

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SIMULATION-ORIENTED

BEHAVIORAL VERIFICATION

by

Bassam Tabbara and Abdallah Tabbara

Memorandum No. UCB/ERL M99/38

13 July 1999

SIMULATION-ORIENTED

BEHAVIORAL VERIFICATION

by

Bassam Tabbara and Abdallah Tabbara

Memorandum No. UCB/ERL M99/38

13 July 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Simulation-Oriented Behavioral Verification

Bassam Tabbara* Abdallah Tabbara

EECS Department, University of California at Berkeley
Berkeley, OA 94720

{tbassam, atabbarajOeecs.berkeley.edu

July 13, 1999

Abstract

Design validation currently consumes a significant percentage of the design team and takes months of simulation
time. This validation strain is bound to increase as the complexity of designs increases; simulation alone cannot be
expected to keep up with the verification problem. Purelyformal techniques for verification have made considerable
progress over the last decade but still fall short of providing the breadth and depth of verification required for most
integrated circuits, and require considerable investment of time and energy on the designer's part.

We have developed a validation approach that lies between simulation and formal verification, and uses a
single specification model. The approach consists of a "golden" deterministic behavior description model, and a
validation procedure to verify the equivalence between this golden model and any valid implementation ofit. In this
paper we present our approach where Linear Temporal Logic (LTL) with bounded future-time operators is used
for behavioral property specification. Simulation monitoring and assertion checking is used in a state-of-the-art
mixed Verilog/VHDL simulator (Mentor's ModelSim) in order to validate the design implementation against the
desired properties.

1 Introduction

The single biggest bottleneck in the Register Transfer (RT) level design today is ensuring that the design de
scription, coded in a popular hardware description language (usually at the RT level), meets its specification. A
battery of different techniques are currently applied in an attempt to ensure that this design interpretation is
correct. The current challenge is that the amount ofsimulation (usually RTL) required to verify a circuit grows
faster than linearly with the size of the circuit.

While formal verification can be a useful tool for early error detection at high abstraction design levels[ll,
extensive simulation isstill the most common technique for RTL validation, the aim of this work is to bridge the
gap between simulation and formal verification by incorporating formal property checks into simulation.

2 Related Work

There isa wide variety ofapproaches tothe problem ofdesign verification which seek tointegrate formal techniques
with simulation. These approaches include:

Evaluating simulation coverage: Describing the coverage ofa set ofsimulation vectors against a semi-formal
model of the design being verified.

Symbolic simulation: Improving the power ofsimulation techniques by using multi-valued simulation vari
ables or formal analysis of the simulation output.

#

*SRC Graduate Fellow

Input
Vectors

jimplementationf

Validadonl
' Propertiesi

Increased

Confidence

Figure 1: The Behavioral Verification Problem

• Building a transition system from the simulation semantics for model checking (such as in [3]).

• Formally directed simulation: Using a formal model of the design to be verified in order to direct simulation
vectors.

• Assertion checking: Integration offormal assertions within a simulation framework [2].

In this effort, we will be concerned mainly with the last two points above: Formally directed simulation and
Assertion checking.

3 Behavioral Verification

Figure 1 shows how we view the behavioral verification problem. In this effort we address and propose the
following:

• Aproperty specification language to describe the observer block whose job is to verify the conformance
between the desired behavior and the implementation[5]. The language includes both propositional, and
temporal logics to capture the static, and dynamic behavior respectively of the system,

• a validation procedure that operates on formulae in this language, and

• an implementation in a suitable simulation environment, that preserves the language semantics.

4 Observer Specification Language

Since we will be using simulation, and performing a trace check in order to observe the behavior ofthe system,
our notion ofconformance is that every finite sequence ofobservations that may result from executing the detailed
implementation may also result from executing the more abstract "golden" specification model.

4.1 Specification Language Syntax

In general designers have a deterministic finite specification model in mind, non-determinism and liveness prop
erties are used merely to simplify specification in the rather complex formal verification world. We believe that
Linear Temporal Logic (LTL) with bounded future-time operators is quite suitable for simulation-
oriented environments and is sufficient for most practical purposes that designers have in mind.

However, in order to make specification both intuitive for simulation, and applicable for later formal verification
(if required), we decided to use CTL notation. In fact, checking a formula over a finite simulation trace is
equivalent to model checking over an observation structure (also known as Kripke structure) where each state
has one successor. In this context the semantics of the CTL operators EG, EF, EX, and EU coincide with
the semantics of the corresponding linear timeoperators provided it is understood that all future-time operators

Operator Meaning

AG For all paths, at every point in time
AF For all paths, at some point in time
AX For all paths, at the next point in time
AU has two operands AfqUrJ.lt means

that for all paths, q is true until r is true
EG For some path, at every point in time
EF For some path, at some point in time
EX For some path, at the next point in time
EU has two operands EfqUrJ. It means

that for all paths, q is true until r is true

Table 1: Basic CTL Operators and their Meaning

are bounded by the time of the simulation completion. These operators will be the work-horse of the property
specification mechanism.

4.1.1 Propositional Formulae

Prepositional formulae are Boolean formulae and have the usual associated operators and semantics, but are
evaluated lazily [2]. In other words, assignments are evaluated only to see if they hold (true) or not (false).

4.1.2 Temporal Formulae

CTL stands for Computation Tree Logic. The eight basic temporal logic operators describe computation paths
in that tree. Table 1 lists the basic operators and their meaning (Adapted from [8]). A temporal logic operator
consists of two parts: the path quantifiers and the temporal operator. There are two path quantifiers: A which
means on all paths, and E which means for some path. There are four beisic temporaloperators: G which means
always; F which means eventually; X which means next; and U which means until.

Since in simulation traces the branching operators have no meaning, we will negate the formulae that contain
A thus changing those into the equivalent E formulae. In fact, path quantors have no significance in the context
of LTL since we have a specific chosen path, therefore we go one step further and remove the Efrom formulae,
and work with temporal quantifiers only.

4.1.3 Specification Language Semantics

An excellent discussion of the semantics of using traces in order to perform formal verification is presented in
[2]. Our notions are quite similar to those presented by Canfield et. al., but we do not use a custom simulation
environment; our semantics are integrated in a straightforward fashion into the Discrete Event (DE) domain
semantics. In what follows, we discuss the semantics of the chosen specification language, when possible we use
the same terminology used by Canfield et. al. in their work, and build on the concepts they introduced.

The semantics associated with our specification language are consistent with simulation concepts in a cycle-
based simulator or an event-based simulator. Therefore our system can handle any HDL abstract or primitive
data type^. Signals represent values on wires, and can be ofany HDL type. Variables are temporary locations
were computations are stored and can also be any valid HDL data object.

The values of signals and variables can be observed at discrete time points, each such interval is referred to as
a cycle. The stateof a module is a valuation of all its observable signals at the observation point at the end of a
cycle. A simulation trace isa finite sequence consisting of the observed state ofsome module. A golden behavior
model ofsome module is an unordered collection of formulae in the observer that conform to the syntax given
earlier. Note that since we will be working from within thesimulator we can observe all signals and variables no

^This will depend on the actual HDL, VHDL for example supports Abstract Data Types (ADTs) while Verilog does not

matter what their scope is^. Our role will therefore be that of amonitor only, we will not be tampering with any
internal data structures (like the event or timing queue for example).

Rule violation is defined in terms of the first cycle of the trace, which corresponds to the usual way temporal
logic is evaluated relative to an observation structure. Since simulation operates on finite traces, there are three
possibilities for the truth value ofa specification rule; true, false, and undetermined.

We briefly mention here that we could conceivably expand on this 3-valued logic introduced in(2], by adding
a probabilistic aspect to the undetermined value thus giving the user a degree of confidence measure. This
probabilistic concept is not new to the simulation domain at large, it is similar to concepts like probabilistic fault
coverage, but to our knowledge has never been applied to account for the finiteness of simulation traces before.
This feature is provided as a convenience to the user and involves only a minor syntactic change in the monitor
procedures. To avoid distraction we will neglect this aspect in the sequel.

4.2 Validation Procedure

During a validation run, the observer will use its LTL specification to monitor dynamically the progress of
the implementation under simulation. This approach should be contrasted to a static trace comparison of the
implementation against the formal golden' simulation trace, which is quite time and resource consuming^ with
little or no tangible result since it is hard toget a useful and reproducible error trace. Also, most trace comparison
methods are not very complex and involve local comparisons between traces (i.e. they do not keep state), methods
that do have an even larger overhead.

Because of the existence of temporal operators in the specification, the evaluation result cannot be known
immediately in the same cycle since this result can depend on valuations at future cycles[2]. All future operators
are however bounded with a upper limit, once that cycle is reached the undetermined valuation will be turned
to true or false as the case may be.

The validation procedure we have presented can be qualified as simulation ofLTL formula for each property to
be validated and is polynomial in the size of the LTL formula. Evaluation optimizations that improve efficiency
of this procedure include:

• A property determined to be false or true is dropped from the active list of properties to be checked.

• A sensitivity list is used for properties so that those whose symbols (variables and signals) have not
changed from the previous cycle are not re-evaluated.

5 Implementation of the Simulation-Oriented Verification Approach
We have implemented our verification approach in a state-of-the-art mixed Verilog/VHDL simulator Mentor's
ModelSim.

We provide the user with a Formal Assertion Interface where he/she can enter the formula in the notational
subset of CTL we defined earlier (i.e. no path quantors, in effect it is LTL) provided in the form of a Formal
Assertion Library (see the Appendix). The user can write assertions about any signal or variable in the design.
The interface is integrated into the simulator so the user need only copy and paste signal and variable names and
write any formula in LTL consisting oftemporal and boolean propositions, and valuations for these signals and
variables. In fact, we give the user a sample template ofhow tospecify properties to be validated (see Section 6
for a sample template).

Once editing of this input file'' is complete, the entered description is used to automatically generate the
observer monitor that formally guides the simulation and checks the formal assertions at each cycle. Atest bench
is used in order to provide the simulation test vectors. The user can also choose toexercise the design using this

^This is a marked diflerence from other approaches that have to modify the given design description in order to make internal
variables and signals visible to the outside observer

^The static trace comparison approach requires rimning the entire simulation while an error could have occurred early on in the
1

^Actually it is a Telscript but the user deals only with macros and ctunbersome syntax is minimized
run

script (thusguiding the simulation) in a formal or random manner using the force macro (see [7] for flags and
syntax).

We chose to use Tel because it seems to be the most suited for the task at hand i.e. implementing a monitor
script, and most simulators leave such a handle for users. Alternatives include writing the monitor processes in
VHDL, or using the VHDL Foreign Language Interface (FLI) and then implementing the algorithms in C code
for example. Both these latter approaches, however, suffer from a large overhead (code size, and execution time),
and have serious limitations on the observations of signals and variables.

Note that the monitor overhead consists ofevaluating the validity oftheentered properties at each clock cycle®.
The cost is therefore additive and linear in the number of properties. We do not interfere in any of the inner
workings of the simulator and preserve its discrete event operation.

6 Hardware Verification Example: Cache Coherency Protocol

In this section we describe ourvalidation experiments with a representative digital, synchronous, control-dominated
design that has been used as a typical benchmark [6] in the literature on applied formal verification: a cache
coherency protocol. The implementation example is taken from the VIS [9] release examples.

Protocols that maintain coherency for multiple processors are called cache coherency proiocols. The protocol
design described here is directory based that is the information about any one block ofphysical memory is kept
in just one location. Information in the directory usually includes which caches have copies of the block, and
whether it is dirty or not [4]. The design was implemented in Finite State Machine with Data path (FSMD)
Register Transfer Level (RTL) VHDL.

6.1 List of Properties to be Validated

A list of properties to be checked is as follows (taken from VIS release [9]):

1. Liveness: If a processor requests a read then it will eventually be serviced.

2. Safety: If a cache has exclusive access to a block, then the other cache has no access to that block

3. Safety: If the block is in state SHARED in the cache controller, its corresponding bit isset in the Read List
(Rlist) of the directory.

4. Safety: Ifthe block is in state EXCLUSIVE in the cache controller, its corresponding bit is set in the Write
List (Wlist) of the directory

6.2 Validation Using the Simulation-Oriented Approach
We validated the properties listed in Section 6.1 in the ModelSim VHDL simulator augmented with formal
assertion. The followingsubsections provide more detail.

For the specific example at hand we wrote the following observer script using the macros provided in theformal
assertion library (included in the Appendix).

Cache Coherency Example (Property 4 shown only)
resteort -force

Formal Assertions Library
source Itl.tcl

If the block is in state EXCLUSIVE in the cache controller,
then its corresponding bit is set in the wlist of the directory
set cache2_blk_state_not_excl {[exa /test/coh/cache2/line__27/ \

•'aJ the positive edge of the elk as currently implemented

#'vsifc veik* *^at
9 L /project>/«oJaitech/nod«lwcU'tifi/ /»Ufw»S.' /atd tUndwd
9 Loadui^ verk cohercncfjk^
I Lc^din<j vork te?tTj»b»vior>
* Leading vock cehefenifl(behdvier)
' LvA'ilrig work proeesaoc'behavaot)
9 Lo>diAg vork cacho<bahavior)
9 I.e»dirsg vofk dxte: t<«<yib«haviOt>
v<iir \/ do xTuttalic* ^
9 control9 button^S
t controls button &

Figure 2: The ModelSim with Formal Assertions Console

Rl» i Edit I- VaHdallon Script EcBtor

s«t P4 |G {OR |V ScachsJ blk state not escll \
O AND {V Swllsc2_setri I ~ ~

t Cliecic Properties

PROP Pi "Read request (of eachel) not serviced!*

PROP P2 *tIon-excluslve accesa of blk In caehell'

PROP P3 "SHARED and rllat don't ketch for cachel"

PROP P4 "EXCLUSIVE and vlist don't Batch tor caehe2l'

Figure 3: The Observer Script Editor

- "1"}.

cache_blk_state] != "exclusive"}

set wlist2_set {[exa /test/coh/dir/line 35/ \

cache_wlist2(Cexa /test/coh/cache2/line__27/cache_blk_addr])] =

set P4 "CG -(or {V $cache2_blk_state_not_excl} \
•CV $wlist2_set}}}

Check Properties
VERIFY i

PROP P4 "EXCLUSIVE and wlist don't match for cache2!"

>

6.2.1 Sample Simulation Run

In this section we attempt to demonstrate a simulation run of the above example with several screen captures.
Figure 2 shows the simulator console with the formal assertion interface, while Figure 3 displays the script

editor.

In Figure 4 we show a simulation run at the time the simulator determines that property 4 (see Section 6.1)
has been violated''. The relevant signal and variable waveforms are also displayed.

®Thjs is consistent with the results of VIS

' LsftdiA^ VvcK cftcK«;b*h9'.'i7t ^
t L9i4in9 viei. iim-zx^r/^tT.tvi->.'
VSDC do irutioU£« do

« emu9la butt<in_S
f eentsol* buctorx 6
v$tii 2> tx*< viah Wadae* ua eel &
* 22^8!

V^TH 3> source validate U1

VStH 4> vi«v •

« atrvKture aigrtaU varaobles proeeaa aouxc* nv* Xxot dota/lov
VSn S' add vw« /test/eoh/dxr/Une^SS/cMhe.vliatj
VSn add •»»« /t«9t/e9h/e4ch«3/Urte_27/e«m«.blJ(.9tata
vsix add vave /teat/eab/caehtS/clX
VSIM B' nm

a rMf» execution error tc?:U Itl) exclusive v»J »lut den t Mtafc for cacheS'
a nCLOSrvi and vUst don't aateh for caehe2>
a SiauUtion atop cequeeted

t/cch/d»r/Une_J5/cache vUetS • CISCI

cache aek <• 1 when ((cache eeate • RCBAJfl)
u: (cache stete • VORhirr)) elae 0 ,

proc«9s{elXl
variciil* cache blk SLeLe CACHE BLK ST - ZmLID,
varxaMe CKhe'bLk'addr ADOR • .'

heiir. '
if (cli »9frt wA eUf* •) fher

core (cache 9tac«) m
vher RCADT •>

if {(dir inval • 1'} and (cacbt.blfc.addi' « dir.addc)>

IS=»lij5s2j^-ri.-.wrri ..^ -.1

Figure 4: Screen Capture of a Simulation Run

7 Conclusions and Future Work

We believe that our work provides a tremendous added value for behavioral and RTL simulators in any shape or
form, and promises to incorporate sound and appropriate formal approaches to the simulation world. By using
a simulation-oriented approach, we need not explore the whole space as in formal verification to determine if a
condition ever happens or not. The user may only be interested in a few specific guarantees and does not want
to evaluate all possible scenarios as in the classical verification approach. Tiie designer can therefore use our
proposed approach to improve the coverage.

In this paper we have presented the validation procedure used to verify the equivalence ofthe "golden" simula
tion model and any valid implementation of it. We have developed a proof-of-concept simulation monitor, within
a commercial mixed HDL simulator (Mentor's ModelSim). We use Tcl/Tk scripts in order to formally direct the
simulation, monitor its progress, and perform the required assertion checking. We have also demonstrated our
approach using a typical design benchmark from the verification domain: a cache coherence protocol. We leave
evaluating the approach on industrial size examples for the future.

References

[1] Balarin P.; Chiodo M.; Giusto P.; Hsieh H.; Jurecska A.; Lavagno L.; Passerone C.; Sangiovanni-Vincentelli
A. L.; Sentovich E.; Suzuki K.; and Tabbara B., "Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach", Kluwer Academic Publishers, MA, USA, May 1997.

[2] W. Canfield, E. A. Emerson, A. Saha "Checking Formal Specifications under Simulation" ICCD, 1997.

[3] E. Encrenaz "A Symbolic Relation for a Subset of VHDL'87 Descriptions and its Application to Symbolic
Model Checking" CHARME, 1995.

[4] J^^L- Hennessy, D. A. Patterson "Computer Architecture: AQuantitative Approach" Morgan Kaufmann.

[5] T. A. Henzinger, S. Qadeer, S. K. Rajamani "You Assume, We Guarantee: Methodology and Case Studies"
CAV, 1998.

[6] Abhijit Jas, Alper Sen, Anand Ramachandran, Cagdas Akturan, ChiaBin Liu, Debaleena Das, I-Min Liu,
Jayanta Bhadra, Justin R. Denison, Kaustubh Das, Malay K. Ganai, Padmini Gopalakrishnan, Parminder S.
Chhabra, Praveen K. Jaini, Rajat Chaudhry, Ram Narayan, Ritu Chaba, Sriraman Padmanabhan, Srivatsan
Srinivasan, Wasim U. Quddus, Zhao Zhe. "Examples of HW Verification using VIS", Texas 97 Verification
Benchmarks, 1997.

[7] ModelSim EE/PLUS Reference Manual "Simulator Command Reference" Reference Manual of ModelSim EE
5.1e, 1998.

[8] T. Schlipf, T. Buechner, R. Fritz, M. Helms, J. Koehl "Formal Verification Made Easy"
http://www.almaden.ibm.com/journal/rd/414/schlipf.html

[9] The VIS Group, "VIS: Asystem for Verification and Synthesis" CAV, 1996.

Appendix

Formal Assertion Library

proc V "Cexpr} •(
return [expr $expr]

}

proc F {expr} {
set sub [uplevel $expr]
if {$sub == 1} {

return 1

} else {

if {$sub == 0} {

return [list F $expr]
} else {

return [list OR $sub [list F $expr]]
}

>

}

proc 6 {expr} {
set sub [uplevel $expr]
if {$sub == 0} {

return 0

} else {

if {$sub == 1} {

return [list G $expr]
} else {

return [list AND $sub [list G $expr]]
}

}

}

proc OR {lexpr rexpr} {
set left [uplevel $lexpr]
if {$left == 1} {

return 1

} else {

set right [uplevel $rexpr]
if {$left == 0} {

return $right
} else {

if {$right == 1} {
return 1

} elseif {$right == 0} {
return $left

} else {

return [list OR $left $right]
}

}

}

}

proc AND "Clexpr rexpr} {
set left [uplevel $lexpr]
if "Clleft == 0> {

return 0

} else {
set right [uplevel $rexpr]
if meft == 1> i

return $right
}• else "C

if •C$right == 0} {
return 0

> elseif {$right == 1> {
return $left

} else {
return [list AND $left $right]

>
>

}

>

proc PROP {prop msg> {
upvar $prop P
if {$P != 1 && $P != 0> {

set P [uplevel $P]
if {$P == 0} {

error $msg
}

}

>

proc VERIFY {props} {
^ when -label cycle.ltl {elk'event and elk ='1'} $props

10

	Copyright notice 1999
	ERL-99-38

