
 

 

 

 

 

 

 

 

 

Copyright © 1999, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



OVERVIEW OF THE PTOLEMY PROJECT

by

Principal Investigator Edward A. Lee and J. Davis II,
M. Goel, C. Hylands, B. Kienhuis, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth,
J. Tsay & Y. Xiong

Memorandum No. UCB/ERL M99/37

7 July 1999



OVERVIEW OF THE PTOLEMY PROJECT

by

Principal Investigator Edward A. Lee and J. Davis, II, M. Goel, C. Hylands,
B. Kienhuis, J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie,

N. Smyth, J. Tsay & Y. Xiong

Memorandum No. UCB/ERL M99/37

7 July 1999

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

OVERVIEW OF THE

PTOLEMY PROJECT

JULY 7,1999

http://ptolemy.eecs.berkeley.edu/

John Davis, II

Mudit Goel

Christopher Hylands
Bart Kienhuis

Edward A. Lee, Principal Investigator
Jie Liu

Xiaojun Liu
Lukito Muliadi

Steve Neuendorjfer
John Reekie

Neil Smyth
Jeff Tsay
Yuhong Xiong

1. Modeling and Design

The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent sys
tems. The focus is on embedded systems, particularly those that mix technologies, including for exam
ple analog and digital electronics, hardware and software, and electronics and mechanical devices
(including MEMS, microelectromechanical systems). The focus is also on systems that are complex in
the sense that they mix widely different operations, such as signal processing, feedback control,
sequential decision making, and user interfaces.

Modeling is the act of representing a system or subsystem formally. A model might be mathemati
cal, in which case it can be viewed as a set of assertions about properties of the system such as its func
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more

Heterogeneous Concurrent Modeling and Design



Modeling and Design

models of the system and refiningthe models until the desired functionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposedon a design. For instance, they may describe a mechanicalsystem that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations^ an appropriate term when the executable
model is clearly distinct from the system it models. However, in many electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Embedded software is software that resides in devices that are not first-and-foremost computers. It
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A technically active person probably interacts regularly with more pieces of embedded
software than conventional software.

A major emphasis in Ptolemy II is on the methodologyfor defining and producing
embedded software together with the systems within which it is embedded.

Executable models are constructed under a model of computationy which is the set of "laws of
physics" that govern the interaction of components in the model. If the model is describing a mechani
cal system, then the model of computation may literally be the laws of physics. More commonly, how
ever, it is a set of mles that are more abstract, and provide a framework within which a designer builds
models. A set of rules that govern the interaction of components is called the semantics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is conunon in progranuning languages such as C, C++,
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs to be able
to handle concurrency and the time continuum, in which case a continuous-time model of computation
such that found in Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS is more appropriate.

The ability of a model to mutate into an implementation depends heavily on the model of compu
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin
sically sequentialnature.Choosing an inappropriate model of computation may compromisethe qual
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality ofa system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneoussources of stimuli. In addition, they operate in a timed (real world)environment,
where the timeliness of their response to stimuli may be as important as the correcmess of the
response.

Ptolemy Project



Architecture Design

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety ofmodels ofcomputation.

Ptolemy n takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thus imposes a dis
cipline on the interaction of the interaction of components.

Component-based design in Ptolemy II involves disciplined interactions between
components governed by a model ofcomputation.

2. Architecture Design
Architecture description languages (ADLs), such as Wright [1] and Rapide [22], focus on formal

isms for describing the rich sorts of component interactions that commonly arise in software architec
ture. Ptolemy n, by contrast, might be called an architecture design language, because its objective is
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some stmcture on those interactions. Thus, while an ADL might focus on the compatibility
of a sender and receiver in two distinct components, we would focus on a pattem of interactions among
a set of components. Instead of, for example, verifying that a particular protocol in a single port-to-port
interaction does not deadlock [1], we would focus on whether an assemblage of components can dead
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy II, such pre
existing components would have to wrapped in Ptolemy II actors. Moreover, designing componentsto
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a major part of our research effort is to ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLs.

First, we design components to be domainpolymorphic, meaning that they can interact with other
components within a wide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a number of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [1], we use a technique much more powerfiil
than type checking alone, namely polymorphism.

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide a rich set of interaction mechanisms emboddied in the Ptolemy n
domains. The domains force component designers to think about the overall pattem of interactions,
andtrade offuniformity forexpressiveness. Where expressiveness is paramount, the ability of Ptolemy
II to hierarchically mix domains offers essentially the same richness of moread-hocdesigns, but with
muchmorediscipline. By contrast, a non-trivial component designed without suchstractureis likely to
use a melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embedded it within
a comprehensible system.

Third, whereas an ADL mightchoosea particular model of computation to provide it with a for
mal structure, such as CSP for Wright [1], we have developed a more abstract formal framework that

Heterogeneous Concurrent Modeling and Design



Models of Computation

describes models of computation at a meta level [20]. This means that we do not have to perform awk
ward translations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [1].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy n domains.

3. Models of Computation
There is a rich variety of models of computation that deal with concurrency and time in different

ways. Each gives an interaction mechanism for components. In this section, we describe models of
computation that are implemented in Ptolemy 11 domains, plus a couple of additional ones that are
planned. Our focus has been on modelsof computation that are mostuseful for embeddedsystems. All
of these can lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure
1. Ptolemy II models are (clustered, or hierarchical) graphs of the form of figure 1, where the nodes are
entities and the arcs are relations. For most domains, the entities are actors (entities with functionality)
and the relations connecting them represent communication between actors.

3.1 Communicating Sequentiai Processes - CSP

In the CSP domain (communicating sequential processes), created by Neil Smyth [35], actors rep
resent concurrently executing processes, implemented as Java threads. These processes conununicate
by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing). If
twoprocesses are to communicate, and onereaches the pointfirst at which it is ready to communicate,
then it stalls until the other process is ready to communicate. "Atomic" means that the two processes
are simultaneously involved in the exchange, and that the exchangeis initiatedand completedin a sin
gle uninterruptable step. Examples of rendezvous models include Hoare's communicating sequential
processes(CSP) [15] and Milner's calculusof communicating systems (CCS)[26]. This model of com
putation has been realized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It also
includes an experimental timed extension.

FIGURE 1. A single syntax (bubble-and-arc or block-and-arrowdiagram)
can have a number of possible semantics (interpretations).

Ptolemy Project



Models of Computation

3.2 Continuous Time - CT

In the CT domain (continuous time), created lie Liu [21], actors represent components that interact
via continuous-time signals. Actors typically specify algebraic or differential relations between inputs
and outputs. The job of the directorin the domain is to find a fixed-point, i.e., a set of continuous-time
functions that satisfy all the relations.

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linear or nonlinear algebraic/differential equation
descriptions,such as analog circuits and many mechanicalsystems. Its model of computationis similar
to that used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simula
tors.

Embedded systems frequently contain components that are best modeled using differential equa
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may be digital. Joint modeling of a continuous sub
system with digital electronics is known as mixed signal modeling. The CT domain is designed to
interoperate with other Ptolemy domains, such as DE, to achive mixed signal modeling. To support
such modeling, the CT domain models of discrete events as Dirac delta functions. It also includes the
ability to precisely detect threshold crossings to produce discrete events.

Physical systems often have simple models that are only valid over a certain regime of operation.
Outside that regime, another model may be appropriate. A modal model is one that switches between
these simple models when the system transitions between regimes. The CT domain interoperates with
the FSM domain to create modal models.

3.3 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi, the actors communicate via
sequences of events placed in time, along a real time line. An event consists of a value and time stamp.
Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in a large number of simulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on a globally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen
eral need to maintain a global queue of pending events sorted by time stamp (this is called a priority
queue). This can be fairly expensive, since inserting new events into the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [5] for the glo
bal event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a hash
ing function. As such, both enqueue and dequeue operations can be done in time that is independent of
the number of events in the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competingdiscrete-eventsimulators. This means that for any two events with the same time stamp, the

Heterogeneous Concurrent Modeling and Design



Models of Computation

order in which they are processed can be inferred from the structure of the model. This is done by ana
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation
ships. VHDL, for example, uses delta time to accomplish the same objective.

3.4 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain, created by John Davis, can be viewed either as a
variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control on a model, greatly limiting the ability to distribute a model over a network. Distributing mod
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains a local notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with a time stamp less than some specifiedvalue.

3.5 Discrete Time - DT

The discrete-time (DT) domain, which has not been written yet, will extend the SDF domain
(described below) with a notion of time between tokens. Commimication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis
tinct connections have distinct time intervals between tokens, will be supported.

3.6 Finite-State Machines - FSM

The finite-state machine (FSM) domain, written by Xiaojun Liu (but not yet released), is radically
different from the other Ptolemy 11 domains. The entities in this domain represent not actors but rather
state, and the connections represent transitions between states. Execution is a strictly ordered sequence
of state transitions. The FSM domain leverages the built-in expression language in Ptolemy II to evalu
ate guards, which determine when state transitionscan be taken.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys
tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid surprising
behavior.

FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as
expressive as the othermodels of computation described here. They arenot sufficiently richto describe
all partial recursive functions. However, this weakness is acceptable in lightof the formal analysis that
becomes possible. Many questions about designs are decidable for FSMs and undecidable for other
models of computation. A second key weakness is that the number of states canget very large even in
the face of only modest complexity.This makes the models unwieldy.

The latterproblem can often be solved by using FSMs in combination with concurrent models of
computation. Tliis was first noted by David Harel, who introduced that Statecharts formalism. State-
charts combine a loose version of synchronous-reactive modeling (described below) with FSMs [12].
FSMs have also been combined with differential equations, yielding the so-called hybrid systems
model of computation [13].

Ptolemy Project



Models of Computation

The FSM domain in Ptolemy II can be hierarchically combined with other domains. We call the
resulting formalism "*charts" (pronounced "starcharts") where the star represents a wildcard [10].
Since most other domains represent concurrent computations, *charts model concurrent finite state
machines with a variety of concurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined with process networks, they resemble SDL [34].

3.7 Process Networks - PN

In the process networks (PN) domain, created by Mudit Goel [11], processes communicate by
sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif
ically implements one that ensures determinate computation, namely Kahn process networks [16].

In the PN model of computation, the arcs represent sequences of data values (tokens), and the enti
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
a subclass of such functions, first described by Kahn and MacQueen [17], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domain in Ptolemy II has a highly experimental timed extension. This adds to the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

3.8 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu
tations that operate on streams. Dataflow models, popular in signal processing, are a special case of
process networks (for the complete explanation of this, see [19]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu
larly restricted special case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy n. Process networks (PN) serves in the interrim to handle computations that
do not match the restrictions of SDF.

3.9 Synchronous/Reactive - SR

In the synchronous/reactive (SR) model of computation [2], the arcs represent data values that are

Heterogeneous Concurrent Modeling and Design



Choosing Models of Computation

aligned with globalclock ticks. Thus, they are discrete signals, but unlikediscrete time, a signalneed
not have a value at every clock tick. The entities represent relations between input and output values at
each tick, and are usually partial functions with certain technical restrictions to ensure determinacy.
Examples of languages that use the SR model of computation include Esterel [4], Signal [3], Lustre
[7], and Argos [23].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation altematives.Moreover, in most realizations,modularity is compromisedby the need to
seek a global fixed point at each clock tick. An SR domain has not yet been implemented in Ptolemy
II, although the methods used by Stephen Edwards in Ptolemy Classic can be adapted to this purpose
[8].

4. Choosing Models of Computation
The rich variety of concurrent models of computation outlined in the previous section can be

daunting to a designer faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. This is changing, however, as the level of abstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a real number that advances uniformly, and placing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa
tion [20].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. This could be accomplished by creating a melange, a mixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another altemative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the
ory. It is the premise of Wright, for example [1]. Most of these models of computation are sufficiently
expressive to be able to subsume most of the others. However, this fails to acknowledge the strengths
and weaknesses of each model of computation. Rendezvous is very good at resource management, but
very awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management isawkward, but data-oriented computations are natural^ Thus, to
design interesting systems, designers need to use heterogeneous models.

1. Consider the difference between the telephone (rendezvous) and email (asynchronous message passing). If you
are trying to schedule a meeting between four busy people, getting them all on a conference call would lead to a
quick resolution of the meeting schedule. Scheduling the meeting by email could take several days, and may in
fact never converge. Other sorts of communication, however, are far more efficient by email.

Ptolemy Project



Visual Syntaxes

5. Visual Syntaxes
Visual depictions of electronic systems have always held a strong human appeal, making them

extremely effective in conveying information about a design. Many of the domains of interest in the
Ptolemy project use such depictions to completely and formally specify models.

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate with the semantics of a model of com
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing
the behavior of software. Recently, a number of innovative visual formalisms have been garnering sup
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention, and in fact is
used fairly extensively in the design of Ptolemy II itself (see appendix A of this chapter).

A subset of visual languages that are recognizable as "block diagrams" represent concurrent sys
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used
for system specification and design. Ptolemy II supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

6. Ptolemy II
Ptolemy n offers a unified infrastructure for implementations of a number of models of computa

tion. The overall architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack
ages that support executable models, and domains^ which are packages that implement a particular
model of computation.

6.1 Package Structure

The package structure is shown in figure 2. This is a UML package diagram. The name of each
package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kemelevent which depends on kernel which depends on kemel.util. Actor also depends on
data and graph. The role of each package is explained below.

actor This package supportsexecutableentities that receiveand send data through ports.
It includes both untyped and typed actors. For typed actors, it implementsa sophis-

Heterogeneous Concurrent Modeling and Design



Ptolemy II

actongui

ticated type system that supports polymorphism. It includes the base class Director
for domain-specific classes that control the execution of a model.

This subpackage is a library of polymorphic actors with user interface components,

kernel

kemet.util < — 1 JComponentEntity
ComponentPort
Componeninelatton
ComposlteEnttty
Entity
Port

Relation

AttrilNile

CrossReiUst
DetxjgUstener
tDegaiActionException
IntemalErrorException
InvalklStateException
KernelException
NameDupliratlonExceplion
Nameable

NamedUst

NamedOb)
NoSuchttemException
Ptolemyrhread
RacordeiUstener

StreamUstener

Workspace

>

graph

CPO

DkectedAcydlcQraph
DirectedGraph
Graph
Inequality
InequalitySolver
InequatityTerm

/k

"1
>

— >

kemet-event

ChangeFailedException
ChangeUst
ChangeUstener
ChangeRequest
StreamChangeUstener

actor

Actor

AtomicActor

CompositeActor
OelautlExecuIiottLJstaner

Director

Executable

ExecuUonUslener

tOPort

tORelation

MaSbox

Manager
NoFloomException
NoTokenException
QueueReceiver

Recelvar

TypeConfBctException
TypeEvenl
T/peUstmer
TypedAclor
TypedAtcmicAictor
TypedCompositsActar
TypedlOPort
TypedlORetation

actor.utS

CO Comparator
CalendarQueue
DoubleCOComparator
RFOQueue

aclor.gul

HIstogramPlotter
Placeable

Plotter

Print

PtdemyApplet
PtdemyAppGcation
SequencePlotter
TanedPkMter

XYPIottar

actor.process

NotityThread
ProcessDirector

ProeessReceiver

ProcessThread

TerminateProcessException

actof-scJiad

NotSchedulabteException
Scheduler
StadcSchedulingDiractor

1

V

J

actorlS)

AbsoluleValue

AddSubtraci

Average
Bernoulli

Clock

Commutator

Const

CurrenfTime

Distributor

Expression
FSeWrite

Gaussian
Maximum

Minimum

MultiplyDivide
Poisson

Pulse

Quantizer

Ramp
RandomSource

Recorder

Scale
SequenceActor
SequenceSource
Sltte

Sink

Source

TimerlActor

TlmsdSource

Transformer

I

plot

LogteAnalyzer
LogicAnatyzerFrame

Plot

PlotApplet
PlolAppOcaticn
PlotBox

PtolDataException
PtotFrame

PtolUve

PtotUveApplet
PlotPoint
Pxgraph

media

AudoViewer

Picture

<

data

math

ArrayStrlngPormat
Complex
ComplexAtTayMath
OoubleArrayMath
DouUeArrayStat
ExtendedMath

Fraction

MalrtxMath

SampleQenerator
SignalProcessing

•7^
I

BooleanMatrixToken

BodeanToken

ComplexMatrtxToken
ComplekToken
DoubieMalrikToken

DoubleToken

InlMatrtxToken

IntToken

LongMaltixToken
LongToken
MatrixLowoiBound

MatrixToken

MalrixUppetBound
Numerical

ObJectToken
ScalarToken
StringToken
Token

TypeConstanI
TypeLattice
TypeaUe

data.expr

ASCILCharStream
ASTPtBitwiseNode

ASTPtFunctlonNode

ASTPtFunctlonatlfNode
ASTPtLeafNode

ASTPtLoglcalNode
ASTPtMatrtxConstruclNode

ASTPtMethodCallNode

ASTPlProduciNode
ASTPtRelationalNode

ASTPIRootNode

ASTPtSumNode

ASTPtUnaryNode
JJTPtParserState

Node
Parameter

ParameterEvenI

ParamelerUstener

PaiseExceptkm
PIParser

PIParsetConstanis

PtPaiserTokenManager
PtParserTreeConstants

SimpleNode
Token

TokenMgtError
UtfiityFunctions

<

Message

Queryustener

Domain

EntityType
Icon

IconUbraiy
PTMLParser

PTMLPrinter
PtoiemySystem
Schematic
SchematicElement

SchematicEnllty
SchematicLayout
SchematlcParameler

SchemadcPort

SchematicRelatlon
XMLBement

FIGURE 2. The package structure of Ptolemy II,without the domains.

Ptolemy Project 10



actor.lib

actor.process

actonsched

actonutil

data

data.expr

domains

graph

gui

kernel

kemei.event

kerneLutil

math

media

Ptolemy H

plus some convenience base classes for applets and applications.

This subpackage is a library of polymorphic actors.

This subpackage provides infrastructure for domains where actors are processes
implemented on top of Java threads.

This subpackage provides infrastructure for domains where actors are statically
scheduled by the director.

This subpackage contains utilities that support directors in various domains. Spe
cifically, it contains a simple FIFO Queue and a sophisticated priority queue called
a calendar queue.

This package provides classes that encapsulate and manipulate data that is trans
ported between actors in Ptolemy models.

This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
transparently, as in a spreadsheet, where updating the value of one will result in the
update of all those that depend on it.

This package contains one subpackage for each Ptolemy U domain.
This package provides algorithms for manipulating and analyzing mathematical
graphs. Mathematical graphs are simpler than Ptolemy 11 clustered graphs in that
there is no hierarchy, and arcs link exactly two nodes. This package is expected to
supply a growing library of algorithms.

This package contains generically useful user interface components.

This package provides the software architecture for the key abstract syntax, clus
tered graphs. The classes in this package support entities with ports, and relations
that connect the ports. Clustering is where a collection of entities is encapsulated in
a single composite entity, and a subset of the ports of the inside entities are exposed
as ports of the cluster entity.

This package contains classes and interfaces that support controlled mutations of
clustered graphs. Mutations are modifications in the topology, and in general, they
are permitted to occur during the execution of a model. But in certain domains,
where maintaining determinacy is imperative, the director may wish to exercise
tight control over precisely when mutations are performed. This package supports
queueing of mutation requests for later execution. It uses a publish-and-subscribe
design pattern.

This subpackage of the kernel package provides a collection of utility classes that
do not depend on the kemel package. It is separated iiito a subpackage so that these
utility classes can be used without the kemel. The utilities include a collection of
exceptions, classes supporting named objects with attributes, lists of named
objects, a specialized cross-reference list class, and a thread class that helps
Ptolemy keep track of executing threads.

This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It also includes a complex number class and a class support
ing fractions.

This package encapsulates a set of classes supporting audio and image processing.

Heterogeneous Concurrent Modeling and Design 11



Ptolemy n

plot This package provides two-dimensional signalplottingwidgets,
schematic This package provides a top-level interface to Ptolemy 11. A GUI can use the

classes in this package to gain access to Ptolemy II models.

6.2 Overview of Key Classes

Some of the key classes in Ptolemy II are shown in figure3. This is a UML static structurediagram
(see appendix A of this chapter). The key syntactic elements are boxes, which represent classes, the
hollow arrow, which indicates generalization, and other lines, which indicate association. Some lines
have a small diamond, which indicates aggregation. The details of these classes will be discussed in
subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

1—>Attribute L

o..n r

NamedObj

o

0..n

-Interface-

Namaabto

Workspace

-Interface-
Exaeutable Entity

0..1

container 0..n

link 0..n

Port 0..n link Relation

I
-Interface-

Actor ComponentEntHy CompositeEntity

0..n container

A A 0..1*"

T container

AtomlcActor

0..n
0..1 CompositeActor

0..1

Manager

ComponentPort

ComponentRelation

0..n

0..2 DIroetor

FIGURE 3. Some ofthe keyclasses in PtolemyII. These are definedinthe kernel, kernel.util, and
acfor packages.

Ptolemy Project 12



Ptolemy 11

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy 11. They will be fully explained in the kemel
chapter. ComponentPort, ComponentRelation, and ComponentBntity extend these classes by adding
support for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggrega
tion of instances of ComponentEntity and ComponentRelation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and
CompositeActorare concrete classes that implement this interface.

An executablePtolemy El model consists of a top-levelCompositeActorwith an instance of Direc
tor and an instance of Manager associated with it. TTie manager provides overall control of the execu
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the executionof actors contained by the CompositeActor.

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy n directors that implement continuous-time
modeling (ODEsolvers), process networks, synchronous dataflow, discrete-event modeling, and com
municating sequential processes.

6.3 Domains

The domains in Ptolemy 11 are subpackages of the ptolemy.domains package, as shownin figure 4.
Thesepackages generally containa kemel subpackage, which defines classesthat extendclassesin the
actor or kemel packages of Ptolemy II. The gui subpackage contains a domain-specific applet class,
which provides facilities for easily creating applets that use that domain. The lib subpackage, when it
exists, includes domain-specific actors.

6.4 Capabilities

Ptolemy II is a second generation system. Its predecessor, Ptolemy Classic, still has many active
users and developers, and may continue to evolve for some time. Ptolemy II has a somewhat different
emphasis, and through its use of Java, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy II that we believe to be new technology in
modeling and design environments include:
• Higher level concurrent design in Java^^. Java support for concurrent design isvery low level,

based on threads and monitors. Maintaining safety and liveness can be quite difficult [18]. Ptolemy
n includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the level of their software architecture. Some of these domains use Java threads
as an underlying mechanism, while others offer an altemative to Java threads that is much more
efficient and scalable.

• Better modularization through the use ofpackages. Ptolemy 11 is divided into packages that can be
used independently and distributed on the net, or drawnon demandfrom a server. This breakswith
tradition in design software, where tools are usually embedded in huge integrated systems with
interdependent parts.

• Complete separation ofthe abstract syntaxfwm the semantics. Ptolemy designs are stmctured as
clustered graphs. Ptolemy n defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

Heterogeneous Concurrent Modeling and Design 13



actor

domains

csp

kernel

CSPActor

CSPDIrector

CSPReceiver

ConditionalBranch

ConditionalRecelve

ConditionalSend

dde

kernel

ODEActor

DDEOirector

ODEIOPort

ODEThread

NuilToken

TImeKeeper
TimedQueueReceiver

de

kernel

DEActor

DECQEventQueue

DEDirector

DEEvent

DEEventOueue

DEEventTag
DEIOPort

DERecelver

DETbreadActor

sdf

kernel

ArrayFIFOQueue
SDFAtomicActor

SDFDirector

SDFIOPort

SDFRecelver

SDFScheduIer

gui

CSPApplet

demo

gui

CSPApplet

demo

gui

DEApplet

demo

kernel

CTActor

CTBaselntegrator
CTComposlteActor
CTDirector

CTDynamlcActor
CTEmbeddedDlrector

CTEmbeddedNROirector

CTEventGenerator

GTEventlnterpreter
CTMixedSignalOirector
GTMuItiSolverOirector

GTReceiver

GTScheduler

GTSIngleSolverDirector
GTStatefulActor

GTStepSizeGontrolActor
NumericalNonconvergenceException
CDESolver

lib

Delay
DETransformer

WaitlngTime

gui lib

SDFApplet Delay
FIR

UneCoder

RaisedCosine

demo

FIGURE 4. Package structure of Ptolemy II domains.

Ptolemy Project

demo

gui

GTApplet

pn

kernel

BasePNDirector

PNDirector

PNQueueRecelver

TimedPNDirector

lib

GTButtonEvent

GTIntegrator
GTPeriodlcSampler
GTSaberSubsys
GTSquareWave
GTThresholdMonltor

GTZeroGrossingDetector
GTZeroOrderHold

Delay

(PCIntgrfsw

gui

PNApplet

demo

Ptolemy n

14



Ptolemy n

• Improvedheterogeneity. Ptolemy Classic provided a wormholemechanismfor hierarchically cou
pling heterogeneous modelsof computation. This mechanism is improved in Ptolemy n through
the use of opaque composite actors, which provide better support for models of computation that
are very different from dataflow, the best supported model in Ptolemy Classic. These include hier
archical concurrent finite-state machines and continuous-time modeling techniques.

• Thread-safe concurrent execution.Ptolemy models are typically concurrent, but in the past, sup
port for concurrent execution of a Ptolemy model has been primitive.Ptolemy II supports concur
rency throughout, allowing for instancefor a model to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. Consis
tency is maintained through the use of monitors and read/write semaphores [15] builtupon the
lower level synchronization primitives of Java.

• A software architecture based on object modeling. Since Ptolemy Classic was constructed, soft
ware engineeringhas seen the emergence of sophisticated objectmodeling [25][31][33] and
design pattern [9] concepts.We haveapplied these concepts to the design of Ptolemy II, and they
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli
fiedsoftware engineering process that includes systematicdesign and code reviews [30].

• A trulypolymorphic typesystem. Ptolemy Classic supported mdimentary polymorphismthrough
the "anytype" particle.Even with such limitedpolymorphism, type resolution provedchallenging,
and the implementationis ad-hoc and fragile. Ptolemy n has a more modem type system based on
a partial order of types and monotonictype refinementfunctionsassociatedwith functionalblocks.
Typeresolution consists of finding a fixed point, using algorithms inspiredby the type systemin
ML [27].

• Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy 11,
this idea is taken much further. Actors with intrinsically polymorphic functionality can be written
to operate in a much largerset of domains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. This is managed through a concept that we
call a process level type system.

6.5 Future Capabilities

Capabilities that we anticipate making available in the future include:
• Extensible XML-basedfile formats. XML is an emerging standard for representation of informa

tion that focuses on the logical relationships between pieces of information. Human-readable rep
resentations are generated with the help of style sheets. PtolemyII will use XML as its primary
format for persistent design data.

• Interoperability through softwarecomponents. PtolemyII will use distributedsoftwarecomponent
technology such as CORBA, Java RMI, or DCOM, in a number of ways. Components (actors) in a
Ptolemy n model will be implementable on a remote server. Also, components may be parameter
ized where parameter values are supplied by a server (this mechanism supports reduced-order
modeling, where the model is provided by the server). Ptolemy n models will be exported via a
server. And finally, Ptolemy n will support migrating software components.

• Embedded software synthesis. Pertinent Ptolemy 11 domains will be tuned to run on a Java virtual
machine on an embedded CPU. Hardware, firmware, and configurable hardware components will
expose abstractions to this Java software that obey the model of computation of the pertinent
domain. Java's native code interface will be used to define a stub for the embedded hardware com-

Heterogeneous Concurrent Modelingand Design 15



References

ponents so that they are indistinguishable from any other Java thread within the model of computa
tion. Domains that seem particularly well suited to this approach include PN and CSP.

• Embedded hardware synthesis. Ptolemy Classic had only very weak mechanisms for migrating
designs from idealized floating-point simulations through flxed-point simulations to embedded
software, FPGA, and hardware designs. Ptolemy II will leverage polymorphism, allowing libraries
to be constructed where compatibility across implementation technologies is assured [32].

• Integrated verification tools. Modem verification tools based on model checking [14] could be
integrated with Ptolemy n at least to the extent that finite state machine models can be checked.
We believe that the separation of control logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections of the system behavior will be offered to the verification
tools.

• Refiectionofdynamics. Java supports reflection of static stmcture, but not of dynamic properties of
process-based objects. For example, the data layout required to communicate with an object is
available through the reflection package, but the communication protocol is not. We plan to extend
the notion of reflection to reflect such dynamic properties of objects.

7. References

[1] R. Allen and D. Garlan, "Formalizing Architectural Connection," in Proc. of the 16th Interna
tional Conference on Software Engineering (ICSE 94), May 1994, pp. 71-80, BEEE Computer
Society Press.

[2] A.. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-Time Systems,"
Proceedings ofthe IEEE, Vol. 79, No. 9,1991, pp. 1270-1282.

[3] A. Benveniste and P. Le Guemic, "Hybrid Dynamical Systems Theory and the SIGNAL Lan
guage," IEEE Tr. on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

[4] G. Berry and G. Gonthier, "The Esterel synchronous programming language: Design, semantics,
implementation," Sc/e/ice ofComputer Programming, 19(2):87-152,1992.

[5] Randy Brown, "CalendarQueue: A Fast Priority Queue Implementation for The Simulation Event
Set Problem", Communications of the ACM, October 1998, Volume 31, Number 10.

[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems," Int. Journal of Computer Simulation, special issue on
"Simulation Software Development," vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.berke-
ley.edu/papers/JEurSim).

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, "LUSTRE: A Declarative Language for Pro
gramming Synchronous Systems," Conference Record of the 14th Annual ACMSymp. on Princi
ples ofProgramming Languages, Munich, Germany, January, 1987.

[8] S. A. Edwards, "The Specification and Execution of Heterogeneous Synchronous Reactive Sys
tems," Ph.D. thesis. University of California, Berkeley, May 1997. Available as UCB/ERL M97/
31. (http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements ofReusable Object-
Oriented Software, Addison-Wesley, Reading MA, 1995.

Ptolemy Project 16



References

[10] A. Girault, B. Lee, and E. A. Lee, "Hierarchical Finite State Machines with Multiple Concurrency
Models," April 13, 1998 (revised from Memorandum UCB/ERL M97/57, Electronics Research
Laboratory, University of Califomia, Berkeley, CA 94720, August 1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/starcharts)

[11] M. Goel, Process Networks in Ptolemy II, MS Report, ERL Technical Report UCB/ERL No.
M98/69, University of Califomia, Berkeley, CA 94720, December 16,1998.

[12] D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Sol. Comput. Program., vol 8,
pp. 231-274,1987.

[13] T. A. Henzinger, "The theory of hybrid automata," in Proceedings ofthe Ilth Annual Symposium
on Logic in ComputerScience, IEEE Computer Society Press, 1996, pp. 278-292, invited tutorial.

[14] T.A. Henzinger, and O. Kupferman, and S. Qadeer, "From prehistoric to postmodtm symbolic
model checking," in CAV 98: Computer-aided Verification, pp. 195-206, eds. A.J. Hu and M.Y.
Vardi,Lecture Notes in Computer Science 1427, Springer-Verlag, 1998.

[15] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the ACM, Vol. 21,
No. 8, August 1978.

[16] G. Kahn, "The Semantics of a Simple Language for Parallel Programming," Proc. of the MP
Congress 74, North-Holland Publishing Co., 1974.

[17] G. Kahn and D. B. MacQueen, "Coroutines and Networks of Parallel Processes," Information
Processing 77, B. Gilchrist, editor, North-Holland Publishing Co., 1977.

[18] D. Lea, Concurrent Programming inJava^^, Addison-Wesley, Reading, MA, 1997.

[19] E. A. Lee and T. M. Parks, "Dataflow Process Networks,", Proceedings of the IEEE, vol. 83, no.
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

[20] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models of Computa
tion,", March 12,1998. (Revised from ERL Memorandum UCB/ERL M97/11, University of Cal
ifomia, Berkeley, CA 94720, January 30,1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/framework/)

[21] J. Liu, Continuous Time and Mixed-Signal Simulation in Ptolemy II, MS Report, UCB/ERL
MemorandumM98/74, Dept. of EECS, University of Califomia, Berkeley, CA 94720, December
1998.

[22] D. C. Luckham and J. Vera, "An Event-Based Architecture Definition Language," IEEE Transac
tions on Software Engineering, 21(9), pp. 717-734, September, 1995.

[23] F. Maraninchi, "The Argos Language: Graphical Representation of Automata and Description of
Reactive Systems," in Proc. ofthe IEEE Workshop on VisualLanguages, Kobe, Japan, Oct. 1991.

[24] S. McConnell, Code Complete: A Practical Handbook ofSoftware Construction, Microsoft Press,
1993.

[25] B. Meyer, Object Oriented Software Construction, 2nd ed.. Prentice Hall, 1997.

[26] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Heterogeneous Concurrent Modeling and Design 17



References

[27] R. Milner, A Theory of Type Polymorphism in Programming, Journal of Computer and System
Sciences 17, pp. 384-375,1978.

[28] NASA Officeof Safety and Mission Assurance,SoftwareFormal Inspections Guidebook, August
1993 (http://satc.gsfc.nasa.gov/fi/gdb/fitext.txt).

[29] Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http://
www.rational.com/uml/html/notation/.

[30] J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee, "Software Practice in the Ptolemy Project,"
Technical Report Series, GSRC-TR-1999-01, Gigascale Silicon Research Center, University of
California, Berkeley, CA 94720, April 1999.

[31] A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.

[32] J. Rowson and A. Sangiovanni-Vincentelli, "Interface Based Design," Proc. ofDAC '97.

[33] J. Rumbaugh, et al. Object-OrientedModelingand Design Prentice Hall, 1991.

[34] S. Saracco, J. R. W. Smith, and R. Reed, Telecommunications Systems Engineering Using SDL,
North-Holland - Elsevier, 1989.

[35] N. Smyth, Communicating Sequential ProcessesDomain in Ptolemy 11, MS Report, UCB/ERL
Memorandum M98/70, Dept. of EECS, University of Califomia, Berkeley, CA 94720, December
1998.

Ptolemy Project 18


	Copyright notice 1999
	ERL-99-37

