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Abstract

A Syntactic Method for AnalyzingPlasma Etching Signals

by
Dong Wu Zhao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Advisor

Our objective is to diagnose faulty process conditions during plasma etching in

semiconductor manufacturing. In this thesis we presenta syntactic method for analyzing

plasma etching signals. The method is used to describe the general characteristics of the

etcher's real-time signals in the presence of noise and other extraneous influences. The

major features of the signals are captured by a piece-wise linear approximation scheme.

Thesequence of linesegments is described bya string of integers, where eachintegeris the

quantized slopeof each segment. Thestring is thencompared to a set ofpredefined regular

expressions, that define various faulty tool conditions.
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Chapter 1

Chapter 1 Introduction

1.1. Motivation

As thesemiconductor processing technology approaches 0.15 |Jim feature sizeand

300 mm wafer diameter, the cost ofbuilding anew fabrication plant is rising rapidly (20%

per year) [26]. It is predicted that it will take about $10 billion to build a state-of-the-art

facility for manufacture in2005. To remain competitive and encounter the escalating cost,

the industry has strived to improve feature size, wafer diameter, yield, and equipment uti

lization. However, the gains from wafer diameter and yield are disappearing. The new

focus is on equipment utilization.

The key tooptimize equipment utilization is through process monitoring in order to

makesure that wafers are processed properly at each step. However, there are more than

100 manufacturing steps, and it is too costly and time-consuming to measure each wafer

after the completion of each step. As of now, people in the industry usually measure and

monitor wafers periodically, especially right after performing preventive maintenance and

changing machine settings. Afinal test isperformed on each wafer after all the steps. Thus,

if an error occurs, it is very likely that many wafers aremisprocessed without notice until

very late. Because of the late notice, it is very difficult to trace back and locate the faulty

step and diagnose the problem. Therefore, one can save considerable amount of resource

by monitoring equipments on line, using their real-time signals. In this work we demon

strate that it ispossible to do so, with the monitoring ofplasma etch signals as anexample.

The purpose of analyzing real-time etching signals is to perform faultdetection and

diagnosis during the manufacture ofstate-of-the-art integrated circuits. Plasma etching is

one of the costliest steps during semiconductor processing. In addition, it is very difficult
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to control, since the physical mechanism of plasmaetching is not well understood. Fault

detection tools determine the state of the plasma etcher by analyzing the behavior of its

real-time signals. Once a fault is detected, thefault diagnosis tools will assign a cause to it,

as to assist the process engineer to fix the problem. Bydetecting thefault early, a process

engineer canprevent expensive newwafers from being fetched tothefaulty etcher, and cor

rect the fault on a timely basis. Thus, wafer yield and throughput will be enhanced. Also,

preventive maintenance (PM) canbe scheduled according to fault detection anddiagnosis

results, and down-time andmean-time-to-repair (MTTR) canbe reduced.[15]

1.2. Thesis Organization

In Chapter 2 we examine the nature of plasma etching signals, and focus on the

aspects that make characterizing them difficult. Spectral analysis ofthe plasma etching sig

nals is presented in Chapter 3 , so that we can see the nature of the signal perturbation in

thefrequency domain. This discussion will show that spectral analysis isprobably notvery

useful for characterizing plasma etching signals. In Chapter 4 a basic sjmtactic method is

presented. Inaddition todescribing the rough structure ofthe signals, we will present asup

plemental method forcomputing some quantified attributes, such as the amplitude ofvari

ous spikes. The result of characterizing a set of marathon-run data will be presented. In

Chapter 5anadvanced study case ofthe analysis for plasma ignition waveform will bepre

sented. Wewill conclude this work inChapter 6with aview onthe nature ofS5mtactic anal

ysis and with some comments onhow to efficiently deploy such systems.
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Chapter 2

2.1. Real-Time Data

Plasma etching isnotavery well understood process. Practical physical models for

fault detection and diagnosis are not yet available. Researchers infault detection and diag

nosis sofar have used empirical models. Previous works [15] involve modeling ofinput

setting against wafer's output parameters, such as etch rate, uniformity, selectivity, and

anisotropy. However, due to machine aging, maintenance and various other effects, input

settings do not entirely determine the chamber state. The same settings can result in very

different etching behavior. Spanos and S. Lee [14][15] show that the equipment's own elec

trical and mechanical signals can be modeled as time series and used effectively for fault

detectionand diagnosis. These real-time signalsreflect the chamberstate much better than

the input settings; they are able to show drift inetching behavior due tomachine aging and

maintenance.

Usually, when the equipmentis just out of control, the malfunction will first mani

fest itself in the real-time signals, but not much etching damage is done to the wafer yet,

and the wafer is still usable if the malfunction iscorrected soon enough. As a result, using

real-time signals for monitoring the etching process can help prevent misprocessing costly

wafers. Hundreds ofreal-time signals are available forcomputer analysis viastandard com

munication ports, such as SECS U. An engineer can choose a few of them to monitor the

etching process based on experience. Alternatively, one can find out the signals that are

sensitive to faults by doing designed experiments. Some of the real-time signals proved

useful are RF load, coil position RF tune vane position, peak-to-peak voltage load imped

ance, RF phase error, DC bias and endpoint. [16]
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One of our data sets is a metal etch marathon run from an industrial vendor. The

data set consists ofreal-time signals from more than 1400 wafers. For this analysis, we have

chosen the capacitance manometer signal, which reflects the pressure level in the etcher's

chamber. The waveform provided by the capacitance manometer isrelatively clean, which

simplifies visualverification of the analysis.

There are several steps in the etching process, including pre-etch of native oxide,

main etch, and over-etch. Atthe beginning ofeach etching step, it usually takes afew sec

onds for the etchant gases to stabilize. We usually select the later part ofthe main etch step

for analysis, where the waveform is relatively stable and repeatable. Figure 2.1 shows the

windowing" operation on the capacitance manometer signal. An experienced process

engineer can usually tell if etching is faulty by viewing the signal's waveform. For our

metal etch marathon data, the commonly seen waveforms are shown in Figure 2.2. We

visually classify these signals as either "normal" or oftype 1, 2, 3 and 4. Even though we
do not have documented faults inthis run, types 3and 4 are most likely faulty. Notice that

types 1and 2can be viewed as the combination ofanormal signal, and anegative orapos

itive spike, respectively; they may be considered normal if the spike is small enough. The
goal of the analysis is to correctly classify the waveforms.

window
of interest

/

•T'

Figure 2.1. The windowing operation.
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Figure 2.2. Commonly seen waveforms for capacitance manometer in a metal etch
marathon run.
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2.2, Analytical Difficulty for Statistical Techniques

Statistical modeling ofetching signals has been difficult, due to preventive mainte

nance (PM), machine aging, chamber memory effects, and other influences [15]. During a

maintenance cycle, residue gradually builds up in the chamber. This causes the chamber

state and sensor signals to drift slowly. Notice that a drift insensor signals does notneces

sarilycorrespond to a driftin thechamber state. Forinstance, as residue accumulates onthe

sensor window and degrades the transmittance, the intensity of the sensor signals will

decrease. Yet, the operation ofthe equipment is far from being faulty.

If too much residue accumulates in the chamber, the process parameters will be

quite different from when the chamberis clean.The aim of PM is to restore the etcher back

to the original clean state. However, due to the aging ofother parts of the tool, process

parameters after a PM will be a little different from those atthe beginning of the previous

clean cycle; the average level ofthe signals as well as the variance may change.

One also encounters so-called "memory effects", where, for example, after a signal

is unusually high indicating a fault, it will often remain relatively high for a while before

returning to the normal level, even after the machine isback incontrol. This memory effect

is very obvious when the machine first starts up. It takes a few runs before the machine

reaches its steady operating state, while the signals appear to approach steady state values

in an exponential fashion. (SeeFigure2.3 and 2.4.)

11
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The actual etching will beaffected by the variation inthe upstream processing. For

instance, the photo resist thickness variation on different wafer will lead to different etching

time. Also, due to the occurrence ofvarious events, noisy spikes ofdifferent magnitude and

time duration may be added to the signals.

a.) Nlachine aging

b) Nlaintenance

c) Memory

Figure 2.3. The illustrations ofthe nature of the plasma etching signals, a)Machine
agingeffectwithin a PM maintenance cycle, b) Maintenance effectaftera PM

maintenance procedure, c) Memory effect after a fault occurs.

wafer #

JmacKiiie
/ stajrt ixp

•

" 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.4. The memory effect as seen when the machine starts up.
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2.3. Two Statistical Monitoring Methods

As a result ofthese influences, using ordinary statistical methods tomonitor plasma

etching processes may yield unacceptably high false alarm rates. Tocompensate for these

effects, someresearchers update certain model parameters for the models theyuse as the

process drifts. When a sample is fed to the etcher, model parameters such as the signals'

means and covariance structure are updated in an exponentially weighted fashion, with

more weight given to recentsamples. The following are two such examples. The first one

is theReal-Time Statistical Process Control (RTSPC) project done in theBerkeley Com

puter Aided Manufacturing group (BCAM), which uses time series models. The covariance

structure is updated during production. The means need not be updated, since the data is

centered to zero. The second example is the diagnostic work done in Texas Instrument's J-

88Project, which usesprincipal component analysis (PCA), andupdates boththemeanand

covariance structure for the PCA model during production. Whenthe signal discontinues

orjumpsdue to eventssuch aspreventive maintenance andnewequipment installation, the

model parameters are reset, using the data acquired after the events.

2.3.1. The RTSPC Project [15][16]

RTSPCuses timeseriesmodels to capturethe dynamics of real-time signals.It first

learns thein-control autocorrelation structure from baseline data. Then, during production,

if RTSPC detects significant deviation from the baseline model, it generates alarms.

Thetime series models used areARIMA(p,d,q) models, where p is the auto-regres

sive order, d is the integration order, and q is the moving average order. The ARIMA

models fora non-stationary time series canbeexpressed bythefollowing two equations,

p <1

= S V.-ifc (2.1)
k=\ k=\

W, = Vx, (2.2)

where w, is thestationary timeseries aftertaking thedthdifference on the original nonsta-

tionary series X,, witherror Uj, which is distributed as 7V(0, .

13
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With the ARIMA model, theprediction of the current stationary series is done by

using past observations.

- Z ^k^t-k + E (2.3)
k=l fc=1

The actuseries is made stationary by taking the dth difference on the raw data as needed,

i.e. Wj = . Then the residual of the time series model is,

= Wj-w (2.4)

The residual is a zero-mean IIND variable if the tool is in-control.

For some signals, the wafer-to-wafer variation is much greater than the within-

wafer variation (Fig 2.5). RTSPC decomposes raw signals into long-term components

(wafer-to-wafer) and short-term components (within wafer). Each component is modeled

by an ARIMA model.

During production,the wafer-to-wafer averagesand the within-wafertrends are fil

tered by their respective time series model in order to obtain the residuals e. Then each

component's residuals e from different signals is combined into a single score byHoteU-

ing's statistics (Fig 2.6),

rJl TA-IT = e S e (2.5)

where S is theestimated covariance matrix ofthe residuals, which may be computed in an

exponential weighted fashion,

k

S = ^ X'e(^ - i)^{k - i) (2.6)
1 = 0

where k is theuser-defined moving window length and Xis theexponential weighting fac

tor.

14
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2.3.2. TheTexas Instniments/Sematech Project(PCA analysis)[17]

During plasma etching, there is a large volume ofdata from the equipment. Also,

signals from different sensors are highly correlated. The purpose ofusing principal compo

nent analysis (PCA) is to compress the data and extract relevant information. PCA splits

the data matrix into systematic variation (process model) and noise (residual variance). For

processing a wafer, data matrix X with mrows by n columns (samples by variables), can

be expressed as.

X= t,p[+t2P2 +... +ttp[+E = tX +E (2.7)

Each variable in X has been centered bysubtracting a 1 byn vector of the means ofvari

ables, and scaled by d, a 1by nstandard deviation vector. The p,. are called loading vec

tors, which are eigenvectors of C = X^X, the covariance matrix of X. They are aset of
orthonormal vectors; i.e. pfpy =0for j^ pfpy = 1for / =j. The t,- are called the
scores vectors, which for an individual sample, canbecomputed as.

h = Xpf (2.8)

where k is the number ofprincipal components (PC) selected, which isless than orequal

tothe dimension ofX, i.e., k< min(my n). For the highly correlated plasma etching real

time data, thenumber ofPCs required to adequately capture the systematic variation of a

process is far smaller than m and n.

16
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Two statistics are used, "lack offit" statistics Q and theHotelling's statistics. Q

is a measure of the amount of variation not captured by thePCAmodel.

Qi = e,ef = x,(I-P;tP[)xf (2.9)
Where e,- is the ith row of E. is the measure of the variation within the PCAmodel,

(2.10)

where t,- is the ith row of T^^.. Notice that is a diagonal matrix due to the orthogo

nality of the {t,.} vectors. The diagonal entries of the matrixare eigenvalues of the cova-

riance matrix of X.

The mean vector a, standard deviation vector d and the covariance matrix need to

be updated in a exponential weighted way as new process data becomeavailable.

j

a(y +1) = X (2.11)
7=1

j

d(7+l) = (2-12)
7 = 1

J

c(7+i) = Xr'cxy-j) (2.13)
7=1

where si\J - j)j d'(7-y), and C\J - j) are the actual mean vector, standard deviation

vector, and covariance matrix, respectively, for the jth measurement, a, y, and T are the

user-defined exponential weights. J is the window size of the past measurement. Notice

that these modelparametersdependonlyon the past observation. The PCA model is recom

puted based onthecovariance matrix €(7 + 1), i.e., new loading vector p,- and eigenval

ues of the covariance matrix will be obtained. As the new process data become

available, it iscentered with a{j + 1) and scaled with d{j + 1). Then new score t,- can

be obtained by (2.8) with the new loadings. And Q, T^ can be computed with (2.9), (2.10)

by replacing X^^^ with X. t,- with t,., and with the neweigenvalue matrix.

17
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2.4. Commenton StatisticalTechniques

Statistical techniques usually rely on strict assumptions about the signal. Atypical

assumption is that, the signal is stationary (the mean value is unchanged; the noise is nor

mallydistributed andthe variance is constant), or thedrift is constant, etc. Statistical tech

niques cannot simultaneously deal with the many influences on the plasma etching signals.

For instance, if there is a discontinuity in the etching signals due to temporary equipment

downtime, the two statistical techniques will have to build the analytical models from

scratch. Also, the two techniques cannot accommodate small spikes in the signals, which

may lead to false alarms.

Overall, in order to analyze plasma etching signals, we need to be able to manage

different influences in a flexible way. In the following chapters, we will look at two tech

niques that can provide this flexibility. We first investigate spectral analysis, and then syn

tactic analysis.

18



Chapter 3 An Attempt for Flexible
Signal Representation Based on

Spectral Analysis

Chapter 3

3.1. Background and Motivation

Thetool toestimate thespectral density is theperiodogram. Theperiodogram is the

sum of squares of the Fourier Transform of the time-domain,

/(CO) =

^ n ^

X e-""xu)
Vx= 1

2

/n = -
n

^X(Osino)f| +1 ^X(r)coscor| j (3.1)
1

whereX(t) is the timedomain data, n is the number of samples.

Spectral analysis is mainly used to search for periodicity in thesignals [18]. If there

is indeed periodicity in the signals, spectral analysis iseffective fordiagnosing the physical

mechanism responsible for generating the harmonics. Although a hannonic's timedomain

waveformcan be easily distorted, and its magnitude can be differentdue to different con

ditions, the harmonic's power will remain conspicuous in the frequency domain. Due to

thisfact, frequency modulation is now commonly used in broadcasting, as to transmit data

via noisy channels. Also, spectral analysis is used widely in natural science and medical

science in order to analyze various phenomena, which might be very difficult to interpret

in the time domain. The following are a few examples.

Michelson (1913) computes the periodogram for some sunspot data. He finds that,

onthefrequency domain, there is a significant peak at around 0.09cycles/year. This corre

sponds to the traditional sunspot period of 11 years [19].

19
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Nuclear magnetic resonance (NMR) is a resonance effect occurring in a particular

substance when the applied magnetic field frequency matches a nuclear precession fre

quency ofthesubstance. Ernst and Kaiser (1970) applied a random magnetic field, X(.), to

a 2, 3-dibromothiophene (2,3-DBT) and measured the response Y(.). The periodogram of

Y(.) show two doublets. Notice that thepower spectrum of the random noise input X(.) is

roughlyconstantacrossthe measured frequency band. This shows that there are four NRM

frequencies for 2,3-DBT. Scientists can make use of the NMR effect to classify different

substances, since thenuclear precession frequency is anintrinsic property of a substance.

In themedical field, the physician judges the status of a patient's heart bylooking

attheElectrocardiogram (ECG). An ECG signal ismeasured with electrodes placed onthe

skin. For acardiac cycle, anECG signal consists ofthe following components: Pwave, PQ

segment, QRS complex, STsegment, T wave and TPsegment Aheart rate variability plot

(HRV) isconstructed byextracting the Twaves from the ECG signal, catenating them, and

feeding them toalow pass filter with 0.5Hz cutofffrequency. Rompelman, et al., found out

that in the HRV power spectrum, high frequency components are associated with respira

tory fluctuations; medium frequency components are associated with blood pressure fluc

tuations; low frequency components are associated with body temperature fluctuations

[20].

These uses ofthe periodogram led us to the hypothesis that perhaps by using spec

tral analysis, we can classify various faults based on their spectral signature. Also, perhaps,

we can figure out the amoimt ofmachine aging and drift effect in the low frequency com

ponents; we might also assess the signal waveform generates by the underl5dng etching

signalfrom the medium frequency components; and we couldestimate thenoisecontribu

tion by examining thehighfrequency components.

3.2. Pre-whitening of Plasma Etching Signals

In orderto applyspectral analysis onplasmaetching signals, we haveassumed that

there is periodicity in theetching signals. Thetaskis to make thespikes of the harmonics

stand outin thefrequency domain. However, the power of thesignal waveform generated

by thephysical etching mechanism is usually a lot stronger than small perturbations, such

20
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asaging and various noisy events. Inorder tosee the major components associated with the

perturbations, we need toperform the prewhitening operation onthetime series data, asto

make the resulting signal approximately stationary. Here, prewhitening is the same as

taking the difference on the time series data. The rationale ofprewhitening isexplained as

follows.

Assume X(t) is of the following form,

K

^(0 = fit) +eit) + ^ Rjcosioijt +^j), t=l, ..., n (3.2)
7 = 1

where f(t) is associated with the physical etching mechanism, and can be modeled by an

ARIMA(p,d,q) model. e(t) is the normal error term. The third summation term is the

expression for sinusoidal perturbations, assuming there are Kharmonics. The Rj, (Hj and
are the amplitude, frequency valueand phase, respectively, for different harmonics.

Take the dth difference on X(t), we have.

K

= V''/(0 +e(0+ X + (3-3)
y=i

Sincef(t) is of d integrative order,by takingthe dthdifference, is a station

ary series. The difference operation does not change probability distribution of the error

term. Taking differences on a cosinusoidal time series yields another sinusoidal (for

d=2n+l) orcosinusoidal (for d=2n) time series. On the periodogram, thefrequency com

ponents due to V fit)-\-e{t) are independent from each other, with variance approxi-
2

mately a /(27c), and the variance does notdecrease much byincreasing thesample size n

[18]. As for the summation term, the periodogram should show aspike ofmagnitude R^j/2
for each harmonic location.

Now, if Rj »a, i.e., the amplitude ofthe cosinusoids ismuch greater than the stan

dard deviation of the sum of the stationarytime series and noise term, then harmonic CO •
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will stand out in the periodogram. On the other hand, ifRj is smaller or comparable to G, the har
monics will not be ableto distinguish themselves well in the periodogram.

3.3. Examination of the Technique on the Plasma Etching Signals

Weassume thatf(t)follows a second order integrative model, sinceaftertaking the2ndorder

difference, the resultingdata appears stationary. Figure 3.1 shows the waveforms, and their 1st and

2nd differences, and their respective spectra for two routine signals. The routine waveforms look

very close to each other in their original time domain representation. However, in the spectral rep

resentation, theylooklike random noise. One cannot really tellwhether they are thesameor notin

the frequency domain. Figure 3.2shows thespectra for a routine run and a faulty run. We see that

their original time series waveforms arevery different, and wehope toseea large deviation between

the waveform in thefrequency domain. However, any deviation is "buried" in variance oftheperi

odogram; we cannot really tell them apart Figure 3.3, shows the difference betweena routine run

and a faulty run. We hope to find a sinusoidal perturbation due to the faulty condition. Yet, we

cannot find any distinguishable harmonic in thefrequency domain. Tosum up after examining the

spectraclosely, it seems to us the assumption that the perturbation being sinusoidal is invalid. No

obvious components stand out in the frequency domain. That is, we have acase where Rj is smaller
or comparable to a. Also, in the frequency domain, var(/(co)) =/^(o))[i8]^ that is the variance of
the periodogram is approximately equal to the value square of the periodogram itself. Due to this

noisy nature, it is difficult to categorize thecomponents. From this dataexamination, it is suggested

thatspectral analysis is probably notsuitable for analyzing plasma etching data.

22



time

series

spectrum

original

Sofioa: somovool
Raw Pertodoofwn

rsssssrsmimt ttSTPisMtati •iiuRot

1st diff

Raw Poitodooram

Chapter 3

2nd diff

Sanaa: dmtfcrtaofnavaci))
Row Parto<locfam

• I •> aa aa aa

2isaait'ttStPi: fjtmt•»fisa

One routine signal

The other routine one

Figure 3.1. Time series and spectrum plots of two routine signals.

time

series

spectrum «

original

^loa: apmavaei
HOW Pariod

1st diff 2nd diff

Saoe|j^ffi[d^eomevoc1))

esssasasJtateiiirsriasta-start# BsssasttaasttetsrsjisssstaBi# BssaasaassttRSTfejasraaRtajts

Routine signal

Faulty signal

Figure 3.2. Time series and spectrum plots ofa routine signal and afaulty signal.

23



time

series

spectrum

original

SortM: jMnMvoci >son«v»c2
Raw Partodogrm

Istdiff

Soflos: d|(r(tomovoct *socTwvaG2)
Raw Partodoofam

Chapter 3

2nd diff

sortot: (irvdir

Figure 3.3. Time series and spectrum plots ofthe difference between a routine signal
and a faulty one.

Recently (spring 1999), the author collected some plasma etching data with much

higher sampling rates from the Microfabrication Lab. The new rate is 400 Hz instead of the

usual 1-2 Hz in the industry. Figure 3.4 shows a time series plot ofTCP load cap position

and its frequency-domain representation. Some sinusoidal patterns in the waveform are

clearly visible in the time domain. Some preliminary spectral analysis shows that quite a

few harmonics are hidden in the time series waveform. At this point, the author is still

working oncoming up with better techniques for the analysis of the data. Wavelet trans

form and hybrid methods (combination of syntactic and statistical methods) are the two

techniques under investigation.

This suggests that the reason spectral analysis cannot provide any useful informa

tion from the industrial data isthat the sampling rate is too low. By increasing the sampling

rate, a lotmore diagnostic information about theetcher will appear in thewaveforms ofthe
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real-time signals. A setup for increasing the sampling rate has been done in the Microfabri-

cation Lab. The result of analysis on the data will be presented in later works.

TCP load capacitor position vs. Time

stion

69 Hz
110 Hz

12 Hz

frequency (Hz)

Figure 3.4. A time series of TCP load cap position at sampling rate of 400Hz, and its
frequency-domain representation. A few harmonics are shown.
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4.1. Introduction

Syntactic analysis refers to a general pattern recognition technique which uses

formal language paradigms todescribe the structure ofanobject. The basic approach is to

decompose the object into subpattems ofprimitives. By some criteria, asymbol is assigned

toeach primitive, and the symbols are assembled into asentence. Agrammar is asetofsyn

tactic rules for generating sentences, which describes a class of objects. If the sentence

encoded from an object is accepted by the grammar, then we consider that the object

belongs to the class described by the grammar. Syntactic analysis is widely used for char

acter recognition, especiallyin the Far East, where syntactic analysis-based Chinesechar

acter recognition is an active research area.

Syntactic analysis also has found some success in the medical field, for analyzing

electrocardiogram (EGG) signals, in order to determine the status of a patient's heart. If

done visually, the procedure is divided into twostages [10]. First, somecharacteristic fea

tures ofEGG arerecognized, such as the P wave, the PQsegment, the QRS complex, the

ST segment, the T wave and the TP segment. Then, the physician measures the features'

parameters, such as durations and amplitudes, and interprets these numerical values based

on experience and a set of established empirical diagnostic criteria. Due to the massive

amount of EGG data, there has been a great interest for computerizing the interpretation

process. Many medical researchers have used syntactic pattern recognition techniques to

analyze EGG signals [1-5]. Basically, they trytobuild anEGG processing system to imitate

thephysician, and to draw similar judgements about the status of thepatient.
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ECG signals are similar to the plasma etch signals in some respects. In addition to

considerable amount ofnoise, theirform and sizecanchange over time [3]. Also, likeetch

ing signals differring from machine to machine, ECG signals differ considerably from

person toperson. Syntactic analysis is applicable since it is robust against gross change, and

also appeals to intuition. Even if a signal has been "rubber stretched"(i.e. linearly trans

formed along thex- and y- axes), if the signal is classifiable by a human expert, then sjm-

tactic analysis canusually classify it correctly. This is the reason theauthor thinks syntactic

analysis is a preferred choice for analyzing plasma etching signals.

4.2. The Syntactic System

A syntactic system for analyzing the etching signal of a capacitance manometer is

presented here. The system attempts to discriminate among various waveform lypes.

Figure 4.1 shows the overall block diagram. When a raw signal comes in, thewaveform is

preprocessed to facilitate further analysis. Then the waveform is encoded into a string of

integers. The string is fed into the classifier todetermine the fault category. There is also a

numerical spike evaluator in the classifer. We will point out its necessity when we taiv

about the classification result. The major parts of this syntactic analysis system will be

described next.
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Figure4.1. Architecture of the overallsyntacticsystem.

4.2.1. Preprocessor

The preprocessor performs three operations: windowing, smoothing, and segmen

tation (Figure 4.2). Windowing refers to choosing the appropriate timeinterval for obser

vation during theetch cycle of one wafer. The time window we select is usually the later

part of the main etch step. For the capacitance manometer signal, there are two dominant

positive spikes (as opposed to the minor ones in thestable region), one big, and onesmall,

before the relatively stable region, so we can define a window after thesmall spike. Since

we do not do any analysis on the random, high frequency noise, we can smooth out the

noise of the windowed waveform. We use an algorithm called Locally Weighted Scatter

Plot Smoothing [13]. This algorithm will try topredict each point ofthesignal byinterpo

lation, by appropriately weighing the nearby raw data. The smoother lets theuser specify

the fraction of total dataused for predicting a particular point; the larger the fraction, the

smoother the fit. Forthe capacitance manometer, a fraction value of 0.2 is appropriate in

thesense thatthis transformation seems to preserve the features that areanalyzed later by

the segmentaton algorithm and the classifier.
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To dividethe smoothed waveform into segments, first, a linearfit errortolerance is

selected. The segment starts from the first data points. The segment keeps growing with

successive points until themaximum linear fitting error is greater than the tolerance. The

second segment starts with the end ofthe first segment, and this procedure is repeated until

the entire window can be represented by linear segments.The following isthe pseudo code

for the segmentation algorithm.

Segmentation
Input: Time seriesX={xi... Xn}; linear fit error tolerance e.
Output: Listof linesegment L={si... s^}.

h=l,i=l,j=l;
j=D+i;
while (j<n)

s=linear model fit on {Xj... xj};
maxerror = max {prediction error of s};
if (maxerror > e)

s=linear model fiton (xj... Xj.i};
L=append(L, s)

elsej=3+l;
L=append(L, s);
return L;
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Figure 4.2. The process flow of the preprocessor.
The sample rate of the original signalis 2 samples per sec.
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4.2.2. Encoder

Figure 4.3 shows the encoding scheme which converts the sequence of segments

into a string of integers. Five integers are usedfor encoding the slope of the segments: 2

(fast increasing), 1 (slowly increasing), 0 (almost flat), -1 (slowly decreasing), and -2 (fast

decreasing). For the windowed waveform of the capacitance manometer, we consider a

segment witha slope of magnitude more than 10units/sec to befast changing, less than4

units/sec to be almost flat, and thein-between values to beslowly changing.

' u

21100

units/sed

0

iX\2 fl

210-1-20210

Figure 4.3. The encoding scheme

slowl

• -2

4.2.3. Classifier

The classifier's operation is based on regular expression representation. Regular

expressions are used to build the classifier. The expressions are used for matching the

encoding string from the rawdata. Assuming that x is an integer variable, we show some

examples of regular expressions:

X*: zero or more x, i.e., <empty>, x, xx, or xxxxxxx.

x+: one or more x, i.e., x, xx, or xxxxxxx.
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X?: zero or one x, i.e.,<empty>, x.

xly: either x or y.

For example, the following strings are all represented by the same regular expression,

2*1+0*.

2*1+0*: 2222110000, 22221, or 100000.

Based on the process engineer's knowledge on the different waveforms, the classifier can

be builtto describe the shape of waveforms with oneregular expression for each. Afteran

incoming etching waveform isencoded into aninteger string, the classifier will trytomatch

thestring to one of theregular expressions, and thus determine its category. Forexample,

the following regular expressions can beused to describe thewaveforms shown in Figure

4.3:

2+1+0+: describes a curve that first increases rapidly, then stabilizes and finally

flattens out. (I.e. the firstencoding example 21100 from Figure 4.3)

2+ {l*0*(-l)*(-2)*(-l)*0*l*2*} 1+0+: describes curves that are the sum of the

2+1+0+ curve and a possible negative spike. (I.e. the second encoding example 210-1-

20210 from Figure 4.3. Notice that the expression within the curly brackets represents the

spike).

However, actual real-time signals may evolve quite a bit over time. The normal

waveform may be "stretched" in time oramplitude; the spikes of type 1 and 2 canappear

at various times, with varying amplitude and duration, relative to the base waveform. Care

should be taken when one derives a regular expression, so that the expression is flexible

enough toaccept variants ofthewaveform. Let us discuss insome detail theregular expres

sions for the five different waveforms in our data.

4.2.3.1. Regular expressionsfor five waveform categories

Normal:

Thenormal waveform has a shape similar to thefirst example in Figure 4.3. It first

increases rapidly, thenstabilizes and flattens out. However, expression 2+1+0+ willnotbe
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appropriate enough to describe this decreasing trend of positive slope. Due to the "rubber

stretching" effect, sometimes slope code of2 or1might notappear inthe integer sting. The

engineer must exercise discretion in deriving the regular expression. Strings without a "2"

or"1" should be accepted. Anexpression thatwould accommodate this range of signals is

2*1+0+ I 2+1*0+.

Typel:

Thetype1waveform is thesumofthenormal waveform and a negative noisypeak.

Because the amplitudes of the peaks are different, and they are added to an increasing

curve, the encoding representation mightnotcontain negative slopes. For instance, see the

waveform in Figure 4.4. Also,the peakmightappear in anyposition relative to thenormal

curve, so it is necessary to consider all scenarios of where the peakappears. The notation

of Nxy is used for describing the peak, where N stands for negative peak; x is the slope

encoding value before thepeak; y is theslope encoding value after thepeak. Theencoding

for the peak is in this format:

(starting segment, left arm, right arm, ending segment)

Ngnji stands for the negative peakoccurring at end of the waveform; flat segments do not

need to appear after is thepositive peak defined similiarly. Forthepeak coding

N22, (2 (-21-11011)+ (01112)* 2),i.e., the negative peak occurring within the fast increasing

"2" region, line segments withslopecodeless than 2 willbe considered as a validleft arm;

also, it is not necessary to have a right arm.

N22=(2 (-21-11011)+ (01112)* 2)
N21=(2 (-21-110)+(01112)* 1)
Nll=(l (-21-110)+(01112)* 1)
N10=(l (-21-1)+ (0I1I2)* 0)
N00=(0 (-21-1)+(01112)* 0)
Nend=(0 (-21-1)+(01112)* )

Typel=2*{N22}?2*{N21}?l*{Nll}?l*{N10}?0*{N00}?0*{Nend}?
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Q Q-

Figure 4.4. Two examples of negative peaks.

Type 2:

The type 2waveform isthe sum ofthe normal waveform and apositive noisy peak.

Similar to thenegative-peak t)q)e 1case, it is necessary to consider all scenarios of where

the positive peak appears. Notice that there are no P22 and P21. Apositive peak has seg

ments with slopes greater than the segments before it. However, as "2" is the largest slope

coding value, it isnot possible to have a segment with the slope coding value greater than

2. Thus under this coding scheme, itisnot possible to have apossible peak within, orright

after a region of segments with coding values"2."

Pll=(l 2+(llOI-ll-2)* 1)
P10=(l 2+ (1I0I-1I-2)* 0)
P00=(0(1I2)+ (01-11-2)* 0)
Pend=(0(ll2)+ (01-11-2)*)

Type2=2*l*{Pll}?l*{P10}?0*{P00}?0*{Pend}?
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Figure 4.5. Two examples of postive peaks.

Type 3:

The type 3 waveform is more or less the inverted version of the normal waveform.

It first decreases rapidly, then stabilizes and flattens out. Again, due to the "rubber stretch

ing" effect, there may not be a "-1" or a "0" in the encoding strings, so the regular expres

sion for type 3 is (-2)+(-l)*0+1 (-2)+(-l)+0*.

Type 4:

The type 4 waveformhas a more complicatedvalley-likeshape. There is a bump at

the bottom of the valley. The expression is

(-2)*(-l)+0*(-2)+(-l)*0*l*2*l*0*(-l)*(-2)*0*l*2+l*0*.

4.2.4. First-pass classiJfication result

Table 4-1 summarizes the classification result based on the system described

above.

Table 4-1. Waveform category distribution, first-pass result.

Type Normal 1 & 2

Correct 1180 221

Miss 2 0
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Let us examine this table. There are 3 "unknown" signals thatcould not be classi

fied as any ofthe predetermined types. Many normal waveforms may have small spikes;

proper smoothing and quantizing prevents them from showing up intheencoding. The two

misclassifications for the normal begin with a "1" followed by "2s" instead ofbeginning

with a "2". The type 3misclassification has a small negative spike. Lastly, the system basi

cally cannot distinguish if there is a positive or negative spike to the normal template,

although it is able to detect a significant slope change in the otherwise monotonically

increasing waveform. This ambiguity can beexplained by Figure 4.6. Depending on how

we interpret the different curve regions, we might come up with a positive or a negative

spike for the same curve.

norm; legativ
spike

normal normal

Figure 4.6. Two possibleinterpretations of the shape of the same curve.

4.2.5. Spike Evaluator

One apparent way to resolve this structural ambiguity is to add quantitative measur

ingability totheclassifier, inorder tofind outthe sign and magnitude ofthespikes. Similar

schemes have been implemented forECG waveform analysis. Forexample, formore accu

rateECGwaveform classification, Koski, et al. [3] compute the amplitude and duration of

candidate P wave and T wave. Based onthese numerical attributes, thewave in question is

designated as a noisy waves, a P wave ora T wave. Here, a spike evaluator is proposed to

measure themagnitude and sign of spikes (Figure 4.7). We first take thesmoothed signal,

centered, and standardized byits standard deviation, and we then subtract a reference sig-
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nal. Ontheresidual plot, the maximum peak value represents the value ofthespike. Inour

study, weput a threshold of0.3,which means thatif thespikeis less than0.3times thestan

darddeviation of the signal, weconsider theprocess to benormal. Using this criterion, 60

examples of tj^e 1, and 29 of type 2 are classified as faulty. The improved results are

shown inTable 4-2. Notice thata small spike added to a signal isa very common phenom

enon. It should not be a surprise that outof the ten type 3 signals, onehasa small spike. If

we constructa spike evaluator for fault type 3, the one classifying error due to the small

negative spike added to the signal would be corrected as well.

spike

/ reference

spike

residuals V

Figure 4.7. The way to measurethe spikemagnitude in the classifier.

Table 4-2. Improved waveform classification with thespike evaluator.

Type

Correct

Miss

Normal

1312

2

1

60

0

2

29

0

38
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5.1. Introduction

High speed data is acquired during the plasma ignition stage, before any etching

occurs. This stageis the transition between thepre-etch andthe mainetch.The samplerate

is 100 samples per second, instead of one or two samples per second, as was the case when

monitoring during the entire etching period. The high sampling rate is needed to capture

the detail of the transition waveform, and this is where the term "high speed" comes from.

Our assmnption about the "high speed" waveform is that each waveform corre

sponds to an operating condition. The goal of the analysis is to describe the shape of a

waveform andthus determine its operating condition. There are two designed parameters

for the operating conditions, namely, "tune" and "load." Theycan be assigned to different

experimental levels, such as "high," "medium-high," "baseline," "medium-low," and

"low."

Let us examine some waveforms. Figure 5.2 shows two baseline waveforms and

two medium-low tune and load waveforms. For the baseline waveforms, the region

between the first and second spikes might be somewhat different, otherwise, the two wave

forms will have very similar structures. For the medium low tune and load waveforms, the

regionafter the big positive peakcan be quitedifferent. Also, we caninfer frominspection

that the negative peak can be sometimes narrower (as in the first waveform) and sometimes

wider (as in the second waveform). A human braincan effortlessly analyze the waveforms

and come up the above observations. We will build our automated analysis system with

these observations in mind.
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Figure 5.1. Two types ofTCP line impedance waveforms for two different operation
conditions.

Syntactic analysis is partly science and partly art. For accurate classification, the

importance ofengineering judgement cannot beoveremphasized. This means that therules

encoded in the system are going to be highly specific tothe nature ofthe data. The "high

speed"datawaveforms aremuchmorecomplicated thanthemain-etch waveforms we ana

lyzed previously, so we cannot use the analytic scheme for the main-etch waveforms. Using

line segments as the primitive elements would make the classifier extremely complicated.

Also, using slope attributes alone would not adequately describe the "high speed" wave

forms.

Horowitz proposes a syntactic algorithm for detecting peaks in ECG signals [6].

Belforte uses apeak-coding table look-up method toanalyze ECG signals [7]. After taking

thefirst derivative ontheraw ECG data, the waveform is parsed into peaks. Based on the

amplitude and duration of a peak, a lettercodeis assigned to it. Trahanias and Skordalakis

suggest using peakand segment as two types ofprimitives, and one canbuild a hierarchy

for a waveform from the primitives in a bottom-up fashion [8][9]. However, the use of a

"peak" as a primitive can betroublesome. Notice that if a positive peak is followed by a

negativepeak,the twopeakswillsharea common armin the middle. That is, a lower-level

element is being shared by two higher-level elements; this will complicate the syntactic
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Structure description. Also, it may be difficult to define the duration and amplitude of a

peak if the left and right arms of a peak are uneven. Nevertheless, we believe that the rec

ognition of complicated waveforms can be done in a fairly straightforward way, as dis

cussed next.

5.2. The analysis system

Anewscheme is proposed forrecognizing "high speed" waveforms. Three types of

primitives are used: UP (monotonically increasing), FLAT (approximately constant), and

DOWN (monotonically decreasing). Each primitive consists of small straight line seg

ments. For ourdata, the linesegments withslope between -0.1 and0.1 unitper datapoint

areconsideredFLAT;lessthan -0.1,DOWN;greaterthan0.1, UP. SeeFigure5.3for draw

ing of the primitives, andFigure5.4 for the blockdiagram of the analysis system.

FLAT

A
\down

\

Figure 5.2. Illustration of three types of primitives.

5.2.1. Noise filter and segmentation

One encounters noisy line segments in extracting the primitives. See Table 5-1 (the

rule table) for different cases of noisy segments. Also, look at Figure 5.1 where in the

second baseline waveform, a lot of noisy segments occur between the first two spikes.

Antonacopoulos, Economous [11] and Skordalakis [12] discuss some techniques for

detecting and processing noisy peaks. Let us examine a few ways to filter out the noise.
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Noise filtering scheme 1: smoothing
Here, the objective is to implement a low pass filter in order to eliminate high fre

quency noise. The Locally Weighted Scatter Plot Smoothing Algorithm from Chapter 4

works very well for the simple main etch waveform. However, if we apply the algorithm

ona baseline waveform, wewill lose some detail of the first spike. Also, the ratio between

themagnitude of thefirst spike and that ofsecond spike gets altered. Originally, the ratio

is roughly 3:1. In the smoothed waveform, it is less than 2:1. This is an undesirable effect

of the smoothing operation.

100 SOO 300 400

Xlmo

Figure 5.3. Smoothing, (a) ona main-etch waveform, (b) on a "high speed" baseline
waveform.

Noisefiltering scheme 2: piecewise-linearapproximation
One canalso attempt tofilter outthe noisy segments byapplying apiecewise-linear

approximation to thewaveform, with theproper tolerance for thefitting error. Thescheme

is illustrated in the first part ofFigure 5.4. However, for a complicated waveform, picking

a good tolerance is hard, because some noise might be signal-dependent Some region of

thesignal canbevery noisy, while others might berelatively noise-free. If thetolerance is
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too big, the approximation will not be adequate; if the tolerance is too small, filtering will

not be effective in the noisy region. (Seethe second part of Figure5.5)

(a)

(b)

not asnoi^ j
f\

Figure 5.4.. (a)piecewise-linear approximation on a main-etch waveform, (b)
Examination of a "high speed" baseline waveform.

Noise filtering scheme 3: processing noisy segments
This schemefirstemploys a piecewise linearapproximation witha smalltolerance,

selected to be effective for the relatively noise-free regions of the waveform. We subse

quently extract the UP, FLAT, and DOWN primitives, based on the rules shown in Table

5-1. In the high speed data, any line segment with duration less than 5 and amplitude less

than 0.4 is considered noisy.
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Not done yet!
More rules needed
to be applied.

Figure 5.5. niustration of noisy peak processing with rules d and e (from Table 5-1)
applied.

Table 5-1. Rules for processing noisy segments

Waveform

FLAT

44

Rule Description

(a) A noisy segment between two long FLAT
segments. We consider all three segments as
a H^AT primitive candidate.

(b) A noisy segment between two big UP
segments. We consider all three segments as
an UP primitive candidate.



Table 5-1. Rules for processing noisy segments
Chapter 5

/ScaT
c) A noisysegmenta UP segmentand a
FLAT segment. A horizontal line is drawn
through me noisy region and consider the
region and the FLATsegment as a FLAT
primitive candidate.

(d)Noisysegments occurconsecutively,
alternating between UPandFLATprimitives.
Weconsider the entire region as UP.

(e) Noisysegments occurconsecutively,
alternating betweenUP andDOWNprimi
tives. We use lines to connect bottoms of the
segments. From the slope of the those lines,
we determine the slope attribute for the
region.

The valiants of the above rules canbederived easily. Forinstance, the dual of (b);

two negative DOWN segments with a positive-sloped noisy segment in between will be

considered as a DOWN primitive candidate. Byiterating over theabove rules a fewtimes,

all the noisy segments should be filtered out.

5.2.2. Encoding

Three attributes are used todescribe each primitive, in theform of {S, D, A}, where,

S is theslope code, which canbe -1 (DOWN), 0 (FLAT), and 1 (UP);

D is theduration code which canbe0,1, and 2, in order of length. If duration of a

primitive is less than 10,D=0; between 10and 30,D=l; greater than30, D=2;

A is the amplitude code which can be0,1, and 2, in order ofmagnitude. If ampli

tude of a primitive is less than 0.4, A=0; between 0.4and 2, D=l; greater than 2,D=2.

The criteria for quantization can be assigned based on the process engineer's expe

rience with the signal. One should try to make the number ofprimitives corresponding to

each quantized value roughly the same. This will make the task of building the classifier

easier. Consider the case where we use a very strict criterion on the FLAT primitive, in

which case only line segments with slope very close to zero will be assigned slope code of
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0. Then the number of FLAT primitives will be very small, and it simply defeats the pur

pose of having a FLAT attribute; since the FLAT attribute were to be left largely unused,

we might as well just two attributes, UP and DOWN.

(0,2,0)

(-1,0,2)

(0,2,0)
(1,1,0)

Figure 5.6. An encoding example. This is the low-tune and high-load waveform.

For the above low-tune and high-load waveform, the list of the numerical values for

the primitives is

(0,412,0.02) (-1,1,2.99) (1,23,0.35) (0,763,0.01), which can be coded as,

(0, 2,0) (-1,0,2) (1,1,0)(0,2,0).

5.2.3. Building the classifier

The s)mtactic rules have to be created to take into accoimt the error tolerances used

in extracting the primitives. In training the classifier, one should be careful with primitives

close to the boundary value. If there is a reason to believe that the corresponding primitive

of the subsequent waveform may take on either of the two encoding values which share a

common boundary, we should use the logical OR ("1") operator on the two values, so that

both values will be accepted.

46



Chapter 5

Consider thethird primitive of theabove waveform. Its amplitude is 0.35, which is

fairly close to the boundary value of0.4. We should make the classifier accept both 0 and

1 for the amplitude attribute. The classifierfor the waveform can be,

(0,2,0)(-l,0,2)(l, l,(?l/)(0,2,0).

Indeed, engineering intuition is of great help in building the classifier. Let us get

back to the observation on the LHext waveform, which we mentioned in the introduction

of this chapter. The basic idea is to write the regular expression based on the common

region. Anything attached to the common region willbe acceptable.

{Common}{Anything}

Anything = -2 | -1 | 0 | 1 | 2 | , | { | )

LHmed

comm bn: commo^

Figure 5.7. Highlight the common region in two waveforms collected at the same
operating conditions.

Inthis case, thecommon region isa big FLAT segment followed byanegative peak

and a positive peak. Notice that the top portion ofthe negative peak might berelatively flat

Therefore, after segmentation, a small FLAT primitive corresponding tothetop oftheneg

ativepeak mightexist. With this in mind, the common region can be coded as follows:

top_flat= (0,011,0)

common=(0,2,0)(-l,0,2)/ifo/*Jto(;?(l,2,2)(-l,0,l)(l,0ll,0ll)(-l,2,2)

Please see Appendix C for the flex code of the classifier.
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5.3. Experiment setup

Figure 5.8 shows the basic schematic of the LAM 9400 plasma etcher, which is a

transformer-coupled plasma (TCP) system. The inductive planar coils at the top of the

chamber are wound from near the center to the outer radius of the chamber. Plasma is cre

ated byapplying RFpower tothe inductive coil. Another RF power source is applied tothe

substrate for ion-bombardment of the wafer. There is one matching network for each RF

source. The upper one is a capacitive network, consisting of two variable capacitors, the

tunevanecapacitor andthe loadcapacitor. The loweroneis a L-type network; the variable

circuit elements are thetune vane capacitor and the load coil (see Figure 5.9). A matching

network triesto match theimpedance it "sees," as to maximize thepower transfer from the

RF source to the plasma. During the matching operation, we can acquire a list of signals

from each network. Some usefiil signals for fault detection and diagnosis are listed in

Table 5.2. For this work, we analyze TCP line impedance waveforms for classifying

machine operating condition. Forthis classification purpose, it is sufficient to analyze just

one signal. Multiple-signal analysis is still underinvestigation.

(a)

TCP planar coil

matching
netY/ork

source

matching
network

i • • •
TCP
source

substrate '

vacuum

pump

(b)

matching RPbiasJ
network

Figure 5.8 a) Topview of the inductiveplanar coil, b) The side-viewillustrationof a
TCP system.[24]
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Table 5.2. Real-Time Signals Collected for the Lam TCP 9400
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Position Description

Upper
Matching
Network

TCP Tune VaneCapacitor
Command

Value for the tune vane capacitor to match

TCP Load Capacitor
Command

Valuefor the load capacitor to match

TCP Phase Control Control signal of phase error between the
current and voltage at the top coil

TCP Tune VaneCapacitor
Position

Position of the tune vane capacitor of the
upper matchingnetwork for the top coil

TCP Load Capacitor
Position

Position of the load capacitor of the upper
matchingnetwork for the top coil

TCP Line Impedance Apparentinput impedance of the upper
matching network

Lower

Matching
Network

RF Tune Vane Capacitor
Control

Control signalfor the tune vane capacitor
of the lower matching network

RF load coil Control Control signal for the load coil of the lower
matching network

RF Tune Vane Capacitor
Position

Position of the tune vane capacitor of the
lower matching network

RF Load Coil

Position

Position of the load coil of the lower match
ing network

RF power Power transferring to the substrate

RF Line Impedance Apparent input impedance of the lower-
matching network

RF voltage Substrate bias with respect to ground

load cap

+

load coil

vane cap vane cap

sourc
sourc

(a) (b)

Figure 5.9 a) A capacitive matching network, b)An L-type matching network.
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The two designed parameters for the operating conditions, "tune" and "load," are the pre-

specified values for the two variable capacitors of the upper matching network to follow.

As mentioned in the introduction, they each can have one of the experimental designed

levels of "high," "medium high," "baseline," "medium low," and "low."

Eachparameter is ona standardized scale, shown in Figure 5.9."H" and "L"stand forhigh

and low, respectively; "ext" and "med" stand for extreme and medium respectively.

"HLext" means thattheoperating condition ofextremely high tune and extremely low load.

There are nine operating conditions: Baseline, HHext, LLext, HLext, LHext, HHmed,

LLmed, HLmed, LHmed.

a>
13

73
>

1-H

cd
O

•a
(U

S

Z

32000

19000

16000

13000

a

-Hext

Hmed

baseline

Lmed

-Lext

(/)

13

1
<D
C

C/}

(L>

Q

Figure5.10.The designed-level description of the parameters tuneand load.

5.4. Result and discussion

Theresults aresummarized in Table 5-2. The bold italic wafer numbers signify the

misclassified cases. The baseline miss has to dowith thefact that a routine spike is signif

icantly weaker in the other signals, sothat the second and third peaks ofthe linft impedance
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signal disappear, the LLmed miss has to do with a high spike occurring in the common

region, so that the recognizable pattern is greatly "damaged." Notice that if the high spike

occurs far away from the common region (first waveform of Figure 5.9), the common

region will not be altered, and thus classifying error will not occur.

LLmed

^ — « ••common .

smke

aoo •« ooe

•IS)

i I

^^^pike

1

J

. commo

»oo t«

(b)

Figure 5.11. The high-spike effect on the waveforms, (a) The spike occurs far away from
the common region, (b) The spike occurs right at the common region.

Finally, for the LHmed wafers, #26 and #28 waveforms are similar to LLmed ones

(see Figure 5.8 and Figure 5.9). #27 waveform is similar to LHext ones (Figure 5.7). This

means that #27 waveform is totally different from those of#26 and #28. As a matter of fact,

the similarity which confused the classifying task is so great that even a human expert will

not be able to make a distinction. This implies that probably any pattern recognition scheme

will not tell those confounded waveforms apart. Therefore, the author will not consider this

as a classification error.

Table 5-3. Result summary. The italic wafer numbers signify
misclassification.

Type Wafer number Comment

Baseline 1.2,3,/tf missing spike

HHext 4,5,6

LLext 7,8,9

HLext 10,11,12

LHext 13,14,15

HHmed 17,18,19

LLmed 20,21,22 extra spike
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Table 5-3.Resultsummary. Theitalicwafer numbers signify
misclassification.

HLmed 23,24,25

LHmed 26,27,28 confused, with LHx, LLm.
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Chapter 6 Conclusion and Final
Remarks

Chapter 6

The syntactic method is shown to be robust and accurate for fault detection and

diagnosis in plasma etching. For the successful operation of this system, the expertise of

the process engineer plays a key role. The system complements the process engineer's

expertise in interpreting the etching signals, therefore, parameters of the system must be

trainedto suit the engineer's needs. The following are a few observations on the method.

6.1. Similarity to DSP techniques

At a glance, syntactic analysis is quite similar to theencoding and decoding tech

niques in digital signal processing (DSP). In DSP, the engineer first defines a number of

logical values, andassigns a voltage or frequency level foreachlogical value. Thedata is

presented with a stream of logical values, encoded into physical signal levels (voltage or

frequency), and transmitted over noisy channels. The receiver will try to ignore thenoise

in the received signal, and try to match it to a predefined logical value.

In syntactic analysis, we define a number of fault categories based on our experi

ence. For diagnosing a plasma etching signal, we would ignore effects such as machine

aging, preventive maintenance, chamber memory, small spikes, and soon, and try tomatch

the signal to a predefined fault category. The similarities between syntactic analysis and

DSP are highlighted in Figure 6.1.
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signal

Digital Signal Processing

encode
noisy

channel decode

Syntactic Analysis

Chapter 6

signal

noisy

fault encode machine

behavior
decode signal

Figure 6.1. Architecture of the overall syntactic system.

6.2. Comments on General Methods

The syntactic techniques for solving the classification problems in this thesis may

appear ad hoc. The reader might wonder if there is any general syntactic method forall the

patterns, such thattotal automation can be achieved. As a result, one can build a general

system to analyze any waveforms without thehelp ofanengineer. In ourexperience, this

isnot likely. Inthe literature, uses ofsyntactic analysis to recognize objects tend to be pat

tern dependent. Many people use context-free grammar. Fora different pattern, a different

setofsegmentation primitives must beused; a different grammar must bespecified; also,

different attribute information, such as segment length, time duration, and amplitude, may

need to be considered (this is done usually by using attributed grammar, described briefly

in6.3). Similarly, for the plasma main etch signal pattern, line segments are used as the seg

mentation primitives; a regular granunar (a subset ofcontext-free grammar) is specified,

and the spike magnitude is the attribute considered.

You and Fu [22] propose a general 2-d shape recognition method, in which curve

segments are used as primitives. Each curve has four attributes: direction, length, total

angle change, and the degree ofsymmetry. Also, the angle between two adjacent curve seg

ments is considered. While this method can describe a 2-D pattern indetail, it may compli

cate the task of classifying plasma ignition waveforms. Obviously, in You and Fu*s
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scheme, if curve segments are used as primitives, the grammar for classification will be

extremely complicated. However, if we use monotonic segments (UP, FLAT, DOWN) as

the primitives, with the qualitative attribute of amplitude and duration, the classifier's

grammar will be very simple.*

6.3. Future direction

6.3.1.Attributed grammar for maintenance scheduling

Since the real-time data waveforms of plasma etch drift constantlydue to machine

aging,the waveform is significantly differentbetween the beginning and the end of a main

tenance cycle. Since the real-timeetch waveformreflects the actual etching behavior of the

machine, it would be very helpful if we can capture the amount of drift of a plasmaetch

signal, such that preventive maintenance can be scheduled according to how much the

shape of the waveform has changed. Attributed grammar can be used to achieve this. There

are two parts to attributed grammar: thequalitative part andthe quantitative part.The qual

itativepartfocuses on therough structural description of thewaveform. Loosely speaking,

it is the grand human impressionon the signal, which we mainly use throughout this thesis

for classification purpose. The quantitative part is the numerical measurement of the wave

form attributes, for instance, the amplitude and duration of a peak, the distance between

peaks, etc.

6.3.2. Automate building of a classification system

Building a classification system can be a very tedious task. It includes works of

examining samples of waveforms, selecting noise tolerance and segmentation criteria, writ

ing down description strings, etc. Also, the quality of the resulting system is highlydepen

denton the levelof expertise of the trainer. Therefore, it is highlydesirable to automate part

of the building process. For instance, there are usually more than one plasma etcher in a

fabrication plant. After a classification system is built for a plasma etcher, due to machine

variation, it cannot be directly used on another etcher. Nevertheless, we do not have to build

a new classificationsystem from scratch. We can keep the same descriptionstrings for the

waveforms, and based on these strings,select the noise toleranceand segmentationcriteria.

Somehandwriting recognition system operates withthe similaridea. If a newpersonwants
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to use the system , s/he must provide some writing samples to the training system, so the

classification system can "leam" the unique writing habit of this particular person (page 80,

[23]). We can borrow the automation idea and implement a smiliar training system for

plasma etching.
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Appendix A Spins Code for Data Encoding

#return the bottom index of the down hill,
Swhere the signal begin to rise
GetDownHill<-function(startldx, endldx, enclist, threshold)
{

downhillamp <- 0
newStartldx <- startldx

newNegBegldx <-0

while(downhillamp < threshold) {
for(idx in newStartldx:endldx) (

if(enclist[[idx]][1] < 0){
nev^egBegldx <- idx

break

}

if(idx==endldx)

return(c(-1,-1))

)

downhillamp <- 0
negIdx_newNegBegIdx

while(enclist[[negldx]][1] < 0) {
downhillanp <- downhillamp + enclist[(negldx]][3]
negldx <- negldx + 1

if(negldx > endldx)

break

)

(

if (downhillamp >= threshold) (
#print("downhillamp=")
#print(c(newNegBegldx,negldx, downhillamp))

return(c(newNegBegldx,negldx))

)

else{

#print("not big enough downhillamp=")
#print(c(newNegBegldx,negldx, downhillamp))
newStartldx <- negldx

)

)

}

)

#return the peak index of the up hill,
#where the signal begin to fall

GetUpHill<-function(startldx, endldx, enclist, threshold)
(

uphillamp <- 0
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newStartldx <- startldx

newPosBegldx <-0

while(uphillamp < threshold) {
for(idx in newstartldx:endldx) {

if(enclist[[idx]][1] > 0){
newPosBegldx <- idx

break

)

if{idx==endldx)

return(c(-1,-1))

)

uphillamp <- 0
posIdx_newPosBegIdx

while(enclist[[posldx]][1] > 0) {
uphillamp <- uphillanp + enclist[[posldx]][3]
posldx <- posldx + 1
if(posldx > endldx)

break

if(uphillamp >= threshold){
#print("uphillamp=")
#print(c(newPosBegldx,posldx,uphillamp))
return(c(newPosBegldx,posldx))

else{

#print("not big enough uphillaiip=")
fprint(c(newPosBegldx,posldx, uphillamp))
newStartldx <- posldx

GetUpSeg<-function(startldx, endldx, enclist)
{

upseganp <- 0

newStartldx <- startldx

newPosBegldx <-0

for(idx in newStartldx:endldx) {
if(enclist[[idx]][1] > 0){

newPosBegldx <- idx
break

)

if(idx==endldx)

return(c(-l,-1,-1))

)

upsegamp <- 0

posIdx_newPosBegIdx
while(enclistt[posldx]][1] > 0) {

upsegamp <- upseganp + enclist[[posldx]][3]
posldx <- posldx + 1

if(posldx > endldx)
break

}

#print("The upSegment found is")
#print(c(newPosBegldx,posldx, upsegamp))
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return (c (newPosBegIdx,posIdx, upsegaitp))

)

GetDownSeg<-function(startIdx, endldx, enclist)
{

downsegeoip <-0
newStartldx <- startldx

newNegBegldx <-0

for{idx in newStartldx:endldx) (
if{enclist([idx]][1] < 0){

newNegBegldx <- idx

break

)

if(idx==endldx)

return(c(-1,-1,-1))

}

downsegaitp <- 0

negIdx_newNegBegIdx
while(enclist[[negldx]][1] < 0) {

downsegamp <- downsegeutp + enclist [ [negldx] ] [3]
negldx <- negldx + 1
if(negldx > endldx)

break

)

#print("The downSegment found is")
tprint(c(newNegBegldx,negldx, downsegamp))
return(c(newNegBegldx,negldx, downseganp))

)

Seginentation<-function(curve, smooth, smoothFactor, linearFitErrorTolerance){
(if(smooth){

rawvecmatrix_lowess(1:length(curve), curve, f=smoothFactor)
rawvec_rawvecmatrix$y

rawvec_rawvec-m6an(rawvec)

)

else

rawvec_curve-mean(curve)

}

seglist_list0
enclist_list0

modlist_list0
e_linearFitErrorTo1erance

h_l; h_l; i_l; j_l
j_j+h
while(j<=length(curve))(

Gh_rawvec[i:j]

xvar_i:j

##print(xvar)
#print(Gh)

fitline_lm(Gh~xvar)
max6rror_max(abs(predict(fitline)-rawvec[i:j]))
if(j>=l6ngth(curve)){ #reaching the end of the curve

if(maxerror<e){

enclist[h]_list(c(fitline$coefficients[2], j-i, max(Gh)-
min(Gh)))
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seglist[h]_list(Gh)
modlist[h]_list{fitline)

#lines(xvar, predict(fitline))
h_h+l; i_j; j_j+k

}

}

if (inaxerror>e) {

j_j-k
Gh_rawvec[i:j]
xvar_i:j

tprint(xvar)
tprint(Gh)

f i tline_lin (Gh~xvar)

enclist[h]_list(c(fitline$coefficients[2], j-i, max(Gh)-
inin(Gh)))

seglist[h]_list(Gh)

modlist[h]_list(fitline)
ilines(xvar, predict(fitline))
h_h+l; i_j; j_j+k

)

else {

j_j+k; next

)

)

iprint(enclist)
return(enclist)

)

SegmentationDrawLines<-function(curve, smooth, smoothFactor, linearFitErrorTol-
erance)(

(if(smooth){

rawvecmatrix_lowess(1:length(curve), curve, f=smoothFactor)
rawvec_rawvecmatrix$y
rawvec_rawvec-mean (rawvec)

)

else

rawvec_curve-mean(curve)

)

seglist_list 0

enclist_list 0
modlist_list 0

e_lineeurFitErrorTolerance
k_l; h_l; i_l; j_l
j_j+k

while(j<=length(curve)){
Gh_rawvec[i:j]
xvar_i:j

##print(xvar)
tprint(Gh)

f i tline_lm (Gh-xvar)
maxerror_max (eibs (predict (fitline) -rawvec [i: j ]) )
if(j>=length(curve))( treaching the end of the curve

if(maxerror<e){

6nclist[h]_list(c(fitline$coefficients[2], j-i, max(Gh)-
min(Gh)))

seglist[h]_list(Gh)
modlist[h]_list(fitline)

lines(xvar, predict(fitline))
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h_h+l; i_j; j_j+k

)

)

if(maxerror>e){

j_j-k
Gh_rawvec[i:j]
xvar_i;j
#print(xvar)

iprint(Gh)

fitline_lm(Gh~xvar)

enclist[h]_list(c(fitline$coefficients[2], j-i, inax(Gh)-
min(Gh)})

seglist[h]_list(Gh)

modlist[h]_list{fitline)
lines(xvar, predict(fitline))

h._h+l; i_j; j_j+k

}

else {

j_j+k; next

)

)

#print(enclist)

return(enclist)

)

encodingFunct<-function(enclist, fastlim, slowlim){
encoding_list()
for(slopei in 1:(length(enclist))){

slopeval_enclist[[slopei]][[!]]
if {slop6val>fastliin) {

encoding[slopei]_2}
else if (slopeval <= fastlim && slopeval>slowlim) {

encoding[slopei]_1)
else if (slopeval<=slowlim && slopeval>= -slowlim) {

encoding[slopei]_0)
else if (slopeval< -slowlim && slopeval>= -fastlim) {

encoding[slopei]_-l)
else if(slopeval< -fastlim) {

encoding[slopei]_-2}

}

return(encoding)

)

#just look at the end of the third downhill.

cutwindow<-function(rawvec, postcutdelay, winlen){
enclist_Segmentation(rawvec, F, 0, 10)
newldx_l

for(idx in 1:3){

downHillSeg_GetDownHill(newldx, length(enclist), enclist, 100)
newIdx_downHillSeg[2]

)

newWaveIdx_0

for(subidx in 1:newldx)

newWaveIdx_newWaveIdx+enclist [ [svibidx] ] [2]
#print("newWaveIdx=")

iprint(newWaveldx)

s_newWaveIdx+postcutdelay
return(rawvec[s:(s+winlen)])
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)

GetPosSpike<-function(startldx, endldx, enclist, threshold)
{

findSpik6_F

n6wstartldx_startldx
while(!findSpike){

upHillSeg_GetUpHill(newStartIdx, endldx, enclist, threshold)
downSeg_GetDownSeg(upHillSeg[2], endldx, enclist)
{if(downSeg[3]>threshold) findSpike_T
else newStartIdx_downSeg[2]}

)

return(c(upHillSeg[1].upHillSeg[2], downSeg[l], downSeg[2]))
)

GetNegSpike<-function(startldx, endldx, enclist, threshold)
{

findSpike_F

newstartldx_startldx
while{!findSpike){

downHillSeg_GetDownHill(newStartIdx, endldx, enclist, threshold)
upSeg_GetUpSeg(downHillSeg[2], endldx, enclist);
(if(upSeg[3]>threshold) findSpike_T
else newStartIdx_upSeg[2])

)

return(c(downHillSeg[1], downHillSeg[2], upSeg[l], upSeg[2]))
}

#scan thru, get one pos spike, then one neg spike, and then
#one pos spike

cutwindownew<-function(rawvec, postcutdelay, winlen){
enclist^Segmentation(rawvec, F, 0, 10)

newldx_l

firstPosSpike_GetPosSpike(newIdx, length(enclist), enclist, 400)
#print{"firstPosSpike=")
#print{firstPosSpike)
fallingPoint_firstPosSpike[3]
firstNegSpike_GetNegSpike(fallingPoint, length(enclist), enclist, 400)
#print("firstNegSpike=")
#print(firstNegSpike)
risingPoint_firstNegSpike[3]

secondPosSpike_GetPosSpike{risingPoint, length(enclist), enclist, 100)
#print{"secondPosSpike=")
#print(secondPosSpike)

isumming up the duration
newWaveIdx_0;

for(subidx in 1:secondPosSpike[4])
newWaveIdx_newWaveIdx+enclist [ [stjbidx] ] [2]

tprint("newWaveIdx=")
#print(newWaveldx)
s_newWaveIdx-t-pos t cut delay
return(rawvec[s:(s+winlen)])

)

#try to filter out two spikes
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cutwindownew2<-function(rawvec, postcutdelay, winlen)(
firstnt>inpoints_100

#enclist_Seginentation (rawec, F, 0, 10)
enclist_Seginentation{rawvec[l:firstnuinpoints] , F, 0, 10)
#print(enclist)
newldx_l

firstPosSpike_GetPosSpike(hewldx, length(enclist), enclist, 400)
#print("firstPosSpike=")
#print(firstPosSpike)

risingPoint_firstPosSpik6[4]
secondPosSpike_GetPosSpike(risingPoint, length(enclist), enclist, 150)
#print("secondPos^pike=")
#print(secondPosSpike)

#sTaiirad.ng up the duration

newWaveIdx_0;

for(siibidx in 1: secondPosSpike [4])
newWaveIdx_newWaveIdx+enclist [ [svibidx] ] [2]

#print("newWaveIdx=")
iprint(newWaveldx)
s_newWaveIdx+postcutdelay
print ("The new window start at:")
print(s)
return(rawvec[s;(s+winlen)])

)

newwin_vector{)

testin_niatrix( scan("file.dat" , skip=l) , ncol=26, byrow=TRUE)
colidx_5 #for selecting capacitance manometer
orgrawvec_testm[,colidx]

orgrawvec_orgrawvec[15:min(200,length(orgrawvec))]
newwin_cutwindownew2(orgrawvec, 5, 45);
)

goodrefvecmatrix_lowess(1:length(newwin), newwin, f=.2)
goodrefvec aoodrefvecmatrixSy
enclist_Segm6ntationDrawLines(somevec, F, 0.0, 1)
encoding_encodingFvuict(enclist, 5, 2)
print{encoding)
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Appendix B Spins Code of Segmentation for the BQgh
Speed Data

runt<-function(){
for(i in 6:29){

if(i <10)

filenam6_paste ("waferOO", i,".dat'', sep="")
else

filename_paste("waferO", 1, ".dat", sep="")

cat(filename, file="runlog", fill=T, append=T);
testm_inatrix (scan {filename) , ncol=13 , byrow=TRUE)
colidx_6 #for selecting TCP line impedance
orgrawvec_testm[l:1200,colidx]
motif{)

plot {orgrawec, type=" n")

enclist_SegmentationSpeed(orgrawvec, F, 0.0, 0.05)
alist_UpFlatDownSegmentation(enclist, slopethresh=0.01)
cat("UpFlatDovmSegmentation:", length(alist), file="runlog", fill=T, append=T);
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat("ReArrangeList2:", length(alist), file="runlog", fill=T, append=T);
#alist_UpFlatDownSegmentation2(enclist, 5, 0.4, slopethresh=0.01)

#Filter small pos peak three times
alist_FilterSmallPosPeak(alist, 5, 0.4, 0.01)
cat("FilterSmallPosPeak: ", length(alist), file="runlog", fill=T, append=T);
alist_FilterSmallPosPeak(alist, 5, 0.4, 0.01)
cat("FilterSmallPosPeak:", length(alist), file="runlog", fill=T, append=T);
alist_FilterSmallPosPeak(alist, 5, 0.4, 0.01)
cat("FilterSmallPosPeak:", length(alist), file="runlog", fill=T, append=T) ;
al i s t_ReArr angeLis t (ali s t)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat("ReArrangeList2:", length(alist), file="runlog", fill=T, append=T);

alist_FilterSmallLeftBigRight(alist, 5, 0.4, 0.01)
alist_ReArrangeList(alist)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat("FilterSmallLeftBigRight:", length(alist), file="runlog", fill=T, append=T);

alist_FilterSmallRightBigLeft(alist, 5, 0.4, 0.01)
alist_ReArrangeList(alist)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat ("FilterSmallRightBigLeft:", length (alist) , file= "r\anlog", fill=T, append=T) ;
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alist_ConcatFlat(alist, 5, 0,4, 0.01)
allst_ReArrangeList(alist)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat("ConcatFlat:", length(alist), file="runlog", fill=T, append=T);

alist_ConcatDown(alist, 5, 0.4, 0.01)
alist_ReArrangeList(alist)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat(":ConcatDown", length(alist), file="runlog", fill=T, append=T);

alist_ConcatUp(alist, 5, 0.4, 0.01)
alist_ReArrangeList(alist)
alist_ReArrangeList2(alist, 5, 0.4, 0.01 )
cat("ConcatUp;", length(alist), file="runlog", fill=T, append=T);

#PrintAllDurationAiip (alist)
plot(orgrawvec, type="n")
plotUpFlatDownSegments(alist)
}

}

#notice for UpFlatDownSegments[[i]][[j]][[4]], iis the big seg idx, j is the small
seg idx,

#4 is the

#slope attribute (1, 0, or--1) based on slopethresh,
#The small flat segments would be mark as part of the up and down hill
UpFlatDownSegmentation2<-function(enclist, smalldur, smallamp, slopethresh){
UpFlatDownSegm6nts_list()
UpFlatDownIdx_0
totalseg_l6ngth(enclist)
Segm6ntCount_l

auxseg_enclist[[SegmentCount]]
slopeval_auxseg[[3]]$co6fficients[2]
duration_auxseg[[2]]-auxseg[[1]]
an^l_max(predict (auxsegC [3] ])) -min(predict (auxseg[ [3] ]))
while(SegmentCount<=totalseg){

cursegidx_0

UpFlatDownIdx_UpFlatDownIdx+1
if(slopeval>slopethresh){

while(slopeval>slopethresh ||
(abs(slop6val)<=slopethr6sh &&
duration<smalldur && aiipl<smallamp) ) {
curs6gidx_cursegidx+1

UpFlatDownSegments[[UpFlatDownldx]][cursegidx]_list(c(auxseg,1))
SegmentCount_SegmentCount+1
if (Segm6ntCovint<=totalseg) {

auxseg_enclist[[SegmentCount]]
slopeval_auxseg[[3]]$coefficients[2]
duration_axaxs6g[ [2] ] -auxseg[ [1] ]
ampl_max(predict(auxseg[[3]]))-min(predict(auxseg[[3]]))

)

else break

}

)

else if(abs(slopeval)<=slopethresh){
while(abs(slopeval)<=slopethresh){
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cursegidx_cursegidx+1
UpFlatDownSegments[[UpFlatDownldx]][cursegidx]_list(c(auxseg,0))
SegmentCount_SeginentCount+l

if (SeginentCount<=totalseg) {
auxsGg_6nclist[[SegmentCount]]

slopeval_auxseg[[3]]$coefficients[2]
)
else break

)

)

else if(slopeval < (-slopethresh)){
while(slopeval < (-slopethresh)||

(abs(slopeval)<=slopethresh &&
duratioiKsmalldur && ampl<smallaitp) ) {
cursegidx_cursegidx+1
UpFlatDownSegments[[UpFlatDownldx]]tcursegidx]_list(c(auxseg,-1))
S e gmentCount_SegmentCount+1

if(SegmentCount<=totalseg){
auxseg_enclist[[SegmentCount]]
slopeval_avixseg [ [3] ] $coefficients [2]
duration_auxseg [ [2] ] -auxseg [ [1] ]
ampl_max(predict(auxseg[[3]]))-min(predict(auxseg[[3]]))

)

else break

)

)

)

return(UpFlatDownSegments)

)

ReArrangeList2<-f\inction(updownlist, smalldur, smallamp, slopethresh) {
newlist_list0
newidx_0

i_l
while(i <= length(updownlist)){

insertlist_list()
curelm_updownlist[[i]]
curflag_curelm[[1]][[4] ]
if(curflag==l){

while(curflag==l || SmallFlat(curelm, smalldur, smallamp)){
if(curflag==l)

insertlist_append(insertlist, curelm)
else(

for(curi in 1;length(curelm))
curelm[[curi]][4]_1

insertlist_append(insertlist, curelm)

)

i_i+l

if(i <= length(updownlist)){
curelm_updownlist[[i]]
curflag_curelm[[1]][[4] ]

)

else break

)

}

else if(curflag==0){
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while(curflag==0){
insertlist_append{insertlist, curelm)
i_i+l

if(i <= length(updownlist)){
curelin_updownlist [ [1] ]

curflag_curelin[ [1] ] [ [4] ]
}

else break

)

)

else if(curflag==-l){
while(curflag==-l || SmallFlat(curelm, smalldur, smallamp)){

if(curflag==-l)

insertlist_append(insertlist,curelm)
else{

for(curi in 1;length(curelm))
curelm[[curi]][4]_-l

insertlist_append(insertlist, curelm)

)

i_i+l
if(i <= length(updownlist))(

curelm_updownlist[[i]]
curflag_curelm[[1]][[4] ]

)

else break

)

}

newlist_append(newlist, list(insertlist))

)

return(newlist)

)

anallAnn<-function(monotoniclist, smalldur, smallamp) {
dur_DurationSegm6nts(monotoniclist)
amp_AmpSegments(monotoniclist)

slopeflag_monotoniclist[[1]][[4]]
smallarm_ifelse(dur<smalldur && amp<smallamp && slopeflag!=0, T, F)
return(smallarm)

)

BigArm<-function (monotoniclist, smalldur, smallaitp) {
dur_DurationSegments(monotoniclist)
amp_AirpSegments (monotoniclist)

slopeflag_monotoniclist[[1]][[4] ]
bigarm_if6lse(! (dur<smalldvir && amp<smallamp) && slopeflag!=0, T, F)
return (bigarm)

)

SmallSeg<-function(monotoniclist, smalldur, smallamp){
dur_DurationSegments(monotoniclist)
anpL-AmpSegments (monotoniclist)

slopeflag_monotoniclist[[1]][[4]]
smallseg_ifelse(dur<smalldur && anpKsmallamp, T, F)
return(smallseg)

)
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BigSeg<-function(inonotoniclist, smalldur, smallanp) {
dur_DurationSegments(monotoniclist)
amp_AmpS6ginents (monotoniclist)

slopeflag_monotoniclist[[1]][[4]]
bigseg_ifelse(!(dur<smalldur && amp<smallamp), T, F)
return(bigseg)

)

#Two big flat, one small in the middle, concat them together
ConcatFlat<-fxinction(updownlist, smalldur, smallamp, slopethresh) (
newlist_list()
newidx_0

i_l
\idiile((i+2) <= length(updownlist)) {

if(i==l && SmallArm(updownlist[[i]], smalldur, smallamp) &&
BigFlat (updownlist [ [i+1] ], smalldur, smallaitp)) {
newarm_list()

lp_updovmlist[ [i] ]
for(ai in 1:length(Ip))

newarm_append(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]] [3], O) )

#print("The small idx is:"); print(i);
newlist_append(newlist, list(newarm))
newlist_append(newlist, updownlist[i+1])
i_i+l; next

)

if (BigFlat(updownlist[[i]], smalldur, smallamp) &&
SmallArm(updownlist [ [i+1] ] , smalldur, smallamp)
&&BigFlat(updownlist[[i+2]], smalldur, smallamp)){
newarm_list ()

lp_updownlist[[i+1]]
for(ai in 1:length(lp))

newarm_append(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]] [3], O) )

#print("The small idx is:"); print(i+1),•
newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(newarm))
i_i+2

}

else{

newlist_append(newlist, updownlist[i])
i_i+l

)

)

if ((i+1) ==length (updownlist) && BigFlat (updownlist [ [i] ] , smalldur, smallcimp)
&& SmallArm(updownlist[[i+1]], smalldur, smallamp)){

newarm_list()

lp_updownlist[[i+1]]
for(ai in 1:length(Ip))

newarm_append(newarm. list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]][3], 0)))

#print("The small idx is:"); print(i+1);
newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(newarm))
i_i+2

)
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else if(i <= length(updownlis1:))
for(j in i:length(updownliSt))

newlist_append(newlist, updownlist[j])
return(newlist)

)

ConcatDown<-function(updownlist, smalldur, smallamp, slopethresh){
newlist_list()

newidx_0

i_l
while((i+2) <= length(updownlist)){

if(i==l && SmallSeg(updownlist[[i]], smalldur, smallamp) &&
BigRightArmUpdownlist[[i+1]], smalldur, smallamp))(
newarm_list()

lp_updownlist[[i]]
for(ai in 1;length(Ip))

newarm_app6nd(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]] [3], -D) )

#print("The small idx is:"); print(i),•
newlist_append (newlist, list (newcunn))
newlist_append(newlist, updownlist[i+1])
i_i+l; next

)

if (BigRightArm(updownlist[[i]], smalldur, smallamp) &&
SmallSeg(updownlist[[i+1]], smalldur, smallanp)
&&BigRightArm(updownlist[[i+2]], smalldur, smallamp)){
newarm_list() -

lp_updownlist[[i+1]]

for(ai in l:length(lp))
newarm_append(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],

lp[[ai]][3], -1)))
#print("The small idx is:"); print(i+l);

newlist_append(newlist, updownlist[i])

newlist_append(newlist, list(newarm))
i_i+2

}
else{

newlist_append(newlist, updownlist[i])
i_i+l

)

)

if((i+1)==length(updownlist) && BigRightArm(updownlist[[i]], smalldur, smallamp)
&& SmallSeg(updownlist[[i+1]], smalldur, smallamp)){

newarm_list()

lp_updownlist[[i+1]]

for(ai in l:length(lp))
newarm_append(newarm, list(c(lp[[ai]][[1]], Ip[[ai]][[2]],

lp[[ai]][3], -1)))

#print("The small idx is:"); print(i+l);
newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(newarm))
i_i+2

)

else if(i <= length(updownlist))
for(j in i:length(updownlist))

newlist_append(newlist, updownlist[j])
return(newlist)
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)

ConcatUp<-function(updownlist, smalldur, smallamp, slopethresh){
newlist_list0
n6widx_0

i_l

while((i+2) <= length(updownlist)') {
if{i==l && SmallSeg{updownlist[[i]], smalldur, smallamp) &&

BigLeftArm(updownlist[[i+1]], smalldur, smallanp)){
newarm_list()

lp_updownlist[[i]]
for{ai in 1:length(lp))

newarm_append(newarm, list(c(lp[[ail][[1]], lp[[ai]][[2]],
lp[[ai]] [3], D) )

#print("The small idx is:"); print(i);
newlist_append(newlist, list(newarm))
newlist_append(newlist, updownlist[i+1])
i_i+l; next

)

if (BigLeftArm(updownlist[[i]], smalldur, smallamp) &&
aiiallSeg(updownlist[ [i+1] ] , smalldur, smallairp)
&&BigLeftArm(updownlist[ [i+2] ] , smalldur, smallairp)) {
newarm_list()

lp_updownlist[[i+1]]
for(ai in 1:length(Ip))

newarm_append(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]] [3], D) )

#print("The small idx is;"); print(i+l);
newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(newarm))
i_i+2

)

else{

newlist_append(newlist, updownlist[i])
i_i+l

)

}

if((i+1)==length(updownlist) && BigLeftArm(updownlist[[i]], smalldur, smallaup)
&& SmallSeg(updownlist[[i+1]], smalldur, smallamp)){

newarm_list()
lp_updownlist[[i+1]]
for(ai in 1:length(Ip))

newarm_append(newarm, list(c(lp[[ai]][[1]], lp[[ai]][[2]],
lp[[ai]][3], 1)))

#print("The small idx is:"); print(i+1);
newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(newarm))
i_i+2

}

else if(i <= length(updownlist))
for(j in i:length(updownlist))

newlist_append(newlist, updownlist[j])
return(newlist)

)
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#this is a wrong function, since the flat segment's duration is
#not considered, don't use.

FilterSmallAntK-function(updownlist, smalldur, smallamp, slopethresh)(
newlist_list 0

newidx_0

while((i+2) <= length(updownlist))(
if (updownlist[[i]][[1]][[4]]==0 &&

SmallArm(updownlist [ [i+1] ] , smalldur, smallanp)
&&updownlist[[i+21][[1]][[4]]==0 &&
DurationSegments(updownlist[[i+1]])<DurationSegments(updownlist[[i]])&&
DurationSegments(updownlist[[i+l]])<DurationSegments(updownlist[[i+2]]))(
flatleft_updownlist[[i]]
segcoxmt_length (flatleft)

leftseg_flatleft[[segcount]]
leftbasetime_leftseg[[2]]
leftbaseval_predict(leftseg[[3]])[length(predict(leftseg[[3]]))]

flatright_updownlist[[i+2]]
rightseg_flatright[[1]]
rightbasetime_rightseg[[1]]
rightbaseval_predict(rightseg[[3]])[1]
meanval_(leftbaseval+rightbaseval)/2
yvar_c (meanval, meanval)
xvar_c(leftbasetime, rightbasetime)
filteiTOod_lm(yvar~xvar)
slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
insertelm_list(c(leftbasetime, rightbasetime, list(filtermod), slopeflag))
#print("filter segment"); print(i+1);
iprint("previous flag"); print(updownlist[[i+1]][[1]][[4]]);
iprint("new flag"); print(slopeflag);

newlist_append(newlist, updownlist[i])
newlist_append(newlist, list(insertelm))
i_i+2

}

else{

newlist_append(newlist, updownlist[i])
i_i+l

)

)

if(i <= length(updownlist))
for(j in i:length(updownlist))
newlist_append(newlist, updownlist[j])

return(newlist)

}

#The following four functions try to exam the monotonic curve's status, for neg
peaks.

NSmallLeftArm<-function(monotoniclist, smalldur, smallamp){
dur_DurationSegments(monotoniclist)
amp_AmpSegments(monotoniclist)
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slopeflag_inonotoniclist [ [1] ] [ [4] ]
smallleft_ifelse {dur<sinalldur && aitp<smallainp && slopeflag==-l, T, F)
return(smallleft)

)

NSinallRightArm<-function{monotoniclist, smalldur, smallaitp) {
dur_DurationSeginents (monotoniclist)
amP—AmpSegments(monotoniclist)
slopeflag_monotoniclist[[1]][[4]]
smallright_ifelse(dur<smalldur && amp<smallaitp && slopeflag==l, T, F)
return(smallright)

)

NBigLeftAntK-function(monotoniclist, smalldur, smallamp){
dur_DurationSegments(monotoniclist)
amp_AiipSegments (monotoniclist)

slopeflag_monotoniclist[[1]][[4]]
bigleft_ifelse( !(dur<smalldur && amp<smallanp) && slopeflag==-l, T, F)
return(bigleft)

)

NBigRightArm<-function(monotoniclist, smalldur, smallairp) {
dur_DurationSegments(monotoniclist)
amp_AinpSegments (monotoniclist)

slopeflag_monotoniclist[[1]][[4]]
bigright_ifelse{ ! (dur<smalldur && ainp<smallairp) && slopeflag==l, T, F)
return(bigright)

)

FilterSmallNegPeak<-function(updownlist, smalldur, smallamp, slopethresh){
newlist_list()
newidx_0

i_l
vdiile(i < length(updovmlist)) {

#cat("i is", i, fill=T);
#newidx_newidx+l
if (NSmallLeftArm(updownlist[[i]], smalldur, smallamp)){

if (NSmallRightArm(updownlist [ [i+1] ] , smalldur, smallaxop)) (
leftmostseg_updownlist[[i]][[1]]
rightmostseg_updownlist[[i+1]](tlength(updownlist[[i+1]])]]
lefttime_leftmostseg[[1]]
righttime_rightmostseg[[2]]
leftbaseval_predict(leftmostseg[[3]])[1]
rightsegval_predict(rightmostsegE[3]])
rightbaseval_rightsegval[length(rightsegval)]
yvar_c(1eftbaseval, rightbaseval)

xvar_c(lefttime, righttime)
filtermod_lm(yvar~xvar)

slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
ins6rtelm_list(c(lefttime, righttime, list(filtermod), slopeflag))
newlist_append(newlist, list(insertelm))
i_i+2

)
else{

newlist_append(newlist, updownlist[i])
i_i+l

)
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)
else(

n6wlist_append(newlist, updownlist[i])
i_i+l

)

)

if(i==length(updownlist))
n6wlist_append(nswlist, updownlist[i])

return(newlist)

}

FilterNSinallLeftBigRight<-function(updownlist, smalldur, smallamp, slopethresh){
newlist_list0
newidx_0

i_l

while(i < length(updownlist)){
if (NSinallLeftAnn(updownlist [ [i] ], smalldur, smallamp) &&

NBigRightArm(updownlist[ [i+l]) , smalldur, smallaitp)) {
# print ("The old two arms are")
# print(updownlist[[i]])
# print(updownlist[[i+l]])

#coir^ute the filtering, use leftarm base, draw a horizontal
#line, intersect rightarm. line(leftarm base, intersect) got
#inserted into the new list. Also, cuiything before
(iRi^htArm intersected segment got discarded. Intersected segment's
#beginning index is replaced by the intersected index.
leftbasetime_updownlist[[i]][[1]][[1]]
leftbaseval_predict(updownlist[[i]][[1]][[3]])[1]
newrightarm_list()
rightArmInter_IntersectMonSeg(updownlist[[i+l]], leftbaseval)
segidx_rightAnnInter [1 ]
interTime_rightArmInter [ 2 ]
if(segidx==0){

newlist_append(newlist, updownlist[i])
newlist_append(newlist, updownlist[i+l])
i_i+2

)

else{

interLineSeg_updownlist[[i+l]][[segidx]]
if(interTime==interLineSeg[[2]]){

if(segidx==length(updownlist[[i+l]]))(
yvar_c(leftbaseval, leftbaseval)
xvar_c(leftbasetime, interTime)

filtermod_lm(yvar-xvar)
slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
insertelm_list(c(leftbasetime, interTime, list(filtermod), slopeflag))
newlist_append(newlist, list(insertelm))

# print("The new single left arms are")
# print(newlist[[length(newlist)]])

i_i+2

}

else{

for(ridx in (segidx+1):length(updownlist[[i+l]]))
newrightarm_append(newrightarm, updownlist[[i+l]][ridx])

# print("The new right arm"); print(newrightarm)
yvar_c(leftbaseval, leftbaseval)
xvar_c(leftbasetime, interTime)

filtermod_lm(yvar-xvar)
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slopeflag_slop6flagfunc((filtennod$coefficiGnts)[2], slopethresh)
insertelm_list(c(leftbasetime, interTime, list(filtemod), slopeflag))
newlist_append(newlist, list(insertelm))
newlist_append{newlist, list{newrightarm))

# print("The new two arms are")
# print(newlist[[length(newlist)-1]])
# print(newlist[[length(newlist)]])

i_i+2

)

)

else(

#non-special case
# print("Old inter seg");print(interLineSeg)

t6iipSeg_list(c (interTime, interLineSeg[ [2] ], interLineSeg[3] ,
interLineSeg[[4]]))

interLineSeg_tempSeg
# print("New inter seg");print(interLineSeg)

newrightarm_append(newrightarm, interLineSeg)
if(length(updownlist[[i+1]])>segidx)

for(ridx in (segidx+1);length(updownlist[[i+l]]))
newrightarm_append(newrightarm, updownlist[[i+l]][ridx])

# print("The new right arm"); print(newrightarm)
yvar_c(leftbaseval, leftbaseval)
xvar_c(leftbasetime, interTime)
filtermod_lm(yvar~xvar)
slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
insertelm_list(c(leftbasetime, interTime, list(filtermod), slopeflag))
newlist_append(newlist, list(insertelm))
newlist_append(newlist, list(newrightarm))

# print("The new two arms are")
# print(newlist[[length(newlist)-1] ])
# print(newlist[[length(newlist)]])

i_i+2

)

)

}
else{

newlist_app6nd(newlist, updownlist[i])
i_i+l

)

)

if(i == length(updownlist) )
newlist_append(newlist, updownlist[i])

return(newlist)

)

FilterNSmallRightBigLeft<-function (updownlist, smalldur, smallamp, slopethresh) {
newlist_list 0
newidx_0

i_l
while(i < length(updownlist)){

if (NBigLeftArm(updownlist[[i]], smalldur, smallamp) &&
NSmallRightArm(updownlist[ [i+l] ] , smalldur, smallaitp)) {
#print("The old two arms are")
#print(updownlist[[i]])
#print(updownlist[[i+l]])
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#compute the filtering, use rightann base, draw a horizontal
#line, intersect leftarm. line(intersect, rightarm base) got
#inserted into the new list. Also, anything after
SLeftArm intersected segment got discarded. Intersected segment's
tending index is replaced by the intersected index.
smallright_updownlist[[i+1] ]
segcount_length(smallright)
rightbasetime_smallright[(segcount] ] [[2] ]
predrightval_predict{smallright[[segcount]][[3]])
rightbaseval_predrightval[length(predrightval) ]
newleftarm_list()

leftArmInter_IntersectMonSeg(updownlist[[i]], rightbaseval)
segidx_leftArmlnter[1]
interTime_leftArmInter[2]
if(segidx==0){

newlist^append(newlist, updownlist[i])
newlist_app6nd(newlist, updownlist[i+1])
i_i+2

}

else{

interLineSeg_updownlist[[i]][[segidx]]
if(interTime==interLineSeg[[1]])(

if(segidx==l){

yvar_c(rightbaseval, rightbaseval)
xvar_c(interTime, rightbasetime)

f iltermod_lm (yvar-xvcir)
slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
inserteln\_list(c (interTime, rightbasetime, list (filtermod) , slopeflag))
newlist_append(newlist, list(insertelm))
iprintCThe new single left arms are")
tprint(newlist[[length(newlist)]])
i_i+2

}

else{

for(lidx in 1:(segidx-1))
newleftarm_append(newleftarm, updownlist[[i]][lidx])

#print("The new left arm"); #print(newleftarm)
yvar_c(rightbaseval, rightbaseval)
xvar_c(interTime, rightbasetime)
filtermod_lm(yvar-xvar)

slopeflag_slopeflagfunc((filtermod$coefficients)[2], slopethresh)
insertelin_list(c (interTime, rightbasetime, list (filtermod) , slopeflag))
newlist_append(newlist, list(newleftarm))
newlist_app6nd(newlist, list(insertelm))
#print("The new two arms are")
#print(newlist[[length(newlist)-1]])
#print(newlist[[length(newlist)]])
i_i+2

}

)

else{

#non-special case

if(segidx>l)

for(lidx in 1;(segidx-1))

newleftarm_append(newleftarm, updownlist[[i]][lidx])

#print("Old inter seg");print(interLineSeg)
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ternpSeg_list (c (interLineSeg[ [1] ] , InterTime, interLineSeg[3] ,
InterLlneSeg[[4]]))

interLineSeg_tempSeg
#print("New inter seg");print(interLineSeg)
newleftann_append(newleftarm, interLineSeg)

#print("The new left arm"'); print (newleftarm)
yvar_c(rightbaseval, rightbaseval)
xvar_c(interTime, rightbasetime)

filtermod_lm(yvar-xvar)
slopeflag_slop6flagfunc((filtermod$coefficients)[2], slopethresh)
insertelm_list(c(interTime, rightbasetime, list(filtermod), slopeflag))
newlist_append(newlist, list(newleftarm))
newlist_append(newlist, list(insertelm))
#print (" The new two arms are")
#print(newlist[[length(newlist)-1]])
#print(newlist[[length(newlist)]])
i_i+2

}

)

)

else{

newlist_append(newlist, updownlist[i])
i_i+l

)

)

if(i == length(updownlist))
newlist_app6nd(newlist, updownlist[i])

return(newlist)

}
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Appendix C The Classifer for the High Speed Data

/*encoding.c*/
#include <stdio.h>

#include <string.h>
int GetDurCode(int dur)(

if (dur <10)
return 0;

else if(dur >= 10 && dur <=30)
return 1;

else if(dur > 30)

return 2;

printf("Error, wrong duration sign %d\n", dur);
exit(1);

)

int GetAmpCode(float anp){
if (amp <0.4)

return 0;

else if(amp >= 0.4 && amp <=2)
return 1;

else if(amp > 2)

return 2;

printf ("Error, wrong anp sign %d\n", aitp) ;
exit(1);

}

main(){

int idx, dur, slopecode, durcode, ampcode;
float amp;
FILE *inf, *outf;

inf=fopen("forhist.dat.txt", "r");
outf=fopen("code.list", "w");
while(fscanf(inf, "%d%d%f%d",&idx, &dur, &amp, &slopecode)!=EOF)(

if(idx==l) fprintf(outf, "\n");
fprintf(outf, "(%d,%d,%d)",slopecode,

GetDurCode(dur),GetAmpCode(amp));
)

fprintf(outf, "\n");

)

/*classfier.l*/

/* scanner for a toy Pascal-lilce language */

%{

/* need this for the call to atof() below */
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#include <inath.h>

char *fileNaine;

%)

SYM " {" I ") " I" ' " I0 1112 I"-1"
DIGIT [0-9]

ID [a-z][a-zO-9]*

ONEORTWO 1|2
AI "("0,2,0")("1,0,2")("-1/0,2")("1,0,1")("-1,1,2")("0,1,0")"
All (SYM)

AIII "("1,0, (1|2)") ("-1, (0|1), (1|2)") ("0,(1|2),0")"
AIV "("1,(0|1),(0|1)")("-1,(0|1),(0|1)")("0,2,0")-
BI "("0,2,0") ("-1,0,1") ("1,2,2") ("0,1,0")("-1,1,2")("1,1,2") ("-1,1,2") "
BII "("1,0,1") ("-1,0,1") ("1,1,1") ("-1, (0|1), (0|1)")"
BIIIl "("0,0,0") ("1, (0|1),0") ("0,2, (0|1)")"
BIII2 "("0,1,0") ("-1,0,0") ("0,2,0")"
Bill {BIIIl}I{BIII2}

Cop_pos_spike "("1,0,1")("-1,1,1")"
Cop_flat -("0,(0|1) ,0") "
Cop_down "("-1,(0|l),(0|1)")"
Ccommon "("-1,2,2")"{Cop_flat)?"("1,2,2")("0,1,0")("-
1,1,2")"(Cop_pos_spike}?"("1,1,2")("-1,(0|1),2")"
D "("0,2,0")("-l,0,2")("l,l,0")("0,2,(0|l)")"
Fcommon "("1,1,2")("-1,0,2")("1,1,2")("-1,0,1")("1,0,2")("-1,1,2")"
Hcoiranon "("0,2,0") ("-1,0,2")" {Cop_flat) ?" ("1,2,2") (" -
1,0,1")("1,(0|1),(0|1)")"{Cop_flat}?"("-1,2,2")"
Icommon "("0,2,0")("1,0,2")("-1,1,2")("0,2,(0|1)")"
%%

(AI) {All}{AIII) (AIV)$ {

printf ( "IVP® A matched: %s %s\n", yytext,
fileName);

}

{BI} {BID {BIII}$ {

printf( "Type B matched: %s %s\n", yytext,
fileName);

)

{SYM}*{Ccommon}{SYM}*$ {
printf( "Type C matched: %s %s\n", yytext,

fileName) ;

}
SYM}*{Fcommon}{SYM}* $ {

printf( "Type F matched: %s %s\n", yytext,
fileName) ;

}

{Hcommon}{SYM}* $ {

printf( "Type H matched: %s %s\n", yytext,
fileName) ;

}

{Icommon}{SYM}*$ {
printf( "Type I matched: %s %s\n", yytext,

fileName) ,-

}
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{D)$ {

printf( "Type D matched: %s %s\n", yytext,
fileName) ;

}

%%

iRain( argc, argv )
int argc;
char **argv;

{
++argv, —argc; /*("-2")+("-1")*0*$ { skip over program name */
if { argc > 0 ){
yyin = fopen( argv[0], "r" );
fileName=argv[0];

)
else{

fileName="Standard input";
yyin = stdin;

)

yylexO ;

)
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