog's Brain. Proceedings of the IREE 47:1940-1959.

Liu, Andrew, Gregory Tharp, Stephen Lai, Lloyd French, and Lawrence W. Stark. 1993. Some of
What One Needs to Know about Using Head-Mounted Displays to Improve Teleoperator
Performance. IEEE Transactions on Robotics and Automation 9 (5):638-48.

Llewellyn-Thomas, E. 1968. Movements of the Eye. Scientific American 219:88-95.

Locher, P.J., and C.F. Nodine. 1974. The Role of Scanpaths in the Recognition of Random
Shapes. Perception and Psychophysics 15:308-314.

Mackeben, Manfred, and Ken Nakayama. 1993. Express attentional shifts. Vision Research 33
(1):85-90.

Mackworth, A. K. 1978. How to See a Simple World: An exegesis of some computer programs
for scene analysis. Machine Intelligence 8:510-537.

Mackworth, N. H., and J. S. Bruner. 1970. How adults and children search and recognize
pictures. Human Development 13:149-177.

Mackworth, N.H., and A.J. Morandi. 1967. The gaze selects informative details within picture.
Perception and Psychophysics 2:547-552.

Mandler, M.B., and J.A. Whiteside. 1976. The role of scanpaths in recognition of random dot
patterns. Journal of Undergraduate Psychology Research 3 (84-90).

McAllister, A K., D.C. Lo, and L.C. Katz. 1995. Neurotrophins regulate dendritic growth in
developing visual cortex. Neuron 15 (791-803).

McCulloch, Warren. 1965. Embodiments of Mind. Cambridge, MA: MIT Press.

McPeek, Robert M., Vera Maljkovic, and Ken Nakayama. 1999. Saccades require focal attention
and are facilitated by a short-term memory system. Vision Research 39 (8):1555-1566.

Meystel, A.M.,, .A. Rybak, S. Bhasin, and M.A. Meystel. 1992. Multiresolution stroke sketch
adaptive representation and neural network processing system for gray-level image
recognition. Proceedings of SPIE: Intelligent Robots and Computer Vision XI:
Biological, Neural Net, and 3-D Methods 1826:261-278.

Miyata, K., and L. Stark. 1992. Active camera control: seeing around obstacles. Power
Electronics and Motion Control: Proceedings of the International Conference on
Industrial Electronics, Control, Instrumentation, and Automation.

Moray, N, R. Ferrell, H. G. Stassen, and D. R. et al. Yoerger. 1989. Supervisory Control: 30
Years and Counting. Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics.

Nakayama, Ken, Zijiang J. He, and Shinsuke Shimojo. 1995. Visual surface representation; A
critical link between lower-level and higher-level vision. In Visual Cognition: An

]

15 October 1999 -29.



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Invitation to Cognitive Science, edited by S. M. Kosslyn, Daniel N. Osherson, et al.
Cambridge, MA: MIT Press.

Nakayama, Ken, and Julian S. Joseph. 1998. Attention, pattern recognition, and pop-out visual
search. In The Attentive Brain, edited by R. Parasuraman, et al. Cambridge, MA: MIT
Presss.

Nelson, D.A., and L.C. Katz. 1995. Emergence of functional circuits in ferret visual cortex
visualized by optical imaging. Neuron 15:23-34.

Nguyen, A. H., and L. W. Stark. 1993. Model Control of Image Processing: Pupillometry.
Computerized Medical Imaging and Graphics 17 (1):21-33.

Niebur, Ernst, and Christof Koch. 1998. Computational architectures for attention. In The
Attentive Brain, edited by e. a. Raja Parasuraman. Cambridge, MA: MIT Press.

Noton, David, and Lawrence W. Stark. 1971a. Eye Movements and Visual Perception. Scientific
American 224 (6):34-43.

Noton, David, and Lawrence W. Stark. 1971b. Scanpaths in Eye Movements During Pattern
Perception. Science 171 (3968):308-311.

Noton, D., and L. W. Stark. 1971c¢. Scanpaths in Saccadic Eye Movements while Viewing and
Recognizing Patterns. Vision Research 11 (9):929-42.

O'Sullivan, E.P., I.H. Jenkins, L. Henderson, C. Kennard, and D.J. Brooks. 1995. The functional
anatomy of remembered saccades: a PET study. Neuroreport 6 (16):2141-2144.

Palmer, S. 1975a. Visual Perception and World Knowledge: Notes on a model of sensory-
cognitive interaction. In Explorations in Cognition, edited by D. A. Norman, and D. E.
Rumelhart. San Francisco: Freeman.

Palmer, Stephen E. 1975b. The Effects of Contextual Scenes on the Identification of Objects.
Memory & Cognition 3 (5):519-526.

Palmer, Stephen E. 1992. Reference frames in the perception of spatial structure. In Cognition,
information processing, and psychophysics: Basic issues, edited by H.-G. Geissler,
Stephen W. Link, et al. Hillsdale, NJ: Lawrence Erlbaum Associates.

Palmer, Stephen E. 1999. Vision Science: Photons to Phenomenology. Cambridge, MA: MIT
Press.

Palmer, Stephen E., and Ruth Kimchi. 1986. The information processing approach to cognition.
In Approaches to cognition: Contrasts and controversies, edited by T. J. Knapp, Lynn C.
Robertson, et al. Hillsdale, NJ: Lawrence Erlbaum Associates.

Palmer, Stephen E., Jonathan Neff, and Diane Grouping Beck. 1997. Amodal Completion. In
Indirect Perception, edited by 1. Rock. Cambridge, MA: MIT Press.

Parker, R.E. 1978. Picture processing during recognition. Journal of Experimental Psychology:
Human Perception and Performance 4:284-293.

Pitts, Walter, and W. S. McCulloch. 1947. How We Know Universals: The Perception of
Auditory and Visual Forms. Bulletin of Mathematical Physics 9:127-147.

Ploner, Christoph J., Bertrand M. Gaymard, Nathalie Ehrle, Sophie Rivaud-Pechoux, Michel
Baulac, Stephan A. Brandt, Stephane Clemenceau, Severine Samson, and Charles
Pierrot-Deseilligny. 1999. Spatial memory deficits in patients with lesions affecting the
medial temporal neocortex. Annals of Neurology 45 (3):312-319.

Posner, M.I., and M.E. Raichle. 1994. Images of Mind. New York: Scientific American Library.

Pribram, K.H. 1971. Languages of the Brain. Englewood Cliffs, NJ: Prentice-Hall.

Privitera, C., N. Krishnan, and L.W. Stark. 1999. Clustering algorithms to obtain regions-of-
interest (ROIs). SPIE: Electronic Imaging, at San Jose.

Privitera, C. M., and L. W. Stark. 1998. Evaluating Image Processing Algorithms that Predict
Regions of Interest. Pattern Recognition Letters 19:1037-1043.

Rogers, R.D., B.J. Sahakian, J.R. Hodges, C.E. Polkey, C. Kennard, and T.W. Robbins. 1998.
Dissociating executive mechanisms of task control following frontal lobe damage and
Parkinson's disease. Brain 121 (5):815-842.

15 October 1999 -30-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Rugg, M.D,, P.C. Fletcher, K. Allan, C.D. Frith, R.S. Frackowiak, and R.J. Dolan. 1998. Neural
correlates of memory retrieval during recognition memory and cued recall. Neuroimage 8
(3):262-273.

Russell, B. 1945. 4 History of Western Philosophy. New York: Simon and Schuster.

Rybak, L.A., A.V. Golovan, and V.I. Gusakova. 1993. Behavioral model of visual perception and
recognition. SPIE Proceedings: Human Vision, Visual Processing, and Digital Display
Iv.

Schifferli, P. 1953. Etude par enregistrement photographique de le motricite oculaire dans
I'exploration, dans la reconnaissance et dans la representation visuelles [French].
Monatschrift fur Psychiatrie und Neurologie 126:65-118.

Schill, K., E. Umkehrer, S. Beinlich, G. Krieger, and C. Zetzsche. 1999. Knowledge-based scene
analysis with saccadic eye movements. SPIE: Electronic Imaging, at San Jose.

Schwartz, E. L. 1984. Anatomical and physiological correlates of visual computation from striate
to infero-temporal cortex. IEEE Transactions on Systems, Man, and Cybernetics SMC-
14: 2.

Searle, J.R. 1983. Intentionality, an essay in the philosophy of mind. Cambridge: Cambridge
University Press.

Senders, J.W., D.F. Fisher, and R.A. Monty, eds. 1978. Eye movements and the higher
psychological processes. Hillsdale, NJ: Lawrence Erlbaum Associates.

Sheridan, T. B. 1992. Telerobotics, Automation, and Human Supervisory Control. Cambridge,
MA: MIT Press. :

Sillito, A.M., and H.E. Jones. 1996. Context-dependent interactions and visual processing in V1.
Journal de Physiologie 90 (3-4):205-2009.

Sillito, A.M., T.E. Salt, and J.A. Kemp. 1985. Modulatory and inhibitory processes in the visual
cortex. Vision Research 25 (3):375-381.

Sillito, A.M.J., and K.L. Grieve. 1991. A re-appraisal of the role of layer VI of the visual cortex
in the generation of cortical end inhibition. Experimental Brain Research 87:521-529.

Singer, J., S. Greenberg, and J. Antrobus. 1971. Looking at the mind's.eye: Experimental studies
of ocular motility during day dreaming. Transactions of the New York Academy of
Science.

Stark, L. 1993. Neural nets, random design and reverse engineering. Proceedings of the IEEE
International Conference on Neural Networks, at San Francisco, CA.

Stark, L. 1994. ANNs and MAMFs: Transparency or Opacity? Proceedings of the European
Neural Network Society, at Sorrento.

Stark, L., and Stephen Ellis. 1981. Scanpaths Revisited: Cognitive Models Direct Active
Looking. :193-226.

Stark, L., Stephen Ellis, Hiromitsu Inoue, Christian Freksa, Zipora Portnoy, and Joshua Zeevi.
1979. Cognitive Models Direct Scanpath Eye Movements: Evidence obtained by Means
of Computer Processing of Perceptual Eye Movements. XII International Conference on
Medical and Biological Engineering, August 1979, at Jerusalem, Israel.

Stark, L., Barbara Mills, An Nguyen, and Huy X. Ngo. 1988. Instrumentation and Robotic Image
Processing Using Top-down Model Control. In Robotics and Manufacturing, edited by J.
e. al. New York: ASME.

Stark, L., Mitsuharu Okajima, and Gerald H. Whipple. 1962. Computer Pattern Recognition
Techniques: Electrocardiographic Diagnosis. Communications of the Association Jor
Computing Machinery 5:527-532.

Stark, L., W. Zangemeister, B. Hannaford, and K. Kunze. 1986. Use of Models in Brainstem
Reflexes for Clinical Research. In Clinical problems of brainstem disorders. New York:
Thieme.

Stark, L. W. 1997. Top-Down and Bottom-Up Image Processing. 1997 International Conference
on Neural Networks.

15 October 1999 -31-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Stark, Lawrence W., Yun Choi, and Yong Yu. 1996. Visual Imagery and Virtual Reality: New
Evidence Supporting the Scanpath Theory Explains the Illusion of Completeness and
Clarity. Visual Science: Papers in Honor of J. Enoch.

Stark, L. W., and Yun S. Choi. 1996. Experimental Metaphysics: The Scanpath as an
Epistemological Mechanism. In Visual Attention and Cognition, edited by W. H.
Zangemeister, H. S. Stiehl and C. Freksa. Amsterdam: Elsevier.

Stark, L. W., C. M. Privitera, H. Yang, Y.F. Ho, M. Azzariti, A. Chan, C. Krischer, and A.
Weinberger. 1999. Scanpath Memory Binding: Multiple Read-Out Experiments.
IS&T/SPIE's Symposium on Electronic Imagining, Jan., at San Jose, CA.

Stelmach, L., W. Tam, and P. Hearty. 1992. Static and dynamic spatial resolution in image
coding: An investigation of eye movements. Proceedings, SPIE, at San Jose, CA.

Sutro, L.L., and J.B. Lerman. 1973. Robot Vision. First National Conference on Remote Manned
Systems, at Pasadena.

Tanenhaus, M. K., M. J. Spivey-Knowlton, K. M. Eberhard, and J. C. Sedivy. 1995. Integration
of visual and linguistic information in spoken language comprehension. Science 268
(5217):1632-1634.

Tempini, M.L., C.J. Price, O. Josephs, R. Vandenberghe, S.F. Cappa, N. Kapur, and R.S.
Frackowiak. 1998. The neural systems sustaining face and proper-name processing.
Brain 121 (11):2103-2118.

Thompson-Schill, S. L., M. D'Esposito, G. K. Aguirre, and M. J. Farah. 1997. Role of left inferior
prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proceedings of the
National Academy of Science 94 (26):14792-14797.

Tootell, R.B., D. Malonek, and A. Grinvald. 1994. Optical imaging reveals the functional
architecture of neurons' processing, shape, and motion in owl monkey area MT.
Proceedings of the Royal Society of London, Series B: Biological Sciences 258:109-119.

Tootell, Roger B. H., John B. Reppas, Anders M. Dale, Rodney B. Look, and et al. 1995a. Visual
motion aftereffect in human cortical area MT revealed by functional magnetic resonance
imaging. Nature 375 (6527):139-141.

Tootell, Roger B. H., John B. Reppas, Kenneth K. Kwong, Rafael Malach, and et al. 1995b.
Functional analysis of human MT and related visual cortical areas using magnetic
resonance imaging. Journal of Neuroscience 15 (4):3215-3230.

Umeno, MM, and ME. Goldberg. 1997. Spatial processing in the monkey frontal eye field. I.
Predictive visual responses. Journal of Neurophysiology 78 (3):1373-1383.

Uttal, William R., Todd Baruch, and Linda Allen. 1995. The effect of combinations of image
degradations in a discrimination task. Perception and Psychophysics 57 (5):668-681.

Wagner, R.A., and M.J. Fischer. 1974. The string-to-string correction problem. Journal of the
Association for Computing Machinery 21 (1):168-173.

Weirda, M., and W. Maring. 1993. Interpreting eye movements of traffic participants. In Visual
Search 2 - Proceedings of the Second International Conference on Visual Search, edited
by D. Brogan, A. Gale and K. Carr. London: Taylor and Francis.

Wolfe, Jeremy M. 1998. Visual memory: What do you know about what you saw? Current
Biology 8 (9):R303-R304.

Wolfe, Jeremy M., George A. Alvarez, and Todd S. Horowitz. in preparation, 2000. Attention is
fast but volition is slow.

Yang, Huiyang, and L. W. Stark. 2000. How Do We Recognize Images? IS&T/SPIE's
Symposium on Electronic Imaging, at San Jose, CA.

Yarbus, A. L. 1967. Eye Movements and Vision. New York: Plenum Press.

Yoerger, D. R., and J. R. Slotline. 1987. Supervisory Control Architecture for Underwater
Teleoperation. Proceedings of the IEEE International Conference on Robotics and
Automation RA-3:2068-2073.

15 October 1999 -32-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

Yu, Yong, and Lawrence W. Stark. 1995. An Active Model-Based Algorithm for Correspondence
and Estimation of Pose Parameters of Objects. IEEE International Conference on
Systems, Man, and Cybernetics: Intelligent Systems for the 21st Century, October 22-25,
at Vancouver, British Columbia.

Zangemeister, W. H., K. Sherman, and L. W. Stark. 1995. Evidence for a Global Scanpath
Strategy in Viewing Abstract Compared with Realistic Image. Newropsychologia 33
(8):1009-1025.

Zangemeister, W.H., H.S. Stiehl, and C. Freksa, eds. 1996. Visual Attention and Cognition.
Amsterdam: Elsevier.

Zeki, S., and A. Bartels. 1998. The autonomy of the visual systems and the modularity of
conscious vision. Philosophical Transactions of the Royal Society of London, Series B:
Biological Sciences 353 (1377):1911-1914. '

Zeki, S., and K. Moutoussis. 1997. Temporal hierarchy of the visual perceptive systems in the
Mondrian world. Proceedings of the Royal Society of London, Series B: Biological
Sciences 264 (1387):1415-1419.

Zelnio, E. G. 1991. Air Traffic Control Paradigm; Comparison with Emphasis on Model-based
Vision. SPIE Proceedings 1609:2-15.

15 October 1999 -33-



Invited paper, accepted for publication in JEI 2000, special issue on Electronic Imaging and Human Vision

FIGURES

FIGURE 1 Log-Polar Distortions of a Picture

Two fixations (left and right panels below) on original picture (upper) show log-polar distortions

with high cortical magnification (irregular shapes, lower left and lower right) of successive foveal
ROIs (circles), as well as minification of peripheral regions likely captured as textured or colored
segments (surrounding small squares, lower).

FIGURE 2 EMs while Looking at an Ambiguous Figure: The Ellis Experiment
Identical ambiguous figures of vase (lower left) and two faces (upper left). EMs superimposed on
ambiguous figures as they were actually seen following exposure to priming stimuli (right).

FIGURE 3 Dynamic Display with EMs

Animation of dynamical scenarios (illustrated as snapshots every five seconds time proceeding
from lower left to upper right). EM positions (black circles) taken every 50ms are integrated over
the preceding Ss, and are superimposed onto snapshot images; they represent the basic data
captured for this experiment.

FIGURE 4 Scanpath Theory

EM positions (q 50ms) during dynamic display shown as a connected sequence (upper left) while
the dynamical ROlIs visited form a connected sequence (upper right and lower right). By
numbering or letter identification of smooth pursuit or static fixations, this sequential string of
visited ROIs could be defined. A non-iconic model of alternating perceptual ROIs (lettered
squares) and saccadic EMs (circles with arrows) is shown by solid arrows for the experiment
presented. This is the “feature ring” of the scanpath theory. On other presentations of the
stimulus, other ROIs and sequences could be formed (dashed arrows).

FIGURE 5 EMs while Engaged in Visual Imagery: The Brandt Experiment

Scanpath EM sequence is almost the same for the second looking presentation (middle row,
second grid) as for the first visual imagery presentation (middle row, third grid). During the
visual imagery presentation, no information about the location of the alphabetic symbols, Fs, was
available; thus, the remembered representational model must have controlled the scanpath in a
TD fashion. Quantitative metrics could be obtained in the analysis procedure (lower row) by
creating a finite state automata (middle) for generating the scanpath; then transition probability
coefficients could be arranged in a Markov matrix (right) for later statistical analysis.

FIGURE 6 EM Trajectories and Classification

Trajectories of EMs displayed as functions of vertical and horizontal angles (solid lines) and time.
Location of the dynamic objects shown as dashed and continuous lines (lower), or for one
comparison as a dashed line for horizontal angle (upper). Note saccades, S, and smooth pursuits,
SP, that show up clearly; these and other types of movements (see text) could be identified and
analyzed (lower steps and labels).

FIGURE 7 EM Classification Program

Flow diagram for EM calibration, linearization, differentiation to obtain velocities, and then
analysis into various categories of EM types. The program could also resolve conflicts among
specific EM identification algorithms (see text).
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FIGURE 8 Simplified, or Toy, Diagram Illustrating Metrics for Comparing Scanpaths; and
Parsing Diagram for the Dynamic Scanpath Experiment

Quantitative methodology diagrammed to show similarity indices, Sp and Ss (upper panel).

These pairwise comparisons are organized into Y-matrices (middle panel) and then indices

segregated, averaged, and placed into parsing diagrams (lower panel). Note statistical tests

indicated by bolding, as well as arrows (see text). These two parsing diagrams summarize the

experimental base from a dynamic scanpath study (see text).

FIGURE 9 EMs Compared with Choice, CH: Selection of ROIs Compared

Linearized EMs (upper left) were analyzed into fixations and saccades (upper right) while the
subject looked at a cave painting of horses. Loci chosen by mouse clicks (lower left) could then
be compared (lower right) with EM fixations (see text).

FIGURE 10  Parsing Diagrams; EMs Compared with Choice, CH

Sp (upper) and Ss (lower) parsing diagrams for the choice compared with EM study. Intramodal
read-out comparisons (left and middle panels) as well as intermodal read-out comparisons (right
panel). Results described in text.

FIGURE 11  CH compared with Walking Protocol

Experimental protocol for cross-modal comparison between choice, CH, and walk, WK, read-out
modes. Note similarity of patterning when a second display of stimuli patterns was not given
(absent grids in both sets of upper panels); note difference in patterning when refreshment of
stimulus pattern allowed a new memory schema to be formed (lower panel).

FIGURE 12  Visual imagery: Parsing Diagram for Walking, WK, vs Choice, CH

Sp (upper) and Ss (lower) parsing diagrams for the choice, CH, compared with walking, WK,
study. Intramodal read-out comparisons (left and middle panels) as well as intermodal read-out
comparisons (right panel). Results described in text.

FIGURE 13  Modular Cortex and Connectivity

Recent studies in neurophysiology and fMRI have established a “new phrenology,” the modular
cortex (upper), with different functions assigned to specific regions of the cortex (see text for
further explanation). Connectivity explored in our experiments on inherent and read-out
sequential binding, and as well, on the influence of symbolic binding, is indicated as numbered
arrows joining labelled regions (lower). (See text for further explanation.)

FIGURE 14  Inherent vs Readout Sequential Binding

Sequential read-out experimental findings can be summarized as almost 100% inherent binding,
for spatial or structural similarity of patterns (middle column). However, sequential bindings are
markedly influenced by read-out mode; only two-thirds of the binding is inherent (right column).

FIGURE 15  Control Experiment and Main Experiment

Experimental protocol for the control (upper panel) and main experiment (lower panel) to analyze
the influence of symbolic binding. A major result is the influence of dissimilarity of labelling on
the dissimilarity of the sequential pattern. Clearly, the spatial loci are the same, and thus, the
structural similarity remains high. (Note that refreshment in the form of two additional looking
stimuli are presented in both experiments (lower pair of grids in each of the panels).)
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FIGURE 16: Top Anchor and Bottom Anchor Experiments

Experimental protocol to establish the range of values for Sp and Ss similarity. Top apchor
(upper panel) shows high correlation when no refreshment is permitted (two absent gnds,. lower
row, upper panel). Bottom anchor (lower panel) shows absence of structural and sequential
similarity when a different pattern is presented with the same label.

FIGURE 17  Summary of Symbolic Experiment

Symbolic binding experimental findings can be summarized. Symbolic memory has important
influence on sequential binding, producing an average 50% loss of coherence (compare 0.46 with
0.71, next to bottom row) when the labelling is changed. Since the same loci were re-presented
with a different label, the structural binding, of course, remained the same (compare 0.76 with
0.80, bottom row).

FIGURE 18  Philosophical Approach to Perception

Five stages of the perceptual process (five columns) are illustrated with icons (upper), also
showing BU and TD processes (curved arrows). See discussion in text regarding philosophical
and physiological sources of this schema.

FIGURE 19  Micro-Cortical Processes

Six levels or layers of the visual cortex, known from neuroanatomy, are suggested as the iconic
matching region, where TD input to the visual cortex, at layers I, I1, and III, interact with BU
input going to layers IV and V, from retina via geniculate and optic tracts (modified from Pitts
and McCulloch, 1947).

FIGURE20  Cortical Representation of Perceptual Processes

Although only the microanatomy of the visual cortex is known well enough to support a graph
theoretical model, yet we have suggested a variety of such graphs for structural, sequential, and
symbolic binding, with loci as per labels in the modular cortex. Geometrical binding is used in
our modeling schema, for syntactical interaction between foveal ROIs and peripheral segments.
Different forms of the graphs do not represent any knowledge about feasible or understood
properties of the brain, but rather stress our ignorance.

FIGURE 21  Feedback Model for Supervisory Telerobotic Control

Control systems diagram for telerobotic scheme showing higher level control, with supervisor
and path planner. The serializer provides input to the basic feedback control loop, with camera
and image processing algorithms, IP Alg, monitoring actual position, Ym, of robot (right inset).

FIGURE22  TD Scanpath Scheme for Robotic Vision
Four image processing steps showing robot vehicles with VEs (upper left) and model ROI-
predicted locations (white squares, upper right). Note scanpath sequence for computer image

processing of ROIs (white arrows, lower left) yielding centroid-calculated loci (white crosses,
lower right).

FIGURE23  Advantages of TD Control of BU Image Processing

Pixel intensity diagram forming a 3D representation of the video image (upper). Note hilltops
representing VEs. By predicting ROI loci using TD model (rectangular boxes, lower), it is
possible to do adaptive thresholding only in a small localized region, and thus, achieve important
signal-to-noise ratio improvements. Clearly, foveal fixation in normal human vision achieves the
same functionality.
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FIGURE 24  Block Diagram Explicating Telerobotic Vision Scheme
Flow diagram schema to aid in understanding steps of our telerobotic TD scanpath approach to
image processing and to supervisory control.

FIGURE 25  Iconic Matching in Visual Cortex TD Representation and BU Signals

BU retinal image is shifted with each EM fixation to provide a centered and magnified foveal
projection in the visual cortex. These may be matched by predicted TD iconic representations
from the mind’s eye image. Continuous periphery is shown broken into segments, also suitable
for TD symbolic coding.

FIGURE 26  String Editing Algorithm

Successive stages of the discrete dynamic programming algorithm (matrices at left) document
minimum cost optimization of string editing distance, and thus, accurate measure of string
sequential similarity; computational equations at each stage (to right of matrices).
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INDICES

2 A

Y %
£\

00 O
Sp=0; Ss=0
Y-MATRICES
Sp Subject 1 Subject 2
Picture1 Pict2 Picture1 Pict2
SiP1 065 R 0381 054L 018G
S1 P2 060R 031G 047L
S2 P1 069 R 0331
S2 P2 0.58 R
Ss PARSING DIAGRAMS
DIFFERENT SCENARIOS
same subjects  diff. subjects
R L
0.45(0.10) 0.38(0.11) | Same scenarios
| ~—T%» |
1 v VG| .
0.21 (0.09) 0.22 (0.09) diff. scenarios
0.16 (0.10)
Ra

Sp=1; Ss=1
Ss Subject 1 Subject 2
Picture 1 Pict2 Picture1 Pict2
S1P1 JO40R 0241 031L 008G
S1P2 039R 013G 019L
S2P1 043 R 0211
S2p2 024 R

THREE VIEWPOINT MOTIONS

same subjects  diff. subjects
R L
0.45 (0.16) 0.41 (0.14)
~— |
I \ 2KE
0.38 (0.17) 0.33 (0.14)
0.16 (0.10)
Ra
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Sp

Same
Pattern

Different
Pattern

Ss

Same
Pattern

Different
Pattern

Same Different
Subject Subject
R L R L R L
0.72 (0.08) | 0.62(0.09) 0.62 (0.09) | 0.52(0.07) 0.61(0.08) | 0.63(0.06)
| \\ | | N ] ] AN ]
1V vl (1w vG| |1 v Y G
0.24 (0.07) 0.23 (0.07) 0.35(0.13) | 0.33(0.16) 0.34(0.11) 0.36 (0.13)
0.27 (0.11) 0.27 (0.11) 0.27 (0.11)
Ra Ra Ra
CHvs CH EM vs EM CH vs EM
Same Different
Subject Subject
R L R L R L
0.34 (0.09) 0.26 (0.11) 0.26 (0.13) | 0.12(0.03) 0.17 (0.08) 0.16 (0.04)
] \\ | ] \\ l \\ ]
I v G 1 v G IV [ VG
0.07 (0.04) 0.05 (0.03) 0.08 (0.09) 0.11(0.17) 0.06 (0.04) 0.06 (0.03)
0.04 (0.06) 0.04 (0.06) 0.04 (0.06)
Ra Ra Ra
CHvsCH EM vs EM CH vs EM
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SP

Same
Pattern

Different
Pattern

Ss

Same
Pattern

Different
Pattern

PARSING DIAGRAMS for CHOICE vs WALKING

Same Different
Subject Subject
R L R L R L
.90 (0. 0.50 (0.07 .91 (0. 0.47 (0.11 .87 (0.10) | 0.49 (0.08)
0.90 (0.13) | (0.07) 0.91 (0.13) (0.11) 0.87 (0.10)

N L~ AN l
1V N G 1V G IV M Ve
0.43 (0.16) | 0.39(0.09) 0.42(0.12) | 0.27(0.03) 0.43 (0.15) | 0.41(0.07)

0.20 (0.12) 0.20 (0.12) 0.20(0.12)
Ra Ra Ra
CHvs CH WK vs WK CH vs WK
Same Different
Subject Subject
R L R L R L
0.77 (0.20) | 0.22(0.13) 0.81(0.17) | 0.15(0.08) 0.60 (0.32) | 0.16(0.06)

N . TN > LN
1V N G I N G 1V N G
0.28 (0.14) | 0.11(0.15) 0.15(0.11) | 0.07(0.03) 0.21(0.16) | 0.10(0.12)

0.07 (0.09) 0.07 (0.09) 0.07 (0.09)
Ra Ra Ra
CHvs CH WK vs WK CH vs WK
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e.g.,(eg., MODULAR CORTEX

READ-OUT STRUCTUIRAL
SEQUENTIAL BINDING

BINDING

SEMANTIC BINDING

CORTICAL CONNECTIVITY

Visual
Cortex
\ @

1 Symbolic to Spatial

R Visual Cortex to Spatial
2 Symbolic to Sequential

. . T  Visual Cortex to Symbolic
3 Spatial to Sequential

4 Sequential to Read-Out (RO) EC Efferent Copy to Spatial
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Expermental type [Sp Diff & N% Binding |Ss Diff & N% Binding
CHXCH (pictures) 0.72 0.34
EMXEM (pictures) 0.62 0.26
average 0.67 0.30

0.06 = 15% Read-Out 0.13 = 50 % Read-Out
CH X EM (pictures) 0.61 0.17

034 = 85% Inherent 0.13 = 50 % Inherent
Random 0.27 0.04
CHXCH (imagery) 0.90 0.77
W X W (imagery) 0.91 0.81
average 0.91 0.79

004 = 6% Read-Out 0.19 = 26% Read-Out
CH X W (imagery) 0.87 0.60

0.67 = 94 % Inherent 0.53 =74 % Inherent
Random 0.20 0.07
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CONTROL EXPERIMENT: SAME PATTERN, SAME LABEL WITH REFRESHMENT

F F F F £ 2 5 oF 3
/7
F F 7 F , 4 £ i, F 7
¥ F 2 RN A | * A5
F 4 3< /" 3 / /
f »
1 2 3 4
F f [ F £ s 1" o P L
F F - f 1 1 1
F F - ¥ 31 | 5¢ N £ 5 s
i ¥ i F P T 2 Te
F x—s |k PN &1 F
1 2 3 4

: ] ] e] ]
E £ T Jee “Ie ‘26
£ 3= .— e 3] gl
E T * ~ <
" i e pae
E E € sad] & . oo - . -
1 2 3 4
w L4 1w (™ ™
w w w T W
w 4 \ } jv 3
- \ ~ “y 2 \
w \)N 3 ~] <
S A Bagd . /:9&\ ‘\ e, N \
w w w M/ W M/ Tow 234 Taw W
1 2 3 4

F15




TOP ANCHOR: SAME PATTERN, NO NEW LABEL

T V4 &
T 2 - / 2 - { 2 b / 2 S /
5/ ¥ 4 4
L AT A R
I h L I L I
: il il il il
1 2 3 4
[ o
A | | A 2] | | A KAl | A L 1A
4 ~Ne V o~ 4 4
T T T T
T Aa) T 4 T # T
Zidl 57 Z il
1 2 3 4
BOTTOM ANCHOR: DIFFERENT PATTERN, SAME LABEL
R ,/“'R /Q’R /J'R /L’R
R R yﬁa R ﬂ'& R
R 4 B i R 4 R ¥ B
. el | ol Al | al |
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R | ] || ]
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TOP CONTROL MAIN BOTTOM

ANCHOR EXPERIMENT | EXPERIMENT ANCHOR
SECOND None Same Same ﬁerent
STIMULUS
SECOND LABEL | None Same Different Same
OTHER Interrupt Interrupt New Label Diff 2™ stimulus
INFORMATION
EFFECT Allows Encourages Spatial dominates

re-initialization re-initialization over Semantic

SECOND Same Same Different Different
RESPONSE Some differences Some Simularities
SS (COHERENT) [ 0.86 0.71 0.46 0.07
SP (COHERENT) | 0.94 0.80 0.76 0.36
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APPEARANCE SENSATION SENSORY PERCEPTION | REPRESENTATION

ORGANIZATION
Chaos Impression CNS processing for | A planned forceful, Noumenon
velocity: v=dx/dt | determined activity Symbolic
Class of Doctrine of specific Pre-attentive Perception Ideal
appearances nerve ‘endings’ psychophysics Intuition Notion
Bottom up stuff Bottom up Bottom up Top down active Top down
(not ‘things’!) physiology without | neurophysiology | looking scanpath as cognitive model
space and time with space/time operational phase
computation of perception per se

Where does TD meet BU? ,:ﬁ

Levels I, II, and III meet level IV in the retinotopic visual cortex.
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Yg

Yry.n Path HO Predicted Model
e .
Planner Supervisor
Serializer Plant Noise Al —~- ' ,
Plant Noise L /
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Camera
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Camera (BU Info.)

l Input Image (BU)

\
[omemomemememcmee o emee .- > i
5 Identify ROI and ROI Segmentation of features
§ sampling sequence (TD) TD model
5 image segment > prediction
; Determine whether to
E —{ examine features in ROI
: Determine Dependability 7
Remote of Features (TD) l Yes
Environment f »! Application of Algorithm BU
(BU) measurement
Selection of IP Algorithm based
on Model Information (TD)
Extracted Feature Parameters w/
confirmation confidence level
Determination of existence TD+BU
Signal Model of of features based on Model measurement
inconclusive IP result Information (TD) verification
B k
(BU Feedback) l Yes
Adaptive Algorithm f A
M((l;p:; ‘:ararﬁzg?m or < Match Features Parameters
Error in Feature against Model Predicted
- Parameter prediction Parameters
0
:: Feature Prediction Errors for other > . D da?a
° features in same/other camera Integration
i
H:::::====:=.========:==========> Feature Detecmbll“'y’ Conformation &
Low-level IP Algorithm Parameter Setting )
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TOP DOWN MIND'S EYE
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D-MATRIX FOR STRING COMPARISON.

g b XN D O~ O
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[AV)
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ABBCD S2; = ABCDA

D-matrix initialization:
D[0][0]=0

D[i][0] =i
D[0][j] =}

Re(diag); De(vert); In (horz)

D-matrix computation:

Re = D[i-1][j-1+hesti2[1][j]
De = D[i-1][j]+hestu[i][j]
In = D[i][j-1]+hcste[i][j]

D[i][j] = min(Re,De,In);

D-matrix completion:

D[n][n] = min_cost
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