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0. ABSTRACT

The repetitive scanpath eye movement, EM, sequence enabled an approach tothe representation
ofvisual images in the human brain. We supposed that there are several levels of"binding" —
semantic orsymbolic binding; structural binding for the spatial locations ofthe regions-of-
interest; and sequential binding for the dynamic execution program that yields the sequence of
EMs. The scanpath sequences enable experimental evaluation ofthese various bindings that
appear to playindependent roles and are likely located indifferent parts of themodular cortex.

EMs play anessential role intop-down control of theflow ofvisual information. The scanpath
theory proposed thatan internal spatial-cognitive model controls perception and theactive
looking EMs. Evidence supporting thescanpath theory includes experiments with ambiguous
figures, visual imagery, and dynamic scenes. It is further explicated ina top-down computer
vision tracking scheme fortelerobots using design elements from thescanpath procedures. We
also introduce procedures —calibration ofEMs, identifrcation of regions-of-interest, and analysis
and comparison programs — for studying scanpaths. Although philosophers have long
speculated that "we see in ourmind's eye", yet until the scanpath theory, no strong scientific
evidence wasavailable to support theseconjectures.

Keywords: top-down vision, scanpath theory, representation, structural binding, sequential
binding, read-outmechanisms, computervision

1. INTRODUCTION

Vision. Human vision iscomplex. The essential problem ishow tomatch bottom-up, BU,
confirmatory signals coming both from the wide peripheral visual field, with only low resolution,
but with high sensitivity for moving objects, and from multiple high-resolution glimpses by the
centrally located fovea, a small, circa one-degree region. These foveal regions-of-interest, ROIs,
are sequentially visited by a string offixations, shifted by a string ofsaccades, rapid eye
movement, EM, Jumps, and are simultaneously matched by top-down, TD, symbolic, spatial and
sequential representations or bindings of thehypothesized image.

When the retinal field is mapped onto the visual cortex, there is a considerable geometrical
magnification ofthe signals coming from the fovea, and a consequent reduction ofsignals
coming from the periphery. The log-polar distortion (Figure 1) isa rather good depiction ofthe
geometry ofthe visual image mapped onto the visual cortex.(Dow etal. 1981; Schwartz 1984)
When the high-resolution fovea isfixated on a particular part ofthe picture, such asthe sailboat at
the edge ofthe beach, that ROl is magnified on the visual cortex. Contrariwise, those parts ofthe
image lying ontheperiphery oftheretina are minified, sothatonly color and textural
segmentation of large areas can be appreciated at the low resolution ofthe periphery. Two such
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foveal and peripheral representations(Figure 1) providean indicationof the kind ofBU
information coming into the visual brain.

FIGURE 1 Log-Polar Distortions of a Picture
Two fixations (left and right panels below) on original picture (upper) show log-polar distortions
with high cortical magnification (irregular shapes, lower left and lower right) of successive foveal
ROIs (circles), as well as minificationof peripheral regions likely captured as textured or colored
segments (surrounding small squares, lower).

Scanpath EMs. Observations of repetitive sequences ofEMs while a subject looks at a picture
led Noton and Stark (Noton and Stark 1971a; Noton and Stark 1971b; Noton and Stark 1971c) to
the experimental definition ofthe scanpath asan idiosyncratic alternation ofglimpses (called
fixations or foveations) and rapid jumps ofeye position (called saccades) to various ROIs, inthe
viewed scene. (Crosby 1990; Jeannerod, Gerin, and Pemier 1968; Locher and Nodine 1974;
Mackworth 1978; Mackworth andBruner 1970; Mackworth andMorandi 1967; Mandler and
Whiteside 1976; Parker 1978; Schifferli 1953; Senders, Fisher, and Monty 1978; Yarbus 1967)
EMs and attention shifts are very closely linked; it isonly in an unusual laboratory situation that
the two can be putatively separated; psychologists generally study attention shifts without
measuring EMs, and neurologists study EMs without measuring attention shifts.(Mackeben and
Nakayama 1993; McPeek, Maljkovic, andNakayama 1999; Nakayama and Joseph 1998)

Examples oftwo such EM scanpaths (Figure 2) are shown for the classical ambiguous figure,
"Two Faces or aVase'' (Figure 2, left column). Depending upon the TD internal cognitive
model, the subjects "sees" one or another ofthese two interpretations.(Ellis and Stark 1979; Stark
and Ellis 1981) Some control over the current interpretation can be induced by 'priming' the
subject with anon-ambiguous distortion of the ambiguous figure (Figure 2, right column). Not
only does the subject report on the interpretation, but her EMs show quite different patterns (left
column), easily noted to be appropriate for the comparison oftwo faces in one case (upper row)
or viewing the vase in the other case (lower row). Ofcourse, the actual picture viewed after the
priming was the same in both cases. This evidence from Ellis and Stark(Ellis and Stark 1979)
supports the scanpath theory (Fig. 2provided by Privitera and Weinberger, 1998).

FIGURE 2 EMs while Looking at an Ambiguous Figure: The Ellis Experiment
Identical ambiguous figures ofvase (lower left) and two faces (upper left). EMs superimposed on
ambiguous figures as they were actually seen following exposure to priming stimuli (right).

Dynyiic Scenes. We introduce our EM recording and analysis methods in the context ofan
ongoing experimental study of interest to our research group, that is, the nature ofscanpath EMs
when looking at dynamic displays (Figures 3and 4). Animations, constructed graphical scenarios
(Figure 4), showed aset ofmoving cars on intersecting roads.(Blackmon et al. 1999) Subjects
were clearly interested in the possibility ofcollisions. Their internal models evidently developed
dynamical internal representations that guided their EMs to follow these objects ofinterest.
Snapshots at five-second intervals, ofafifteen second presentation ofareduced dynamical
graphic display, are shown (Figure 3) with time along the oblique axis. EMs were recorded
throughout, and the heavy dots represent the location ofEM fixations and thus, ofthe fovea
during the five seconds preceding each ofthe snapshots.

FIGURE3 Dynamic Display with EMs
Animation ofdynamical scenarios (illustrated as snapshots eveiy five seconds time proceeding
from lower left to upper right). EM positions (black circles) taken every 50ms are integrated over
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the preceding 5s, and are superimposed onto snapshot images; they represent the basic data
capturedfor this experiment.

Scanpath Theory. The scanpath theoiy proposed that an internal spatial-cognitive model
controlled both perception and the active-looking EMs ofthe scanpath sequence (Noton and Stark
1971a; Noton and Stark 1971b; Noton and Stark 1971c) and evidence for this came from new
quantitative methods, experiments with ambiguous figures (Figure 2),(Ellis and Stark 1979; Stark
and Ellis 1981) and more recently from experiments on visual imagery (Brandt etal. 1989;
Brandt and Stark 1997; Kosslyn 1980) and from MRI studies on cooperating human subjects.
(Kosslyn 1994) (See Appendix M.) The scanpath theoiy is illustrated (Figure 4) with the actual
EM positions (upper left). After analysis of the EMs into fixations and smooth pursuits (upper
right) the foveations and smooth pursuit tracking episodes are numbered in sequence.

Smooth pursuits are EMs that continually track amoving object; in so doing, they place the fovea
on top ofthe moving target.(Weirda and Maring 1993) Thus, a smooth pursuit may appear to the
perceiving brain as would afixation on astationary target. Ofcourse, the brain is informed by
efferent copy ofthe EM commands ofthe motion ofthe eyes as well.(Lawden etal. ) We treat
these smooth pursuits in asimilar fashion to fixations for the purposes ofthe scanpath theory and
apply the quantitative measures we use toanalyze the scanpath (see below).

The string ofsuch glimpses, both fixations and smooth pursuits, is shown in a more abstract form
(lower right) with string labels, "FABCBE." Anon-iconic representation ofan operational model
capable ofgenerating such a scanpath (lower left) includes both fixations (lettered boxes) and
commands to EMs to shift the fovea (circles with arrows). Glimpses and EM commands
alternate. These sequences are not deterministic, but rather probabilistic. The solid lines are for
the particular experiment illustrated (Figure 4), while the dashed lines represent other
experimental scanpaths measured during repeat studies.

FIGURE 4 Scanpath Theory
EM positions (q 50ms) during dynamic display shown as aconnected sequence (upper left) while
the dynamical ROIs visited form a connected sequence (upper right and lower right). By
numbering or letter identification ofsmooth pursuit or static fixations, this sequential string of
visited ROIs could be defined. Anon-iconic model ofalternating perceptual ROIs (lettered
squares) and saccadic EMs (circles with arrows) is shown by solid arrows for the experiment
presented. This isthe "feature ring" ofthe scanpath theory. On other presentations ofthe
stimulus, other ROIs and sequences could be formed (dashed arrows).

Binding. How is the internal model distributed and operationally assembled? The concept of
binding speaks to the assigning ofvalues for the model and its execution by various parts ofthe
brain. (Stark et al. 1999; Wolfe 1998) We assume that there are several levels of "binding" —
symbolic or semantic binding, spatial binding for the structural locations ofthe ROIs,(He and
Nakayama 1992; Nakayama, He, and Shimojo 1995; Ploner et al. 1999) and sequential binding
for the dynamic execution program that yields the sequence ofEMs. The EM scanpath approach
is complementary to studies being vigorously pursued in other laboratories —on attention shifts,
(Wolfe, Alvarez, and Horowitz in preparation, 2000) without recording concomitant EMs, on
functional magnetic resonance imaging, fMRI (see Appendix M), and positron-emission
tomography, PET, in man, and on the neuroanatomy and neurophysiology ofanimals. We thus
try to use this current neurological information to localize where these different aspects ofthe
spatial-cognitive model might existin the brain.
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Aim. The aim of this study is to attempt to dissect out different forms of bindingand to test their
respective contributionsto the experimental scanpaths. The use of the scanpath in robotic
computer vision both illustrates a successful application, and provides a detailed operational
explication of the scanpath theory. Finally, we speculate on the nature of perception and the
cortical organization underlying vision.

2. METRICS and ANALYSES

Stimuli. Several sets of stimuliwere used—static and dynamic pictures for the *looking
experiments* andalsoa series of gridpatterns for the Visual imagery experiments.* A complex
of computer workstations were interconnected in our Berkeley laboratory Internet; these included
an Indigo SGI for display, the SGIand a PC-586 for collection ofEM data, the PC-586alonefor
choice, CH, experimental display and data collection, and foranalysis either of these work
stations. Each ofthe computers was dedicated to running a part ofthe complex experiment.
Software generated the protocol, displayed the stimuli, recorded the EMs, analyzed the collected
data, compared (vector) sequences offixations for analysis, and displayed the intermediate and
final results. Software ranged from special labprograms to Matlab toolboxes forcertain
functionalities.

2.1. Visual Imagery Scanpath Experiments withGridPicture

Siniple grid with apattern ofalphabetical symbols is viewed by the subject for two seven-second
periods (Figure 5, upper row, left two grids). The EMs show somewhat repetitive scanpaths for
these 7-second looking periods (middle row, left two grids). Next ablank grid is displayed
(upper row, third grid). When asked to engage in visual imagery (Kosslyn 1980; Kosslyn 1994;
Kosslyn and Osherson 1995; Singer, Greenberg, and Antrobus 1971) and to imagine the previous
pattern, the subject makes a scanpath (middle row, third grid) very similar to those made when
looking at the patterns. (Brandt et al. 1989; Brandt and Stark 1997; Stark, Choi, and Yu 1996)
However, at this time there is no external pattern, only the subject's memory, that is, the internal
cognitive spatial model, to guide the EMs. Then the subject is asked to draw the pattern from
memory (right grids); this is useful as an operational instruction to impress upon the subject to
localize c^efully the components of the pattern to be remembered. Finally, afinite-state
automata is derived from the experimental data (bottom row, middle) whose frequency of
transitions is indicated by number and strength ofconnecting arrows; these could also be placed
as coefficients in aMarkov matrix (bottom row, right). (Brandt et al. 1989; Brandt and Stark
1997) Figure 5has been modified from Stark, Choi, and Yu, 1996.(Stark and Choi 1996)

FIGURE 5 EMs while Engaged in Visual Imagery: The Brandt Experiment
Scanpath EM sequence is almost the same for the second looking presentation (middle row,
second grid) as for the first visual imageiy presentation (middle row, third grid). During the
visual imagery presentation, no information about the location of the alphabetic symbols, Fs, was
available; thus, the remembered representational model must have controlled the scanpath in a
TD fashion. Quantitative metrics could be obtained in the analysis procedure (lower row) by
creating afinite state automata (middle) for generating the scanpath; then transition probability
coefficients could be arranged in aMarkov matrix (right) for later statistical analysis.

2.2. EMs

EM Recording. Avideo camera system for EM tracking was convenient, but aswith all EM
recording systems, required repeated caIibration.(Llewellyn-Thomas 1968) With calibration any
drifts ornon-linearities could be removed. Fixation identification algorithms separated the raw
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EMs iiito fixations, rapid saccadic EMs, and smooth pursuits (Figures 4,5, and 6) so that further
analysis could be done on the loci and sequences offixations considered as astring ofloci of
glimpses, the vector ofactive looking. Besides recording EMs, we also introduce another
experimental technique. Here, the subject isasked to click a mouse cursor onto various ROIs in
the picture, or grid pattern, displayed on the computer screen. When presented with an empty
grid, the subject must depend only upon memory bindings.

EM Analysis. EM experiments must be carried out carefully. Calibrations are used to linearize
the data and to avoid drift. While the trajectories ofthe EMs may be displayed (Figure 5), the
locations offixations and smooth pursuits and ofsaccadic Ems are usually automatically
identified. This is easier for static stimuli, than for dynamic stimuli (Figure 6), but with
classification programs EM identification is quite feasible (Figure 7). The programs in our
laboratory have a long history dating back to 1959, at Yale University, going through our stay at
M.I.T., the University ofIllinois, and our long residence (31 years) at Berkeley. Although itis
impossible to list all the names ofthe persons contributing to these programs, we must mention
Robert Payne, Alan Sandburg, John Semmlow, Christian Freksa (Stark et al.)(especially for the
scanpath analysis), A. Terry Bahill, Michael Clark, An Nguyen, Yun Choi, Yong Yu, and most
recently, Y. F. Ho.

FIGURE 6 EM Trajectories and Classification
Trajectories ofEMs displayed as functions ofvertical and horizontal angles (solid lines) and time.
Location ofthe dynamic objects shown as dashed and continuous lines (lower), orfor one
comparison as a dashed line for horizontal angle (upper). Note saccades, S, and smooth pursuits,
SP, that show up clearly; these and other types ofmovements (see text) could be identified and
analyzed (lowerstepsand labels).

FIGURE 7 EM Classification Program
Flow diagram for EM calibration, linearization, differentiation toobtain velocities, and then
analysis into various categories ofEM types. The program could also resolve conflicts among
specific EM identification algorithms (see text).

2.3. Analyses of theVectors of Looking

Following the analysis ofthe EMs, the series offixations is defined as astring. These strings
represent actions ofa finite-state automata (Figure 5, bottom row). The probabilistic transitions of
the finite state automata-model is the basis for further analysis, including the resultant metrics
comparing these strings —Sp, Ss, Y-matrices and parsing diagrams (Figure 8). (Additional
explanation ofthe string-editing algorithm is provided in Appendix Aand in Figure 26.)

We compare each pair ofstrings, to see how many letters they have in common; this matches the
locations ofthe fixations and gives an Sp similarity index for the similarity ofloci. We further
compare each pair ofstrings as to the order ofthe string letters; this provides Ss, the similarity
index for sequence strings.(Choi, Mosley, and Stark 1995; Hacisalihzade, Stark, and Allen 1992;
Kruskal 1983; Privitera, Krishnan, and Stark 1999; Privitera and Stark 1998; Stark and Ellis
1981; Stark and Choi 1996; Wagner and Fischer)

Simplified scanpaths are compared (Figure 8, up^per row). Two different scanpaths (left) with no
locational similarity, Sp =0, and no sequential similarity, Ss =0, may be compared to two
scanpaths with exact similarity, Sp =1and Ss =1(right), and to apair ofscanpaths with exact
locational similarity, Sp = 1, but with no sequential similarity, Ss =0(middle). Pairwise
comparisons ofall scanpaths were assembled in Y-matrices. AY-matrix is an ordered array of
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the string similarities, eitherSpor Ss,to enable further sorting andaveraging. Twosimplified Y-
matrices(middle row) show such arraysand their row and column labels (Subject 1, SI, and
Subject2, S2, are two ofthe five subjects;Picture 1, PI, and Pict 2, P2, are two different
scenarios). Finally, sorted and averaged values are collected into parsing diagrams (lower row).
The Parsing Diagram enables comparisons among these averaged similarity coefficients: R, for
repetitive scanpaths, same subject looking at the same picture at different times; Local = L,
different subjects, same picture; Idiosyncratic = I, same subject, different pictures; Global = G,
different subjects, different pictures; Random = Ra, random strings compared.

FIGURE 8 Simplified, or Toy, Diagram Illustrating Metricsfor Comparing Scanpaths; and
ParsingDiagram for the Dynamic Scanpath Experiment

Quantitative methodology diagrammed to show similarity indices, Spand Ss(upper panel).
These pairwise comparisons areorganized into Y-matrices (middle panel) and thenindices
segregated, averaged, and placed into parsing diagrams (lowerpanel). Note statistical tests
indicated byholding, as well asarrows (see text). These twoparsing diagrams summarize the
experimental base from a dynamic scanpath study(see text).

2.4. Analyses ofDynamic Scanpath Experiment

To illustrate further how we use our analytic methods, we describe the Ss parsing diagrams for
the dynamic scanpath experiment (Figure 8, bottom panel).(Stark etal. 1999) Numbers in
parentheses are standard deviations; bolded values represent significant differences (at apvalue
<0.01) from the Ra, random values of0.16 (p <0.01). ANOVA analysis provided tests of
significance, and arrows represent significant differences with respect to the G, global value; this
was considered a *bottom anchor.'

An import^t distinction is that between Repetitive similarity, R, (Figure 8, upper left box) and
Random similarity, Ra. When using different dynamic scenarios with the same general
background, the same subject with the same stimulus showed arepetition value, R, of0.45. This
indicated that 45% of the sequences were congruent, and should be compared with the randomly
expected Ss, Ra value of0.16. However, when scanpaths for the same subject looking at
different scenarios were compared (Figure 8, bottom row, left parsing diagram), yielding the Ss-1
value, the sequences were only 21% similar. This quantitative comparison documents that the
scanpath theory generating the sequential EMs developed quite different sequences for different
scenarios, that is, for different patterns ofmotion ofthe automobiles in the graphical
scene.(Blackmon etal. 1999; Stelmach, Tam, and Hearty 1992) We could conclude that different
scenarios were viewed bydifferent scanpath sequences.

Adifferent result was obtained when different viewpoint motions were compared (Figure 8,
bottom row, right parsing diagram), for the same scenario. The three viewpoint motions were
panning, zooming, and static. Panning, or horizontal scanning, and zooming, or near/far
approach ofacamera, are standard movie filmic maneuvers; static means the camera point-of-
view is at rest. The scenario remained the same, and the idiosyncratic similarity index, 1, was
0.38. We could conclude that viewpoint motion did not make the scanpath sequence different for
different motions. Statistical analysis, ANOVAs, supported these conclusions. For both sets of
experiments, the similarities fordifferent subjects, L, arealmost the sameas the R values. This
may be due tothe fact that the sequential motions ofthe different cars capture the attention of
different subjects in a similar way, perhaps in a bottom-up fashion, or in cortical area MT.
(Blackmon etal. 1999; Bom and Tootell 1992; Culham etal. 1998; Flagg 1978; Tootell etal.
1995a;Tootell et al. 1995b)
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2.5. Protocols and Subjects

As indicated above, wecould use a second method of 'read-out' - 'choice,' CH, clicking ona
mousecursor position, insteadof measuringEMs. Of course,we studied the similaritiesand
differences between the usual scanpath experiments, classical read-out method 1, allowing
subjects to freely gaze at thepicture stimuli (e.g.,Figure 9), andthenew second method of read
out, CH, byasking subjects to move a cui^or over the stimuli pictures and click deliberately on
ROIs. (See Results, Section 3.1.)

Another experimental task was to indicate theremembered patterns inthevisual imagery
experiment. Wepresented subjects with grids containing patterns of alphabetic symbols, letters,
and asked them to image thepattern. The subjects then moved a cursor over blank grids and click
deliberately on imagined or remembered loci. In thisway, the 'CH' method provided foran
objective 'read-out' of the structurally andsequentially bound memory traces. Further, we
compared similarities and differences between this "cursor-CH" method and a third method of
readout, that is, utilizing a locomotory pattern. Inthis third method, 'walking,' WK, weasked
subjects starting from a fixed initial position to walk overa blank grid marked onthe floor and
stopsequentially on thosegrid squares that represented remembered loci of thealphabetical
letters.

Subjects were students visiting in our laboratory whoparticipated without pay; according to the
rulesof the Berkeley Committee for the Protection of Human Subjects theycould terminate the
experiment at will if they experienced any discomfort. Theyreceived oral and writtenand also
'operational' instruction, viewed a few preliminary pictures or grids, andusually wereableto
complete an experiment in less than twenty minutes. Operational instructions enforced a pattern
of behavior by requiring the subjectsto carryout procedures that serve as additional re-
enforcement.

3. RESULTS: STRUCTURAL AND SEQUENTIAL BINDING

Ourexperimental results on binding, explained indetail below, compare the memory similarities
between different read-out modes. Two different protocols compare EMs vs choice, CH,while
looking at a setof pictures (Figures 9 and 10), and choice, CH, vswalking, WK, while
remembering a set of grid patterns (Figures 11 and 12). Different 'read-out' motorbehaviors,
indicating remembered patterns, were analyzed in the same way, and with the same methodology.
Pairwise comparisons between scanpaths were carried outwith each read-out mode (see Figures
10 and 12, left and middle parsing diagrams), and then, between all pairs ofone-mode-against-the
othermode (seeFigures 10and 12,rightparsing diagrams).

By studying thewithin-mode similarities against the across-mode similarities we can assign
quantitative numbers to therelative strengths of inherent and ofread-out binding. Inaddition,
we enriched the experimental protocols by examining the phenomenon of "consolidation"; bythis
term ismeant the memory coherence within repeated response patterns that may be stronger than
thememory persistence from stimulus to response. (For additional results, seeSection 4, Results:
Symbolic Binding, andalsoAppendix B,Consolidation).

A moderate stressor to reduce accuracy ofmemory was theuse of interruptions, often with other
sets ofexperimental grids. Another stressor we used was totiltthe grid and require the subject to
adjust his display ofthe remembered pattern tothe tilted blank grid. Most often, a training
period, whereby thesubject made horizontal and vertical lines ontilted pictures, was introduced.
Experiments (notillustrated herein, seeStark I999(Stark et al. 1999)) utilizing this"tilting"
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paradigm demonstrated the robustness of the structural binding to adaptation, producing 45-
degree rotations ofthe blank grids and the memory pattern. (We wish to thank Dr. G. M.
Gauthier, CNRS, University ofthe Mediterranean at Marseilles-Luminy, for suggesting the tilting
paradigm to us. (Gauthier et al. 1979; Gauthier et al. 1994))

3.1. Choice, CH, Compared with Ems; Picture Viewing

The alteration of the scanpath protocol, substituting mouse-cursor location and clicking for
measuredEM fixations, has many experimental advantages.(Stark et al. 1999) However, it had to
be carefullyevaluated by comparisons between EM fixations and choice,CH, loci in a varietyof
studies. In developingand expandingthe protocol, we had subjects look at a numberof pictures
and then we studiedtheir EMs(Figure9). The methodological procedures to go from rawEMs
(upperleft)to identified fixations (upper right) werenecessary. Linearized EMsof a subject
looking at a cavepainting of a horse (upper left) were transformed bya "fixation algorithm" to a
sequential stringof fixations (upper right, circles), with connecting vectors representing saccades
and their sequence (upper right, arrows).

Next, sequential string of CHs, produced by mouse cursor and clicks (lower left, squares) are
also connected by vectors (lower left, arrows). Then, these two strings can then be compared as
toidentity oftheir loci, within a distance determined by a K-means algorithm, tocalculate the Sp
and Ss similarity indices between EMs and CH procedures.(Privitera and Stark 1998) AK-means
algorithm proceeds by calculating a parameter, such asdistance, through each distance value, and
then determines the optimum distance in terms ofacriterion such as the highest Sp match. As an
extra bonus for the reader, consider that this cave painting, and artistic work created 31,000 years
ago has perhaps been equaled but not surpassed inthe ensuing millenia of human social
prehistory and history. The scanpath theory has awakened new interest in the neurology of
artistic communication. (Elderfield 1998; Zangemeister, Sherman, and Stark 1995; Zeki and
Moutoussis)

FIGURE 9 EMs Compared with Choice, CH: Selection ofROIs Compared
Linearized EMs (upper left) were analyzed into fixations and saccades (upper right) while the
subject looked atacave painting ofhorses. Loci chosen by mouse clicks (lower left) could then
becompared (lower right) with EM fixations (see text).

As explained inthe Methods section, many pairwise comparison indices are collected and sorted
using the Y-matrices. Averaged results are then organized in the parsing diagram (Figure 10: Sp,
upper row; Ss, lower row). EM comparisons (middle column) document that the Rvalues, 0.62
and 0.26 are significantly different from Ra and from G, the two bottom anchors (holding or
heavy arrows indicate p<0.01). Note that while Sp-L has arelatively high value, indicating that
different subjects selected similar ROIs, the Ss-L value is lower suggesting that different subjects
utilized different sequences for the same picture and similar loci across subjects. The Ss-Ra
values throughout are much lower than the Sp-Ra values, since there are many ways to establish
sequences among similar loci. Almost identical results are found for CH comparisons (left
column), with somewhat higher coherences, perhaps due to themore deliberate TD selection
mental process for cursor clicks vs natural EMs.

Now when we compare EMs and CH (right column) we find related distributions ofsimilarity
indices; Rvalues are large and significantly different form Gand Ra. The R-Sp index is large,
indicating similarityof objectsacrossmodes; that is, it coheresfor both read-out modes. Thus it
appears that almostnoneof the structural binding is related to read-out mode differences.
However, because the cross-mode R-Ssvalueequal to 0.17 is lessthanthe R-Ss values for either
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choosing or EMs, we must, inthiscase, partition thesequential binding between inherent and
readout components.

FIGURE 10 Parsing Diagrams; EMs Compared with Choice, CH
Sp (upper) and Ss (lower) parsing diagrams for the choice compared with EM study. Intramodal
read-out comparisons (left and middle panels) aswell as intermodal read-out comparisons (right
panel). Results described in text.

3.2. Choice, CH, Compared with Walking, WK; Grid Viewing

Inanother setofexperiments, we presented grids (see Figures 5 and 11) to be memorized and to
be recalled. Again two modes ofresponse were compared: —using a cursor moving over a blank
grid presented ona computer screen, orwalking, WK, over a large grid outlined over the
laboratory floor(Figure 11). (Stark et al. 1999)

Squares with alphabetical symbols represent grid patterns thatthesubject could look at for a
period ofthree seconds for each oftwo presentations (Fig. 11, two left-most columns). Subjects
were then asked to move thecursor sequentially to each of thevisually imaged locations of the
symbols andto click themouse buttons (this took about tenseconds) to indicate the remembered
alphabetically-labeled grid squares (Fig. 11, four right-most columns); thus providing an output
string ofremembered alphabetically-labeled grid squares. There was a fixed initial position ftom
which the subjects started each time. Experiments were also carried out with subjects instructed
towalk freely over a large grid placed on the floor; again, there was a fixed initial position from
which they started each time. They were also instructed tostand with two feet in the appropriate
grid-spaces for a brief moment, to indicate each labeled locus; in this way, the experimenter
could record thesequences ofstops. Again, this provided anoutput string ofremembered
alphabetically-labeled grid squares. CH and Walking, WK were alternated without additional
refreshment (Fig. 11, blank regions, second andfourth rows).

Also CH and WK could bepresented with refreshment (Fig. 11, fifth and sixth rows). This
refreshment (two leftmost grids, sixth row) allowed a modified, reinitialized, sequential pattern to
be developed inthe subject's representation (compare fifth and sixth rows). (For additional
results, see Appendix B: Consolidation.) (See also 4.Results: Symbolic Binding; compare
control experiment with refreshment (Figure 15, upper) with the top anchor experiment without
refreshment (Figure 16, upper), and also the summary ofSymbolic Binding results (Figure 17).)

FIGURE 11 CHcompared with Walking Protocol
Experimental protocol for cross-modal comparison between choice, CH, and walk, WK, read-out
modes. Note similarity ofpatterning when asecond display ofstimuli patterns was not given
(absent grids in both sets ofupper panels); note difference in patterning when refreshment of
stimulus pattern allowed a new memory schema tobe formed (lower panel).

To buttress the qualitative results as shown in Figure 11, we provide quantitative assessments
from the similarity indices. The results came from many pair-wise comparisons for four subjects,
naive with respect to the purpose ofthe experiment, but performing quite well in the task; their
similarity indices were sorted using the Y-matrices and averaged in the parsing diagrams (Figure
12: Sp, upper row, and Ss, lower row). CH comparisons (Fig. 12, left column) document that the
Rvalues, 0.90 and 0.77, are significantly different from Ra and from G,the two bottom anchors.
Bold values orheavy arrows indicate p<0.01, that the values differed from Ra (bold) and from G
(arrows). Again, the Ss-Ra values throughout are much lower than the Sp-Ra values, since there
are many ways to establish sequences among similar loci. Almost identical results, 0.91 and 0.81,
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are found for WKcomparisons (Fig. 12, middle column) withrespect to the Rvalues, both Sp
and Ss.

When we alternate CH and WK without refreshment(Fig. 12, right column), we find somewhat
modified distributionsof similarity indices. R values,0.87 and 0.60 are large and significantly
different from G and Ra. That Sp-R is identical to the values for CH x CH and for WK x WK
indicatesthat structuralbinding relied uponan inherentcomponent.. That Ss-R is less than for
CH XCH and for WK x WK indicates that both the inherent and the readout components were
important for sequential binding.

FIGURE 12 Visual imagery: Parsing Diagram for Walking, WK, vs Choice, CH
Sp (upper) and Ss (lower) parsing diagrams for the choice, CH, compared with walking, WK,
study. Intramodal read-out comparisons (left and middle panels) as well as intermodal read-out
comparisons (right panel). Results described in text.

3.3. Modular Cortical Organization: The New Phrenology

A sketchofthe lateralview of the humancortex(Figure 13,upper) is presentedto help
understand the logic of these differentreadoutexperiments. We are trying here to distinguish
between inherent sequential binding, likelylocated in the prefrontal cortex,from variable
sequential binding, dependent uponreadout mode. The modes we are exploring are EM
fixations, as in theclassical scanpath experiments, choice, CH, using mouse-cursor positioning
and clicking, and locomotion over a grid on the laboratory floor.

Information about localization in thecortex comes from a variety of sources. Classical
neuroanatomyand analyses of neurological syndromehave existed for several centuries, and had
achieved a considerable degree of sophistication. Experimental ablation and electrical
stimulation physiological studies next came to play. Modem methods, ranging from intrusive
single-unit neurophysiology, tocurrent PET and fMRI are daily supplementing earlier studies
(seeAppendix M).(Zeki and Bartels) We have collected inAppendix N a few significant
references tothe neurophysiology inhigher-level functions, that are pertinent tonew concepts of
modular cortical organization. Note (Figure 13, upper) the *what' ventral pathway from visual
cortex, VCto the temporal cortex, TC,(especially leftside)to which we attribute Semantic
Binding. Similarly, note the 'where' dorsal pathway from VC totheparietal cortex, PC,
(especially ontheright side) towhich we attribute Structural Binding. Known connections from
PC tothe pre-frontal cortex, PFC, have been shown tobe related to temporal sequencing, and to
which we attribute Inherent Sequential Binding. Connections continue to the frontal eye fields,
FEF, towhich we attribute one form ofRead-Out Sequential Binding. (Although a complete
review of thisfascinating area is beyond thescope of thepresent paper, a number of articles are
referred to in the Discussion and Appendix sections below.)

FIGURE 13 ModularCortexand Connectivity
Recent studies inneurophysiology and fMRI have established a "new phrenology," themodular
cortex(upper), withdifferent functions assigned to specific regions of the cortex (see text for
further explanation). Connectivity explored inourexperiments on inherent andread-out
sequential binding, andas well, on the influence of symbolic binding, is indicated as numbered
arrows joining labeled regions (lower). (See text forfurther explanation.)
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3.4. Inherent vs Read-out Sequential Binding

Now, we may consider the connectivity ofthe modules ofthe modular cortex (Figure 13, lower),
as anaidto define the logic of the results of these experiments.

Asummary ofcoefficients comparing within-mode and across-mode experiments (Sp, left
columns, and Ss, right columns) provided the basic similarity coefficients from the parsing
diagrams (Figures 10 and 12). These were then normalized (Diff&N%columns) as
percentages, by setting the bottom Ra anchor to0% (e.g., 0.27, Figure 14, upper left panel), and
the within-mode Rvalues as 100% (e.g., 0.67, Figure 14, upper left panel). The two experimental
protocols, CH XEMs (upper panels) and CH x Walking, WK (lower panels), have yielded
reasonably consistent results.

For Sp, we subtract the Rvalues for across-mode from the within-mode values; the resulting
norrnalized percentage numbers are 85% and 94% for the inherent component ofstructural
binding. Since for structural binding, the inherent component dominates, this may be interpreted
as putting the parietal lobe structural memory as too early in the process tobe disturbed oraltered
by read-out mode differences.

For Ss, we again subtract the Rvalues for across-mode from the within-mode values; the
resulting normalized percentage numbers are 50% and 74% for the inherent component of
structural binding. We see that for sequential binding, although the inherent component is larger
(2/3rds), the readout component is significant (l/3rd) and thus both components are important in
sequential binding. This may be interpreted as allowing the pre-ffontal lobe inherent sequential
memory to besomewhat altered by readout mode located further back inthe frontal lobe; these
regions are, ofcourse, differentfor EM, for handmovement and for locomotion.

To summarize, structural binding is inherent; that is, it is the same independent ofreadout modes.
Sequential binding has strong components for both inherent and for readout binding; that is, the
readout mode contributes strongly (about one-third) to the memory ofthe sequence.

FIGURE 14 Inherent vsReadout Sequential Binding
Sequential read-out experimental findings can be summarized as almost 100% inherent binding,
for spatial or structural similarity ofpatterns (middle column). However, sequential bindings are
markedly influenced by read-out mode; only two-thirds ofthe binding is inherent (right column).

4. RESULTS: SYMBOLIC BINDING

How Can We Experiment on Symbolic Binding? The naming ofapattern, or its symbolic
binding, plays an important role in this scanpath memory process. Quantitative experiments were
earned out by Yang and Stark (Yang and Stark 2000) to explore this phenomenon. Subjects were
asked to remember lettered grids under avariety ofconditions. Often, they were presented only
with the letter, or symbol, ofthe pattern, and asked to remember the grid pattern that they
previously were able toreconstruct. Interruptions, such as becoming familiar with and
reconstructing other grid patterns, were most often interjected between the learning phase and the
test-of-memoryphase.

Control Experiment: Same Pattern, Same Label with Refreshment. An important control
experiment was to test the ability ofsubjects to carry out pattern reconstruction by memory
figure 15, upper panel, upper row). Here, subjects were presented for afew seconds with two
identical lettered grids, immediately followed by four successive blank grids wherein the subject
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attempted to reconstruct the previouslyseen patterns. Subjectswere then interrupted with other
tasks. Next, the identical lettered grid was presented (Figure 15, upper panel, lower row), and the
subjects attempted again to reconstruct the labeled pattern identified only by label, onto four
successive blank grids. Subjects were able to carry out this task very well, with Ss values of0.71
(s.d. = 0.32), and Sp values of0.80 (s.d. = 0.24).

FIGURE 15 Control Experiment and Main Experiment
Experimental protocol for the control (upper panel)and main experiment(lower panel) to analyze
the influence of symbolic binding. A majorresult is the influence of dissimilarity of labeling on
the dissimilarity of the sequential pattern. Clearly, the spatial loci are the same, and thus, the
structural similarity remains high. (Note that refreshment in the form of two additional looking
stimuli are presented in both experiments (lower pairof grids in each of the panels).)

Main Experiment: Same Pattern, Different Label with Refreshment. Themain experiment again
testedwhether subjects attempted to re-remember a newly presented pattern identical to an old
remembered pattern, withan important, significant difference (Figure 15,lower panel). Thenew,
identical pattern was labeledwith a differentsymbol or letter!

In both of these sequences, the subject was able to perform consistently overthe reconstructions
inthe four blank grids (Figure 15, lower panel, upper row and lower row, four right grids).
However, the new symbol encouraged the subject to reinitialize the memory pattern. Thus, the Ss
value fell to 0.46 (s.d. = 0.35), when the first and second presentations were compared. (Note
differences in sequential patterning (Figure 15, lower panel, upper row, compared to lower row).
Ofcourse, the localization of the clicks, Sp =0.76 (s.d. = 0.32) was equally accurate to the
control experiment described above. Only thesequence was newly established because of the
new label.

Top and Bottom Anchor Experiments. The range ofvalues for the Sp and Ss similarity indices
could be established in two more experiments, the top anchor and the bottom anchor (Figure 16).

An experiment quite similar tothe control experiment was next performed. Its main difference
was that itallowed for no re-presentation orrefreshment ofthe lettered pattern for the second set
of thememory testblank grids (Figure 16, upper panel; note theabsence of thesecond
presentation ofthe lettered grids in the lower row, upper panel). Thus, the memory trace
remained more orless the same without additional information relating tothe pattern orthe letter
being presented. This gave us the highest values, Ss =0.86 (s.d. =0.06) and Sp =0.94 (s.d. =
0.20). We thus consider this to be the top anchor ofthe similarity scales.

For the bottom anchor, we used the same letter symbol, but in acompletely different grid pattern
(Figure 16, lower panel). As might be expected, the two sets ofmemory tests, with four blank
grids each, showed little inter-trial coherence orsimilarity oftheir patterns, with Ss =0.07 (s.d. =
0.04), and Sp =0.36 (s.d. =0.10). The structural inter-trial coherence and the sequential
coherence are veiy low, and close to random values; thus, we can use this experiment asa bottom
anchor. Although the subjects were "tricked" by having the same label for different patterns, still
the structural patterndominated over the symbolic label.

FIGURE 16: TopAnchor andBottom Anchor Experiments
Experimental protocol toestablish the range ofvalues for Sp and Ss similarity. Top anchor
(upper panel) shows high correlation when no refreshment ispermitted (two absent grids, lower
row, upper panel). Bottom anchor (lower panel) shows absence ofstructural and sequential
similarity when a different pattern is presented withthesamelabel.
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Summary ofSymbolic Experiment. To summarize the symbolic experiment (Figure 17), we
have been able toestablish that in the control experiment, the re-presentation ofthe same stimulus
with the same label a second time allows some reinitialization ofthe memoiy trace. However, the
values remain quite close to the top anchor values, where the absence ofasecond presentation did
not allow for even mild changes ofthe memory pattern. Ofcourse, with time and interruption, as
was carried out in our experimental protocol, some decay ofthe memory pattern occurs.

The main experimental result is that when the same pattern grid is presented asecond time, but
with anew label, this new label encourages reintialization ofthe memoiy trace. Thus, the second
set ofresponses are quite different (about 50% loss ofcoherence for the sequence, Ss, but
essentially no loss ofcoherence for the pattern, Sp); recall that the same loci were re-presented
with the new label, and thus, Sp should remain quite consistent. The quantitative result, 50% loss
ofcoherence due to achanged label, comes from averages ofmany experiments done with a
variety ofsubjects. Subjects varied, and even the same subject would produce much higher or
lower coherence in different trials. More experiments are necessaiy to establish ifaquasi-
switching occurs between coherent and non-coherent results.

This experiment documents the crucial role symbolic labeling plays in memories ofspatial
pattems.(Tanenhaus etal. 1995; Tempini etal. 1998; Thompson-Schill etal. 1997) Italso raises
questions and points out suggestive interpretations for connectivity between operations in
different parts ofthe modular cortex (Figure 13, lower panel).

FIGURE 17 Summary of Symbolic Experiment
Symbolic binding experimental findings can be summarized. Symbolic memory has important
influence on sequential binding, producing an average 50% loss ofcoherence (compare 0.46 with
0.71, next to bottom row) when the labeling is changed. Since the same loci were re-presented
with adifferent label, the structural binding, ofcourse, remained the same (compare 0.76 with
0.80, bottom row).

5. PERCEPTION AND CORTICAL REPRESENTATION

5.1. Perception andSensory Organization

Philosophere have long speculated that we see in our "mind's eye," but until the scanpath theoiy,
little scientific evidence was available to support these conjectures. On the other hand,
philosophers from Plato onwards have thought deeply about these matters, and we have tried to
summarize their views. Using four terms defined by the philosopher Kant, a five-component
visual perceptual schema has been developed to incorporate the relevant concepts ofexperimental
metaphysics. (The senior author isappreciative ofearly discussions with Professor W.H.
Zangemeister, (Stark etal. 1986) that led to an early version ofFigure 18.) (Kant 1949; Russell
1945, Stark and Choi 1996) We start (Fig. 18, column one) with the world ofappearances, the
"chaos" ofearly Greek philosophers; in our terminology it is called "BU stuff." At one time, we
used "things" for the so-called 'real' outside world, but an anonymous discussant pointed out that
by the time the brain had done figure-ground separation to identify an object as distinguished
from background, and applied knowledge about physical coherence ofthe object, much ofthe
perception ofthe object had already been accomplished! The next stage (Fig. 18, column two),
sensation, represents the inflows ofenergy onto body sense endings. Itnow appears that the
filtering expected by Muller for "specific nerve energies" is actually accomplished by "specific
nerve endings," and specific nuclei on which they project.
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FIGURE 18 Philosophical Approach to Perception
Five stages of the perceptual process (five columns) are illustratedwith icons (upper), also
showing BU and TD processes (curved arrows). See discussion in text regarding philosophical
and physiological sources ofthis schema.

We call the next stage (Fig. 18,third column), sensory organization, BU physiology, wherein
the Kantian internal constructs of space andtimeare added. The frog's eye, using ^bug* detectors,
can calculate the velocityof a smallmoving spot accurately enough to keepfrogs very well in
bugs. (Ingle 1971; Lettvin et al. 1959) While it took 350million yearsof vertebrate evolution to
arriveat the frog's eye,yet another 350 million years wasnecessary to arrive at the brains of
McCulloch andLettvin, so thattheywere capable of demonstrating the elegance of thisaspect of
sensoiy organization of the frog's eye. Since velocity requires both space andtimecomputation,
it is clearthatthese Kantian internal processes have been captured byevolution. (IttiandKoch
1999; Niebur and Koch 1998)

If wejumpahead (Fig. 18, rightmost column five) to representation, the 'ideals' of Plato and the
'notions' ofBerkeley, we see that our term, *TD cognitive models', may perhaps besymbolized
with a file drawer icon. We will return to thequestion of representation inthe third subsection
below. Such models, acting TD onto the critical stage (perception perse. Fig. 18, fourth
column) can be seen to be planned, forceful, determined sets ofactivities. (Pribram 1971; Searle
1983) Inour model for perception, the TD active looking scanpath plays its role asthe
operational phase ofperception per se. The set offive columns (Fig. 18), dissecting the overall
perceptual process, leads toan important question we can pose for the neurophysiologist, "Where
does TD meet BU?" Our conjecture is —where TD iconic inputs to levels I,II, and III ofthe
visual cortex meet BU iconic visual signal information going to levels IV and Vin the retinotopic
visual cortex (Figure 19). This is the site ofthe "iconic matching" process.

5.2. Visual Cortex: Where Does Top-Down, TD, Meet Bottom-Up, BU?

In their famous paper, Pitts and McCulloch conjectured that the inflow information from eye and
lateral geniculate would reach the striate cortex (Figure 19). (McCulloch 1965; Pitts and
McCulloch 1947) This was aBU theory as was the later frog's eye paper. (Lettvin et al. 1959)

We have now modified this BU approach toadd TD perception. The visual cortex has a retino-
topical organization that is apt for matching aTD iconic sub-feature representation with incoming
BU sensoiy signal flows. Likely some interactive feedback process could match these two maps,
one TD, the other BU, to some criterion offit (see Microscopic Cortical Processes, below, and
Appendix N). This, then, permits the scanpath, ifconfirmed to this point, to continue tothe next
ROI or sub-feature ofthe representation. In this way, the TD model moves, fixates, and foveates
the eye, to bring forward successive sub-features for checking. An absence offitting forces anew
model and arevised scanpath. In this way, the scanpath as an operational mechanism plays an
active role in the overall perceptual process. (Henderson and Hollingsworth 1999)

FIGURE 19 Micro-Cortical Processes
Six levels or layers ofthe visual cortex, known from neuroanatomy, are suggested as the iconic
matching region, where TD input tothe visual cortex, at layers I, II, and III, interact with BU
input going tolayers IV and V, from retina via geniculate and optic tracts (modified from Pitts
and McCulloch, 1947).
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5.3. Representation

Our results are interpretable in terms of a setof models or schemata (Figure 20). These models
suggest visual patterns of thinking about— i) procedures for visual perception andrecognition,
ii) themacroscopic, and iii)microscopic neuro-anatomical underpinnings of these memory
processes as theyare interpreted according to current neurological knowledge, and iv)
quantitative and normalized values for relative strengths to theseveral components of memory
binding (Figure 20). The connectivity ofthe cortex isvast; studies by Valentino Braitenberg and
other neuro-anatomists, from Golgi and Cajal on, have illuminated many aspects of this
constrained mesh and link the microscopic and macroscopic views. (See Appendix C,The
Braitenberg Cortex.) Since the classical studies ofHubel and Wiesel, a number ofapproaches
havedeveloped have developed to furtherunderstand the neuroanatomical and
neurophysiological substrates of cortical connectivity. (See Appendix N.)

FIGURE 20 Cortical Representation of Perceptual Processes
Although only the microanatomy ofthe visual cortex isknown well enough tosupport a graph
theoretical model, yetwe have suggested a variety ofsuch graphs for structural, sequential, and
symbolic binding, with loci asper labels in the modular cortex. Geometrical binding isused in
our modeling schema, for syntactical interaction between foveal ROIs and peripheral segments.
Different forms of the graphs donotrepresent any knowledge about feasible or understood
properties of the brain, but rather stress our ignorance.

Macroscopic Cortical Processes: Where Does Memory Dwell? Recently, especially with the
advent offunctional magnetic resonance, fMRI, and its associated imaging technology, there has
been an increase in localization studies onawake cooperating human thathas led to a new
'phrenology' —this time hopefully based upon more scientific evidence. (Palmer 1975a; Palmer
1992) It is beyond the scope of the present paper to provide a full review; see, however.
Appendix M. (Colby, Duhamel, and Goldberg; Meystel et al. 1992; Palmer 1975a; Palmer
1975b; Palmer 1992; Palmer 1999; Palmer and Kimchi 1986; Palmer, Neff, and Beck 1997;
Rybak, Golovan, and Gusakova 1993; Umeno and Goldberg 1997)

Ofparticular interest to ourown studies are pathways connecting the visual cortex to other
cortices. The ventral pathway from visual cortex, VC tothe temporal cortex, TC (especially left
side), isthe 'what' pathway towhich, we attribute Semantic Binding; in similar fashion, the
dorsal pathway from VC to the parietal cortex, PC (especially on the right side), the 'where'
pathway towhich we attribute Structural Binding. Spatial vision and memory and their uses in
animal and human behavior are crucial functions that have been widely studied. (Klatzky 1998;
Klatzky etal. 1990) There are strong known connections (Pribram's Law) from PC to the pre-
ffontal cortex, PFC, that are related totemporal sequencing, and towhich we attribute Inherent
Sequential Binding. Then connections continue tothe frontal eye fields, FEF, towhich we
attribute Read-Out Sequential Binding. Ofcourse, there aredifferent motor areas fordifferent
behaviors used to indicate imaged loci and sequences in our experiments and in normal behavior,
more generally.(Wolfe, Alvarez, and Horowitz in preparation, 2000) Indeed, our experiments
were designed totest some ofthese physiological-anatomical conjectures and tosee ifthere were
differences between inherent and read-out sequential bindings that could be captured in an
experiment. In 1970, aftera lecture by Professor BelaJulesz on his famous random-dot
stereograms, I asked ifhe thought psycho-anatomical procedures obeyed a transitivity rule. The
question illustrated the possible complexity ofcortical connectivity; our diagrams are only a
simplistic beginning.
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We also use as metaphor, a robotic computer vision study (see Section 6 below) that has a
completeTD model of the robot workingenvironment, the robot kinematics and dynamics, the
pose of the robots and the monitoring cameras (see Section 6, below). Here the model directs and
limits the scanning of the video images to known positions of the ROIs in the 2D camera
projections of the 3D-operating world. Themodel maybe displayed on a computer screen for the
supervisory controllerto observe. Now,we ask a hypothetical question, "Where in the computer
is the model located?" The answer makes us realize that the model is a collection ofnon-iconic
programs and parameters, widely distributed in active memory, in rotating memories, in registers,
cachesand pointersof the running programs and mostoften cannotbe definitively located. This
metaphor tempers our attempts to fix memory loci in the brain.

Microscopic cortical processes. We know littleabout microscopic cortical processes.(Desimone
1992; Sillitoand Grieve 1991) As Hubel and Wiesel havepointed out, their classical work
served to locate processes, rather than to establish how these processes occur. Similarly, thenew
phrenology substantiating the modularcortex, and as well, f studies, serve to fix anatomical
locations. Wetherefore have used a variety of graphs to express ourignorance of function
(Figure 20,multiple graphs fordifferent functions). (Freksa 1992; Freksa 1997; Schill et al. 1999;
Stark 1993; Stark 1994; Zangemeister, Stiehl, and Freksa 1996) We do not at all suggest that the
differences in these graphic displays represent known functional differences for themacroscopic
modules. Pioneering andfuture studies of microscopic cortical function areandwillbe an
exciting subject (Appendix N). What we emphasize isthat the different memory functions, or
bindings, indifferent parts ofthe modular cortex, must be carried out bysome cellular networks,
aspostulated byMcCulloch and Pitts. The cellular anatomical diagram for the visual cortex
alone serves togive body tothe above discussion.(Sillito and Grieve 1991; Thompson-Schill et
al. 1997; Zangemeister, Stiehl, and Freksa 1996)

6. TELEROBOTIC SCHEME: TD SCANPATH MODE FOR COMPUTER VISION

6-1. TeleroboticControl System

Because the scanpath theory rests upon continuing studies ofthe human brain, we necessarily
lack acomplete operational model. There are some neural models with BU approaches (Rybak,
Privitera), and as well, ageneral appreciation by the computer vision world ofan important future
role for "image understanding." (Aloimonos and Herve 1992; Bolle, Aloimonos, and Fermuller
1998; Carpenter, Grossberg, and Lesher 1998; Carson etal. 1997; Crevier and Lepage 1997;
Foresti and Pieroni 1998) For some years now, we have developed avigorous, explicit and
functioning model of the TDscanpath scheme to aidourresearches into robotic vision.
(Blackmon and Stark 1996; Buttolo, Rung, and Hannaford 1995; Ho and Stark 1997; Ho and
Stark 1999b; Ho and Stark 1999c; Ho and Stark 2000; Kim etal. 1987; Kim, Takeda, and Stark
1988; Kim, Tendick, and Stark 1987; Liu etal. 1993; Nguyen and Stark 1993; Stark etal. 1988;
Sutro and Lerman 1973; Yu and Stark 1995) We now explain this model in some detail.

Quasi-autonomous robotic systems are designed with human supervisory control (Bejczy 1980;
Ferrell and Sheridan 1967; Moray etal. 1989; Sheridan 1992; Yoerger and Slotline 1987)
restricted toplanning and emergency actions (Figure 21). The human operator, H.O., uses the
supervisory control interface and path planner, to generate actual sequences ofmovements for a
specified task. Each movement isthen segmented in serial order, and each segment sent to the
low-level feedback controller as input tothe robot plant, whose output isYa. The robot pose
control signal, U, is indicated, bya skeletal robot model with circles fortheVEs, attached to
critical kinematic points of therobot (Fig. 21,upper right inset). Under certain modes of
operation, U isused to control the image processing algorithmic procedure, IPAlg. Under other
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modes of operation, the previous located VEs, Ym, are used to predict the locations of the VEsin
the next image.

Redundant feedback, Ym, isprovided by both GPS sensors (not shown) and byimage processing
algorithms operating on thecamera capture of the actual position of the robot. This feedback,
Ym, isprovided for closed loop operation, as long as it does not widely violate certain
constraints; the measured position, Ym, ofthe robot is indicated by the skeletal model with Xs
marking the measured locations ofthe VEs (Fig. 21, lower left inset). Additionally, this
measured output, Ym, acting outside the main control loop, may modify the current and next
segments inthe serial output ofthe higher level controller, and thus, updates the world model for
system consistency. Plant and imagenoisehas beenadded in simulated runs in relatedstudies
(Ho et al. 1999; Ho and Stark 1997; Ho and Stark 1999a; Ho and Stark 1999b; Hoand Stark
1999c; Ho and Stark 2000) that have provided estimations ofthe amount ofredundancy necessary
to attain robustness during actual operating conditions.

It is important tonote that using the scanpath schema, image processing is controlled in aTD
fashion by the feed-forward model. The model knows the kinematics, dynamics, and pose ofthe
robot, and its commanded positions at each iteration. It also has amodel ofthe robotic working
environment, RWE. (Zelnio 1991)

FIGURE21 Feedback Model forSupervisory Telerobotic Control
Control systems diagram for telerobotic scheme showing higher level control, with supervisor
and path planner. The serializer provides input to the basic feedback control loop, with camera
and image processing algorithms, IP Alg, monitoring actual position, Ym, ofrobot (right inset).

6-2. TD Robotic Vision

The complete model ofthe robots (Figure 22), consists ofcompacting vehicles carrying out civil
engineering dam building.(Ho and Stark 1999a) Aset ofVEs made up ofprominent lights is
easily detected by distant cameras. For the image processing aspect ofthe scheme, itis important
tonote that the model ofthe robot includes the knowledge ofthe placement ofthese luminaires
(Figure 22, upper left). In addition, the known camera loci, directions, and optical parameters
enable prediction ofthe 2D projection ofthe scene onto any particular camera image plane.(Ho
and Stark 1997; Ho and Stark 1999b; Ho and Stark 1999c; Ho and Stark 2000; Miyata and Stark
1992) The display mode (Figure 22) indicates the model expectation ofeach luminaire location
by showing white boxes outlining ROIs (upper right); expected locations may not be the actual
locations and thus mayrequire feedback correction.

As with TD scanpath control, the robot model predicts where the vehicle will move and this
provides anticipatory information for locating the ROIs. According to the scanpath model, the
image processing algorithms will move in sequence ft^om ROI to ROI in the camera plane to carry
out the various image-processing procedures (heavy white arrows. Figure 22, lower left). Thus,
the alternation that occurs in the case ofcomputer vision, issimilar tothe alternation between TD
motor-control ofEMs for successive foveations and the matching ofthe BU visual signals to the
TD iconicmodel in the visual cortex in the case of human vision.

After image-processing steps, the display mode indicates the locus ofthe actual measured VE
with a cross (lower right). The vector ofactual locations is then passed to the feedback control
mode, as discussed above. (Ho and Stark 1997; Ho and Stark 1999a; Nguyen and Stark 1993-
Stark et al. 1988; YuandStark 1995)
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FIGURE 22 TD Scanpath Scheme for Robotic Vision
Four image processingsteps showing robot vehicles with VEs (upper left) and model ROI-
predicted locations (white squares, upperright). Note scanpath sequence for computerimage
processing of ROIs (white arrows, lower left) yielding centroid-calculated loci (white crosses,
lower right).

6-3. TD Model-Based Image Processing

Thecornerstone of the algorithms is the model that represents theTDinformation the system has
about the roboticworking environment, RWE.(Ho and Stark2000)This modelconsists first of
the robot kinematics; inaddition, thedynamic component describes how model configuration
changes over time. Theremote camera component describes thepose and geometry of each
camera; finally, the locations and sizesof objectsthat may interact with the robots are also stroed
in the RWE. Asdiscussed above, theVEs thataid in image processing; theirgeometrical
representation is alsoreflected in the model. Now, given thisenvironment, thevisual algorithms
perform four main steps in sequence.

TD pre-filtering. TheTD model predicts the expected incoming signals, that is the 3D locations
of the VEs using the last knownpose of the robots, the kinematicmodel ofthe robots and the
control signal history. Using known camera pose and geometry, the3Dlocus prediction is then
projected onto a camera frame of reference. AnROI with the resulting location is then assigned.
Theestimated apparent sizeof the feature is calculated in a similar manner, andalterstheROI
size for thatfeature. Implicitly, the IPA output of theROI is logically bound to thefeature at this
stage. (Bajcsy and Krotkov 1993)

The viewability or detectability of thepredicted features is thus aided bytheknown estimated
locations ofallobjects inthe RWE. For example, occlusion orpossible overlapping ofthe VEs
bythe robot itselforby other known objects inthe environment can be predicted; a sampling
dependability factor can then be generated. Sensitivity of robot pose to the 2D loci of features
viewed from a given camera may be calculated; the jacobian matrix provides static and dynamic
weightings. Both sensitivity and dependability factors are used todetermine the significance of
the sampling in a particular ROI. The dependability factor isofparticular importance ifthe
sampling cost ofeach ROI ishigh, say the sampling speed isslow with respect toa limited time
window for IP and thus a sampling priority has tobe assigned toeach ROI. The sampling
sequence oftheROI, similar tothe scanpath sequence, isthen generated based upon these factors.

BU Image Processing. The TD model applies an appropriate BU image processing algorithm,
IPA, suitable for the ROI and its feature ofinterest. In the case illustrated, features are spherical
light sources and the IPAs utilized are adaptive thresholding followed by a centroid calculation.
Video camera images, even under the best condition, are often very noisy (Figure 23, upper).
Indeed our design ofthe luminaires was an engineering attempt toprovide adequate signal/noise
ratios. Byrestricting the image processing only to thesmall ROI area, theamount of noise
impinging upon our signal processing isgreatly reduced; thus, the adaptive thresholding
techniques yield robust results.(Uttal, Baruch, andAllen 1995) The ROIs, are indicated as
rectangular vertical boxes (Figure 23, lower), thetopborder ofeach is theactual adaptive
threshold, utilized in each local area. The VEs can be clearly distinguished asnarrow hilltops
(Figure 23) above these adaptive thresholds, and contribute to the robustness ofthe BU image
processingprocedures controlled in this TD fashion. Indeed, the fovea ofthe retina and its
magnified cortical representation (Figure 1) must also possess local adaptive advantages ofa
similar sort.
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FIGURE 23 Advantages of TD Control of BU Image Processing
Pixel intensity diagram forming a 3D representation of the video image (upper). Note hilltops
representing VEs. By predictingROI loci usingTD model (rectangularboxes, lower), it is
possible to do adaptive thresholding only in a small localized region, and thus,achieve important
signal-to-noise ratio improvements. Clearly, foveal fixation in normal human vision achieves the
same functionality.

TD plusBUpost-filtering. Thenextprocedure verifies the integrity of the individual centroid
measurements in thecontest of theoverall TDmodel (Figure 21, lower left inset). Fora typeof
feature, in this instance a spherical VE,the system generates a criterion, such as moment
invariance, to testthefor possibility oferror due to unexpected effects. Thus, significant
ellipticity of features inan ROI would bemarked as unreliable, and thus, weighted less inthedata
integration part of the program.

TDData Integration. The RWE model is next synchronized with thefeedback measurements,
Ym, so as to producea consistent updatedmodel. Each ROI locuscreates two constraints in the
estimate of robotic pose. These, the dependability factor, TD model-pose and occlusion
information, and the reliability factor, judged by the fit ofthe image-prediction tothe BU
processed image signal, are fed into an optimization routine that finds the optimal robot pose such
that constraint violations are minimized. If fitting error ishigh, indicating a failure in the IPA
procedures, re-initialization ofthe IPA subsystem isperformed. (Yu and Stark 1995) Otherwise,
the resultant estimated robot pose accepted, updates themodel and the next IPA iteration is
performed. These stages ofthe computer vision scheme have not only a sequential structure but
also multiple interactions (Figure24).

FIGURE 24 Block Diagram Explicating Telerobotic Vision Scheme
Flow diagram schema to aid in understanding steps ofour telerobotic TD scanpath approach to
image processing andto supervisory control.

7. SUMMARY

TD vision. This paper has considered the TD aspects ofhuman vision tobe equally (or more)
important tovision asa whole than are the usual text book presentations ofBU vision with
constellations ofpsychophysical and neurophysiological experimental paradigms. Recall that
classical experimental designs themselves prejudice the vision scientist to think inunidirectional
input-output terms. We began with the essential role that EMs play, and their function in the TD
control ofthe flow ofvisual information. The scanpath theory proposed that an internal spatial-
cognitive model controls perception and the active looking EMs, ofthe scanpath sequence.
Evidence supporting the scanpath theory (Noton and Stark 1971a; Noton and Stark 1971b; Noton
and Stark 1971c) includes experiments with ambiguous figure and visual imagery. (Brandt and
Stark 1997; Stark and Ellis 1981) Also application to dynamic scenes, although only beginning,
yet has many lessons for further visual studies.(Blackmon et al. 1999) We also have provided an
introduction to the experimental procedures including careful calibration ofEMs, definition of
ROIs, and the analysis and comparison programs for studying scanpaths.

The scanpath research and the recent studies on memory binding(Stark etal. 1999) described in
this paper help to understand the dual role played by TD and BU visual processes (Figure 25).
The TD representation in the mind's eye, and as elaborated in this paper, throughout the brain,
controls notonly EMs, buttheplacement ofspatially defined iconic models inthevisual cortex.
Here they are matched with BU signal information, arriving from the so-called "real" world.
These BU signals, are known to have a distorted log-polar iconic form (Figures 1and 25), up to
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and including the primary visual cortex. First note thatthepicture (Figure 25,top) inthe *mind's
eye' is closeto the picture (bottom) in the "real"world, or ourspecies, heavily dependent upon
vision, would have disappeared. Successive EM fixations produce retinal images (three are
shown, just above "real" world picture); from thisensues cortical magnification of foveal regions
and cortical miniflcation of peripheral lowresolution segments. At the sametime, the TD
representation sends similar iconic representations (three arealso shown here, just below the
mind's eye picture) to the visual cortex for matching; TD scanpath EMs predict the spatial loci
for these matches. Atthevisual cortex (Figure 25, middle), iconic matching ofTD and BU
occurs. (Ballard, Hayhoe, andPelz 1994; Driels andAcosta 1992; Gould 1967; Groner, Walder,
and Groen 1984)

FIGURE 25 Iconic Matching inVisual Cortex TDRepresentation and BU Signals
BU retinal image isshitted with each EM flxation to provide a centered and magnified foveal
projection inthevisual cortex. These may bematched bypredicted TDiconic representations
from the mind's eye image. Continuous periphery isshown broken into segments, also suitable
for TD symbolic coding.

Representation. More recently, we have used the repetitive scanpath EM sequence toapproach
problems oftherepresentation ofthe visual image in the brain. We suppose that there are several
levels of"binding" —semantic orsymbolic binding, structural binding for the spatial locations of
the ROIs and sequential binding for the dynamic execution program that yields the sequence of
EMs. The scanpath sequence has enabled experimental dissection ofthese various bindings that
appear to play independent roles and are likely located indifferent parts of themodular brain (see
Appendix Bfor some principles ofcortical connectivity, largely abstracted, perhaps with
erroneous simplifications, from Professor Valentino Braitenberg). Cortical localization has
advanced recently with fMRI studies on cooperating humans (see Appendix M) and supporting
animal experiments (see Appendix N); this is not to ignore important sub-cortical loci with likely
major functions.

In experiments carefully described in this paper, it is shown that symbolic binding strongly
influences sequential binding, but can not overwhelm spatial or structural memoiy. Sequential
bindings themselves appear to be partitioned between inherent and *read-out' memory. The
inherent sequential memory component is closely linked tostructural binding, whereas the read
outcomponents are apparently modified by each ofthe different motor systems we have explored
—EMs, hand control ofa cursor on a computer screen, and locomotion over a grid on the
laboratory floor.

Philosophy. The background ofvisual perception has ancient roots in philosophy. Although
philosophers have long speculated that "we see in our mind's eye" and that we can have no
certain knowledge ofthe external chaos or classes ofappearances in which we find ourselves, yet
until the scanpath theory no strong scientific evidence was available to support their conjectures.
(The senior author was influenced bythestrong TDstructures he himself built into so-called
'artificial intelligence' programs so that the remaining 'self-organizing' was largely a matter of
optimization, itself influenced by successive modifications.) (Stark 1993; Stark 1994; Stark,
Okajima, and Whipple 1962; Stark 1997)

Computer Vision. Use ofthe TD scanpath for robotic computer vision has proved itself in a
series ofapplications. Clearly TD information can change an ineffective vision system into a
robust feedback mechanism for control oftelerobots. Another positive aspect has been a
complete and explicit demonstration ofhow a scanpath mechanism works inthe artificial system.
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This modelmay also suggestfurtherdirections for extending the sparseexperimental data about
the human brain mechanismscontrolling our own vision. (Aloimonosand Herve 1992)
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Appendix A; String-Editing Algorithm

The string-editing algorithm is a discrete dynamic programming method.(Bellman and Lee 1984)
Usingthe operations — insertion, In, deletion, De, and replacement. Re, the algorithm of Wagner
(Wagnerand Fischer) finds the minimum distanceor cost to convertfrom string2(i)to stringl(j);
this defines the matrix (Figure 26, upper matrix). The two strings label the rows, string2(i), and
columns, stringl(j), of the matrix. Insertions result in horizontal shifts, deletions, vertical ones,
and replacements produce shiftsalongthe diagonal. Eachoperation may add to the cost; the
coefficients ofthe matrix are the hypothetical costs to reach that cell. The middle matrix
describes the stagejust after the insertion of a "B" in the preceding stepwithan added costof 1
(circled coefficient); the next step enables the "C's" to match without added cost. At the end
(lower matrix) deletion of "A" (note vertical shift) finally matched string 2(i)to string l(j), at a
minimum costof 2 (circled coefficient). Thus, the normalized distance is equal to 0.4(2 divided
by string length, 5); Ss,the sequential similarity index, is equal to 0.6 (1 - 0.4).

A short"C" program (Figure 26,equations listed to right of matrices) enabled these calculations.
1. Initialize D-matrix to zero. Anadditional possible step(notherein employed) is to truncate
longer string.
2. Distance of first to null - dothis bydeleting each character in string] onebyone; at most this
will equal string length. Distance ofsecond to null and first to second also calculated and will
also equal at most string length.
3. Using dynamic programming, proceed from row to row and fr^om topto bottom to calculate
minimum distances; this fills out the D-matrix.
4. This triple computation, in addition to replacements, takes into account the effect ofdeletions
and insertions in sidewise shifting of sting elements, and thus traveling along a minimum cost
discrete path inthe D-matrix. Wagner(Wagner and Fischer) proved these operations will find the
optimim solution; thisextended thediscrete dynamic programming algorithm.
5. Lowermost right comer ofD-matrix will betheminimum total cost of making string2(i)
identical to string l(j).
6.-Anadditional possible step (notherein employed) is to assign non-unity costs to each
operation

Our use of string editing inmatching loci and sequences in images isa bitunusual. However,
once we have established afinite state automaton and equivalently, a Markov model (see Figure
5, lower row), the sequences are inherently in a form appropriate for application ofthe string-
editing algorithm. The widest use ofstring-editing algorithms isperhaps in spell-check
programs. The use inmatching ofdouble-stranded chromosomes and sequences ofnucleic acids
within them, isan important current application. By using perhaps as yet undiscovered principles
ofbiomechanical mechanisms, itmay be possible toassign weightings, ornon-unity costs, to
such strand-distorting actions such ascaused by insertions ordeletions. For example, the
redundant looping often seen in chromosomes may not be permissible for loops that are too short.

FIGURE 26 StringEditingAlgorithm
Successive stages of thediscrete dynamic programming algorithm (matrices at left) document
minimum cost optimization ofstring editing distance, and thus, accurate measure ofstring
sequential similarity; computational equations at each stage (to right of matrices).
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Appendix B: Consolidation
Not presented above, but also studied was Sp-st, that is the similarity of the loci to the stimuli loci
(CH XCH, 0.70; WK x WK, 0.69; CH x WK, 0.68) that were less than Sp-coh (CH x CH, 0.90;
WK XWK, 0.91; CH x WK, 0.87), the coherence ofa set of remembered loci to one another as a
result ofconsolidation. This was quantitative evidencethat a remembered patternwas often
closely repeated,without however, necessarily being an accuratereflectionof the stimulus.

In otherexperiments, the alternation of CHand WK,was performed with refreshment, suchthat
the second viewing opportunity enabled them to develop another somewhat different short-term
memory schema. This in turn ledto lower WKx CHandCHx WKsimilarities, Sp= 0.62 and
Ss = 0.25,as compared to valuesof Sp = 0.87 and Ss = 0.60 above withoutrefreshment.
Contrariwise, the Sp-st value with refreshment, 0.72, was almost the same as the value from the
above experiment, Sp-st = 0.68. This ability to establish a new memory trace could beenhanced
even further byallowing a delay of about tenminutes and also with interjection of other patterns,
andof intercalated tilt adaptation experiments.(Stark et al. 1999) (This topic will be further
developed belowin dealing with the symbolic experiment.)

Appendix C: The Braitenberg Cortex

Some principles ofcortical connectivity are listed, largely abstracted, perhaps with
erroneous simplifications, from Professor Valentino Braitenberg. (Braitenberg 1977; Braitenberg
1990; Braitenberg 1994; Braitenberg and Schiiz 1998)

1.- The idea of columns ofcortical cells may have been initiated byWarren McCulloch
(1945); then Vemon Mountcastle with thesomatosensory cortex, and David Hubel and Torsten
Wiesel with thevisual cortex, strongly supported this concept inthe 1950s.

2.- Six layers or levels ofcortical neurons.
3.- Almost all are pyramidal cells; exceptions seem to be truncated or inverted pyramidal

cells, with eponymous names.
4.- Ponder the constraint of a pairof cortical cellsnot to connect morethan twicewith

one another ~ one connection in each direction. How then is any pair more connected than any
other pair? Byvirtue oftheir connectiveness toa common group ofcells. Each cell has about
20,000 outputs (axons) and about 20,000 inputs (dendritic knobs orsynapses). If two cells share
none of theirotherconnections thentheyare 'unrelated'; if almost all of the connections areto
the samecells then they are closely 'related'.

5.- For each pyramidal cell the 20,00 inputs and outputs connect almost exclusively to
other cortical cells. On average, only about one output proceeds toward an output motor relay
and only about one input arrives from asensory waystation. Let not the skeptic deny that most of
our brain computation is within the cortex and not with multiple stages ofprocessing input and
output. Ofcourse, the design ofpresent-day experiments forces this input-output view with
paradigms totest responsivity to stimuli and toobserve regular output responses tostimulation.

6.- Lateral axons and their web ofconnectivity show a decreasing density ofconnections
with distance. Apical axons toapical dendrites appear tobe relatively independent ofdistance;
this leads to widespread connectivity. Indeed thesize and number ofa column ina human brain
issufficient for each column to beconnected with every other column ofthecortex. Forthe
mousewith its much smaller brain, this is still true. The lessernumberofcells in a column still
suffice forthisorder of connectivity to the lesser number of columns.

7.- Braitenberg and Almut Shutz showed in hamsters that the tremendous growth of
dendritic knobs and axonal connections occurred developmentally before these creatures
experienced the outside world. Similarly, development in Coghill's salamander embryos went on
apace and functional connectivity reached an appropriate stage even when the salamanders were
raised inanesthetic solution until tested. (Coghill 1929)
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Appendix M : Function Magnetic Resonance Imaging, fMRI

We are excited about the new experimental paradigms using fMRI and PET as a non-invasive
techniques for working with alert, cooperating humans engaged in perceptual and other high-level
tasks. For the benefit of readers, we include a few references to current work ongoing in fMRI.
In general, the neurological studies and neurophysiological findings regarding the modular cortex
have been strengthened and deepened with these ongoing human researches.(Bom and Tootell
1992; Coull, Frackowiak, and Frith 1998; Culham et al. 1998; de Jong et al. 1999; Fletcher et al.
1998; Kastner et al. 1998; Kleinschmidt et al. 1998; Kosslyn 1980; Kosslyn 1994; Kosslyn and
Osherson 1995; Mackworth 1978; O'Sullivan et al. 1995; Ploneret al. 1999; Posner and Raichle
1994; Rugg et al. 1998; Tempini et al. 1998; Thompson-Schill et al. 1997; Tootell, Malonek, and
Grinvald 1994; Tootell et al. 1995a; Tootell et al. 1995b; Zeki and Bartels 1998)

Appendix N: Recent Neurophysiology for Perception and Other Higher Level Functions

Classicalneurophysiological techniques, and by haveenrichedour knowledge of the animal
brain, and by analogy,of the human brain; these are reinforced by longstanding and recent
neurological studies. Of course, animal experimentsare difficult, especially consideringthat it is
impossible to have verbal interaction with the subjectsof the experiment, so essential for studying
higher-level functions. As mentioned in the paper,the design of neurophysiological experiments
has been forced into paradigmsthat are exclusively input-outputstudies. That is, a visual
stimulus has consequences which can be measured in various locations in the animal brain.
Contrariwise, it is all but impossible to measure what the TD functions of the animal brain are
signalling to these regions. However, with great ingenuity, a number of inroads have been made.

Most neurophysiology is neuroanatomy; that is, locations of regions that showactivityduring
particular sensory processing. Pioneeringand future studies in actual microcortical
neurophysiology areexpanding withmultiple electrode, optical andmolecular biological
approaches. (Andersen 1995; Colby, Duhamel, and Goldberg 1995; Desimone 1992; Devalois
1960; Galletti et al. 1996; McAllister, Lo,andKatz 1995; Nelson andKatz 1995; Rogers et al.
1998;Sillito and Jones 1996;Sillito, Salt, and Kemp 1985;Sillito and Grieve 1991;Umeno and
Goldberg 1997; Zeki and Bartels 1998)
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FIGURES

FIGURE 1 Log-Polar Distortions ofa Picture
Two fixations (leftand right panels below) onoriginal picture (upper) show log-polar distortions
with high cortical magnification (irregular shapes, lower left and lower right) ofsuccessive foveal
ROIs (circles), aswell asminification of peripheral regions likely captured astextured orcolored
segments (surrounding small squares, lower).

FIGURE 2 EMs while Looking atan Ambiguous Figure: The Ellis Experiment
Identical ambiguous figures ofvase (lower left) and two faces (upper left). EMs superimposed on
ambiguous figures as they were actually seen following exposure to priming stimuli (right).

FIGURE 3 DynamicDisplaywith EMs
Animation ofdynamical scenarios (illustrated as snapshots eveiy five seconds time proceeding
from lower left to upper right). EM positions (black circles) taken every 50ms are integrated over
the preceding 5s, and are superimposed onto snapshot images; they represent the basic data
captured for this experiment.

FIGURE 4 Scanpath Theory
EM positions (q50ms) during dynamic display shown as aconnected sequence (upper left) while
the dynamical ROIs visited form a connected sequence (upper right and lower right). By
numbering or letter identification ofsmooth pursuit orstatic fixations, this sequential string of
visited ROIs could be defined. Anon-iconic model ofalternating perceptual ROIs (lettered
squares) and saccadic EMs (circles with arrows) isshown by solid arrows for the experiment
presented. This isthe "feature ring" ofthe scanpath theory. On other presentations ofthe
stimulus, other ROIs and sequences could be formed (dashed arrows).

FIGURE 5 EMs while Engaged in Visual Imagery: The Brandt Experiment
Scanpath EM sequence isalmost the same for the second looking presentation (middle row,
second grid) as for the first visual imagery presentation (middle row, third grid). During the
visual imagery presentation, no information about the location ofthe alphabetic symbols, Fs, was
available; thus, the remembered representational model must have controlled the scanpa^ in a
TD fashion. Quantitative metrics could be obtained in the analysis procedure (lower row) by
creating a finite state automata (middle) for generating the scanpath; then transition probability
coefficients could be arranged in a Markov matrix (right) for later statistical analysis.

FIGURE6 EM Trajectoriesand Classification
Trajectories ofEMs displayed as functions ofvertical and horizontal angles (solid lines) and time.
Location ofthe dynamic objects shown as dashed and continuous lines (lower), orfor one
comparison as adashed line for horizontal angle (upper). Note saccades, S, and smooth pursuits,
SP, that show upclearly; these and other types ofmovements (see text) could beidentified and
analyzed (lower stepsand labels).

FIGURE 7 EMClassification Program
Flow diagram forEM calibration, linearization, differentiation to obtain velocities, and then
analysis into various categories ofEM types. The program could also resolve conflicts among
specific EM identificationalgorithms (see text).
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FIGURE 8 Simplified, or Toy, Diagram Illustrating Metrics for Comparing Scanpaths;and
Parsing Diagram for the Dynamic Scanpath Experiment

Quantitativemethodologydiagrammed to show similarity indices, Sp and Ss (upper panel).
These pairwisecomparisonsare organized into Y-matrices (middle panel) and then indices
segregated, averaged, and placed into parsing diagrams (lower panel). Note statistical tests
indicated by holding, as well as arrows (see text). These two parsing diagrams summarize the
experimental base from a dynamicscanpathstudy (see text).

FIGURE 9 EMs Compared with Choice, CH: Selection ofROIsCompared
Linearized EMs (upper left) wereanalyzed into fixations and saccades (upperright) whilethe
subject looked at a cave painting of horses. Loci chosen by mouse clicks (lower left) could then
be compared (lower right) with EM fixations (see text).

FIGURE 10 Parsing Diagrams; EMs Compared with Choice, CH
Sp (upper) and Ss (lower) parsing diagrams for the choice comparedwith EM study. Intramodal
read-out comparisons (left and middle panels) as well as intermodal read-out comparisons(right
panel). Results described in text.

FIGURE 11 CH compared with Walking Protocol
Experimental protocol for cross-modal comparison betweenchoice,CH, and walk, WK, read-out
modes. Note similarity of patterning when a second display of stimuli patterns was not given
(absent grids in both sets of upper panels); note difference in patterning when refreshment of
stimulus pattern allowed a new memory schema to be formed (lower panel).

FIGURE 12 Visual imagery: Parsing Diagram for Walking, WK, vs Choice, CH
Sp (upper) and Ss (lower) parsing diagrams for the choice, CH, comparedwith walking, WK,
study. Intramodal read-out comparisons (left and middle panels)as well as intermodal read-out
comparisons (right panel). Results described in text.

FIGURE 13 Modular Cortex and Connectivity
Recent studies in neurophysiology and fMRI have established a "new phrenology,"the modular
cortex (upper), with different functions assigned to specific regions of the cortex (see text for
furtherexplanation). Connectivity explored in our experiments on inherent and read-out
sequential binding, and as well, on the influence ofsymbolic binding, is indicated as numbered
arrowsjoining labelled regions (lower). (See text for further explanation.)

FIGURE 14 Inherentvs Readout Sequential Binding
Sequential read-out experimental findings can be summarized as almost 100% inherent binding,
for spatial or structural similarity of patterns (middle column). However, sequential bindings are
markedly influenced by read-out mode; onlytwo-thirds of the binding is inherent (rightcolumn).

FIGURE 15 Control Experimentand Main Experiment
Experimental protocol for the control (upper panel) andmainexperiment (lowerpanel)to analyze
the influence of symbolic binding. A majorresult is the influence of dissimilarity of labelling on
the dissimilarity of the sequential pattern. Clearly, the spatial lociare the same, and thus,the
structural similarity remains high. (Note that refreshment in the form of twoadditional looking
stimuli arepresented in bothexperiments (lower pairofgrids ineach of the panels).)
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FIGURE 16: Top Anchor and Bottom Anchor Experiments
Experimentalprotocol to establish the range of values for Sp and Ss similarity. Top anchor
(upper panel) shows high correlationwhen no refreshment is permitted(two absent grids, lower
row, upper panel). Bottom anchor (lower panel) shows absence of structural and sequential
similarity when a different pattern is presented with the same label.

FIGURE 17 Summary of Symbolic Experiment
Symbolic bindingexperimental findings can be summarized. Symbolic memoryhas important
influence on sequential binding, producing an average 50% lossof coherence (compare 0.46 with
0.71, nextto bottom row) when the labelling is changed. Since the same loci were re-presented
with a different label, the structural binding, of course, remained thesame (compare 0.76 with
0.80, bottom row).

FIGURE 18 Philosophical Approach to Perception
Five stages oftheperceptual process (five columns) are illustrated with icons (upper), also
showing BU and TD processes (curved arrows). See discussion in text regarding philosophical
and physiological sources of this schema.

FIGURE 19 Micro-Cortical Processes
Six levels orlayers ofthe visual cortex, known from neuroanatomy, are suggested asthe iconic
matching region, where TD input to the visual cortex, at layers I, II,and III, interact with BU
input going to layers IV and V, from retina via geniculate and optic tracts (modified from Pitts
and McCulloch, 1947).

FIGURE 20 Cortical Representation ofPerceptual Processes
Although only the microanatomy ofthe visual cortex is known well enough to support agraph
theoretical model, yet we have suggested avariety ofsuch graphs for structural, sequential, and
symbolic binding, with loci as per labels in the modular cortex. Geometrical binding is used in
our modeling schema, for syntactical interaction between foveal ROIs and peripheral segments.
Different forms ofthe graphs do not represent any knowledge about feasible orunderstood
properties of the brain, butrather stress ourignorance.

FIGURE 21 Feedback Model for Supervisory Telerobotic Control
Control systems diagram for telerobotic scheme showing higher level control, with supervisor
and path planner. The serializer provides input to the basic feedback control loop, with camera
and image processing algorithms, IP Alg, monitoring actual position, Ym, ofrobot (right inset).

FIGURE 22 TD Scanpath Scheme for Robotic Vision
Four image processing steps showing robot vehicles with VEs (upper left) and model ROI-
predicted locations (white squares, upper right). Note scanpath sequence for computer image
processing ofROIs (white arrows, lower left) yielding centroid-calculated loci (white crosses,
lower right).

FIGURE 23 Advantages ofTD Control ofBU Image Processing
Pixel intensity diagram forming a3D representation ofthe video image (upper). Note hilltops
representing VEs. By predicting ROI loci using TD model (rectangular boxes, lower), itis
possible to do adaptive thresholding only in asmall localized region, and thus, achieve important
signal-to-noise ratio improvements. Clearly, foveal fixation innormal human vision achieves the
same functionality.
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FIGURE24 Block Diagram ExplicatingTelerobotic Vision Scheme
Flow diagram schema to aid in understanding steps of ourtelerobotic TDscanpath approach to
imageprocessingand to supervisory control.

FIGURE 25 Iconic Matching inVisual Cortex TD Representation and BU Signals
BU retinal image isshifted with each EM fixation toprovide a centered and magnified foveal
projection in the visual cortex. These may be matched by predicted TD iconic representations
from the mind's eye image. Continuous periphery isshown broken into segments, also suitable
for TD symbolic coding.

FIGURE 26 String Editing Algorithm
Successive stages ofthe discrete dynamic programming algorithm (matrices at left) document
minimum cost optimization ofstring editing distance, and thus, accurate measure ofstring
sequential similarity; computational equations at each stage (to right ofmatrices).
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Y-MATRICES

Sp Subject 1 Subject 2 Ss Subject 1 Subject 2

Picture 1 Pict2 Picture 1 Pict2 Picture 1 Pict2 Picture 1 Pict2

SI PI

S1P2

S2P1

S2P2

0.65 R 0.38 I

0.60 R

0.54 L

0.31 G

0.69 R

0.18 G

0.47 L

0.33 I

0.58 R

SI PI

S1F2

82 PI

82 P2

0.40 R 0.24 I

0.39 R

0.31 L

0.13 G

0.43 R

0.08 G

0.19 L

0.21 1

0.24 R

Ss PARSING DIAGRAMS

DIFFERENT SCENARIOS

same subjects diff. subjects

R
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1

L

0.38(0.11)

-• 1
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0.21 (0.09)
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same scenarios

difif. scenarios
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samesubjects diff. subjects

R L
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same VP motions
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0.16(0.10)
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1 \

L

0.62 (0.09)

1
Different

Pattern

I T
0.24 (0.07)

^ i G
0.23 (0.07)

0.27(0.11)
Ra

CHvsCH

Ss Same

Subject
Different

Subject

Same

Pattern
R

0.34 (0.09)

1 \

L

0.26(0.11)

1
Different

Pattern

I T
0.07 (0.04)

^ i G
0.05 (0.03)

0.04 (0.06)
Ra

CH vs CH

R

0.62 (0.09)

I \

L

0.52 (0.07)

1
I •
0.35(0.13)

^ i G
0.33(0.16)

0.27 (0.11)
Ra

EM vs EM

R

0.26(0.13)

I \

L

0.12 (0.03)

I •
0.08 (0.09)

^ G
0.11 (0.17)

0.04 (0.06)
Ra

EMvsEM

R

0.61 (0.08)

1 \

L

0.63 (0.06)

1
I T
0.34(0.11)
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G

0.11 (0.15)
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e.g; {e.g., MODULAR CORTEX

READ-OUT

SEQUENTIAL
BINDING

STRUCTUIRAL

BINDING

WHERE

INHERENT

SEQUENTIAL
BINDING

WHAT
mm.

SEMANTIC BINDING

CORTICAL CONNECTIVITY

{ Spatial
^ Sp

equentia
Ss

Visual

Cortex

Symbolic

1 Symbolic to Spatial

2 Symbolic to Sequential

3 Spatial to Sequential

4 Sequential to Read-Out (RO)

R Visual Cortex to Spatial

T Visual Cortex to Symbolic

EC Efferent Copy to Spatial
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Expermental type Sp Diff & N % Binding Ss Diff&N% Binding

CH X CH (pictures)
EMXEM (pictures)
average

CH X EM (pictures)

Random

0.72

0.62

0.67

0.06 = 15 % Read-Out
0.61

0.34 = 85 % Inherent

0.27

0.34

0.26

0.30

0.13=50% Read-Out

0.17

0.13 = 50% Inherent

0.04

CHXCH (imagery)
W X W (imagery)
average

CH X W (imagery)

Random

0.90

0.91

0.91

0.04 = 6% Read-Out

0.87

0.67 = 94 % Inherent

0.20

0.77

0.81

0.79

0.19 = 26 % Read-Out

0.60

0.53 = 74% Inherent

0.07
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CONTROL EXPERIMENT; SAME PATTERN, SAME LABEL WITH REFRESHMENT
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TOP ANCHOR; SAME PATTERN, NO NEW LABEL
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/
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BOTTOM ANCHOR: DIFFERENT PATTERN. SAME LABEL
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TOP

ANCHOR

CONTROL

EXPERIMENT

MAIN

EXPERIMENT

BOTTOM

ANCHOR

SECOND

STIMULUS

None Same Same Different

SECOND LABEL None Same Different Same

OTHER

INFORMATION

Interrupt Interrupt New Label Diff2™ stimulus

EFFECT Allows

re-initialization

Encourages
re-initialization

Spatial dominates
over Semantic

SECOND

RESPONSE

Same Same

Some differences

DiflFerent

Some Simularities

Different

SS (COHERENT) 0.86 0.71 0.46 0.07

SP (COHERENT) 0.94 0.80 0.76 0.36
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BU BU

APPEARANCE SENSATION SENSORY

ORGANIZATION

PERCEPTION REPRESENTATION

Chaos

Class of

appearances

Impression

Doctrine of specific
nerve 'endings'

CNS processing for
velocity: v = dx/dt

Pre-attentive

psychophysics

A planned forceful,
determined activity

Perception
Intuition

Noumenon

Symbolic

Ideal

Notion

Bottom up stuff
(not 'things'!)

Bottom up
physiology without

space and time

Bottom up
neurophysiology
with space/time

computation

Top down active
looking scanpath as
operational phase

ofperception per se

Top down
cognitive model

Where does TD meet BU?

Levels I, II, and III meet level IV in the retinotopic visual cortex.
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SEQUENTIAL
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INHERENT SEQUENTIAL BINDING

SYMBOLIC
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Yri

Serializer

Yri

Path

Planner

Ym

Feedback Model

HO

Supervisor

Plant Noise
Plant Noise

Predicted Model

Controller Plant

Camera

IPAlg

Image Noise
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Remote

Environment

Model

(TD Info.)

Identify ROI and ROI
sampling sequence (TD)

Determine Dependability
of Features (TD)

Camera (BU Info.)

1

Input Image (BU)

f

Segmentation of features

image segment

Determine whether to

examine features in ROI

1
^ Yes

Application ofAlgorithm
(BU)

J

TD model

prediction

BU

measurement
Selection of IP Algorithm based
on Model Information (TD)

Extracted Feature Parameters w/

confumation confidence level

Adaptive Algorithm for
Model Parameter

Signal Model of
inconclusive IP result

(BU Feedback)

Error in Feature

Parameter prediction

Determination ofexistence

of features based on Model

Information (TD)

Yes

Match Features Parameters

against Model Predicted
Parameters

Feature Prediction Errors for other
features in same/other camera

Feature Detectability,Conformation&
Low-level IPAlgorithm Parameter Setting

TD+BU

measurement

verification

y TD data
integration

J
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D-MATRIX FOR STRING COMPARISON.

Slj = ABBCD S2j = ABCDA

j

ir

IT

11

0 1 a 3 4 5

0 A B B c D

0 0 1 2 3 4 5

A 1

B 2

C 3

D 4

A 5

J
0 1 z 3 4 5

0 A B B c D

0 0 1 2 3 4 5

A 1 0 1 2 3 4

B 2 1 0 1 3 4

C 3 2 2 1 ®
D 4

A 5

•

0 1 z 3 4 5

0 A B B c D

0 0 1 2 3 4 5

A 1 1 2 3 4

B 2 1 V 3 4

C 3 2 2 1 \ 2

D 4 3 3 2 2 >
A 5 4 4 3 3

D-matrix initialization:

D[0][0] = 0
D[i][0] = i
mm = j

Re(diag); De(vert); In (horz)

D-matrix computation;

Re = D[i-l][j-l]+hcst2[i][j]
De = D[i-l][j]+hcst,o[i][j]
In =D[i]D-l]+hcst.2[i]0]

D[i]D] = min(Re,De,In);

D-matrix completion;

D[n][n] = min_cost
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