

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A NEW FAIR WINDOW ALGORITHM

FOR ECN CAPABLE TCP (NEW-ECN)

by

Tilo Hamann

Memorandum No. UCB/ERL M99/35

29 June 1999

A NEW FAIR WINDOW ALGORITHM

FOR ECN CAPABLE TCP (NEW-ECN)

by

Tilo Hamann

Memorandum No. UCB/ERL M99/35

29 June 1999

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Project Report

A New Fair Window Algorithm for

ECN Capable TCP

(New-ECN)

Tilo Hamann

Department of Digital Communication Systems
Technical University of Hamburg-Harburg

Germany
t. hamann@tu-harburg.de

Advisor: Prof. Jean Walrand

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

USA

wlr@eecs.berkeley.edu

June 1999

Abstract

Although the TCP protocol is widely used in computer networks as a reliable data

transfer protocol, the current implementations of TCP still have some drawbacks. One

of the improvements to TCP's performance that were proposed is the Explicit Con

gestion Notification (ECN) [1] mechanism. ECN in conjunction with Random Early

Detection (RED) [4] gateways avoids unnecessary packet drops and separates conges

tion detection and congestion notification. Another major issue in TCP has been shown

in [5]: TCP is biased against fiows with long round trip times (RTT). In this report

we develop a new window control mechanism for TCP using the congestion informa

tion provided by ECN. This algorithm corrects the bias against TCP connections with

longer RTTs and achieves a fair sharing of the available bandwidth of a bottleneck

gateway. The idea is to prevent a fast connection from opening its congestion window

too quickly and to enable a slow connection to open its window more aggressively.

We demonstrate the effect of the New-ECN algorithm with a simple two fiow model

and verify the results with the network simulator "ns" [6] for different network topolo

gies. We show that the New-ECN algorithm works also with many fiows through one

bottleneck gateway and study the TCP and ECN-TCP friendliness.

In this research report we only focus on the single bottleneck case. The behavior of

New-ECN TCP-Reno with multiple congested gateways needs further research.

CONTENTS 1

Contents

1 Introduction and Problem Definition 6

2 Background 9

2.1 Transport Control Protocol (TCP) 9

2.1.1 TCP-Tahoe 10

2.1.2 TCP-Reno 11

2.1.3 TCP-Vegas 11

2.2 Random Early Detection (RED) Gateways 12

2.2.1 The RED Algorithm 13

2.3 Explicit Congestion Notification (ECN) 15

2.3.1 ECN-TCP Header 16

2.3.2 ECN-TCP Gateways 16

2.3.3 ECN-TCP Sender 17

2.3.4 ECN-TCP Receiver 17

2.4 Fairness 18

3 Developing a Fair Window Algorithm Using ECN 19

3.1 New-ECN TCP-Reno Algorithm 19

3.2 Simulation Results for the Simple Model 21

4 Verifying Results in the Network Simulator (NS) 25

CONTENTS 2

4.1 Network Simulation Topology and Parameters . 25

4.2 Fairness of New-ECN 26

4.2.1 4 New-ECN TCP-Reno Connections 26

4.2.2 4 New-ECN TCP-Reno vs. 4 ECN TCP-Reno Connections ... 33

4.2.3 Many New-ECN TCP-Reno Connections 34

4.3 TCP / ECN-TCP Friendliness of New-ECN TCP-Reno 36

4.3.1 One New-ECN TCP-Reno vs. one ECN/non-ECN TCP-Reno

Connection 36

4.3.2 TCP Friendliness of New-ECN 38

4.3.3 ECN-TCP Friendliness of New-ECN 40

5 Summary 42

5.1 Conclusions and Future Work 42

5.2 Acknowledgements 43

References 44

A Matlab-File for the Simple Model Simulation 48

B Modified Network Simulator TCP Source Code 54

B.l TCP.H 54

B.2 TCP.CC 55

B.3 TCP-RENO.CC 61

CONTENTS 3

B.4 TCP-SINK.CC . 62

B.5 NS-DEFAULT.TCL 63

C TCL Scripts for the Simulations in Section 4 64

C.l 4 New-ECN TCP-Reno Connections 65

C.2 4 New-ECN TCP-Reno vs. 4 ECN TCP-Reno Connections 72

C.3 Many New-ECN TCP-Reno Connections 74

C.4 One New-ECN TCP-Reno vs. one ECN/non-ECN TCP-Reno Connection 78

C.5 TCP Friendliness of New-ECN 81

C.6 ECN-TCP Friendliness of New-ECN 85

LIST OF FIGURES 4

List of Figures

2.1 RED algorithm 15

3.1 Simple model 19

3.2 Simple model: rates 22

3.3 Simple model: windows 23

3.4 Simple model: rate trace 24

4.1 Simulation topology 25

4.2 4 New-ECN TCP-Reno flows: ACK sequence number plot 28

4.3 4 New-ECN TCP-Reno flows: congestion window plot 29

4.4 4 New-ECN TCP-Reno flows: Symd plot 29

4.5 4 New-ECN TCP-Reno flows: average window and Syjnd 30

4.6 4 TCP-Reno flows: ACK sequence numbers plot for setup 2, Pmax = 0.1 32

4.7 4 TCP-Reno flows: ACK sequence numbers plot for setup 2, pmax = 0.2 33

4.8 4 New-ECN vs. 4 ECN TCP-Reno flows: ACK sequence number plot . 34

4.9 16 New-ECN TCP-Reno connections: ACK sequence number plot ... 35

4.10 One New-ECN flow vs. one ECN/non-ECN flow 38

4.11 TCP friendliness: ACK sequence number plot 39

4.12 ECN-TCP friendliness: ACK sequence number plot 40

LIST OF TABLES 5

List of Tables

4.1 4 New-ECN TCP-Reno flows: link parameter setup 1 26

4.2 4 New-ECN TCP-Reno flows: round trip delays 26

4.3 4 New-ECN TCP-Reno flows: link parameter setup 2 27

4.4 4 New-ECN TCP-Reno flows: mean values 30

4.5 4 New-ECN TCP-Reno flows: mean value ratios 31

4.6 4 New-ECN TCP-Reno flows: approximation for ct 31

4.7 Many New-ECN TCP-Reno flows: link parameter 35

4.8 Many New-ECN TCP-Reno flows: round trip delays 35

4.9 TCP / ECN-TCP friendliness: link parameter 38

4.10 TCP / ECN-TCP friendliness: round trip delays 39

1 INTRODUCTION AND PROBLEM DEFINITION 6

1 Introduction and Problem Definition

The TCP protocol is widely used in computer networks as a reliable data transfer

protocol. V. Jacobson [7, 8] introduced an adaptive retransmission and control mecha

nism, which has been subject to research and optimization since then. The main three

versions of TCP are TCP-Tahoe, TCP-Reno/NewReno, and TCP-Vegas. Each of these

versions has its advantages and disadvantages. The most commonly implemented ver

sion are TCP-Tahoe and TCP-Reno/NewReno.

There arestillproblems with these TCP congestion control schemes. Thecongestion

control mechanisms slow start and congestion avoidance use packet loss or timeouts

to discover congestion in the network. Usually, losses occur if the buffer at a network

gateway has reached its capacity and every incoming packet is dropped (e.g., drop-tail

gateways). In TCP, there are no means to discover congestion before a packet is lost.

This leads to the problem ofglobal synchronization [9]. When a gateway starts to drop

packets due to a buffer overflow, many flows see a dropped packet at roughly the same

time. Consequently, they all reduce their congestion window at the same time, which

leads to a low utilization after a busy cycle and causes a greater variance in the queuing

delay.

Besides these issues, TCP also has a bias against connection with longer round

trip times [5]. A connection doubles its congestion window every round trip time

(RTT) during the slow start phase and increases its congestion window by one every

RTT during the congestion avoidance phase. This mechanism results in a non-uniform

increase of the rates of connections with different RTT and enables a connection with a

short RTT to discover andclaim bandwidth faster thana connection with a longer RTT.

Studies have shown that the bias in the claimed bandwidth for multiple connections is

in the order of RTT°' with a <2 [10].

Toimprove the behavior ofTCP during times ofcongestion, S. Floyd and V. Jacobson

1 INTRODUCTION AND PROBLEM DEFINITION 7

introduced Random Early Detection (RED) Gateways [4], The idea is to avoid multiple

losses and global synchronization of TCP flows. A RED gateway controls its average

queue size by dropping or marking arriving packets randomly before the buffer at the

gateway overflows. Whether to mark or to drop a packet depends on the protocol used.

The RED algorithm allows us to identify misbehaving users [4] and penalize these

connections, since they will see more dropped or marked packets. Nevertheless, a RED

gateway cannot correct the bias of TCP against connection with long RTTs and assure

that the bandwidth is shared fairly between all connections.

S. Floyd and K. Ramakrishnan proposedthe Explicit Congestion Notification (EON)

mechanism [1,2]. The idea of ECN is to avoid delays in a transmission due to unneces

sary packet drops. The sending host receives a congestion feedback from the network

by "marked" packets. A packet is marked at a RED gateway by setting a bit in the

TCP header instead of being dropping by the RED algorithm. The mark gets echoed

by the TCP receiver by setting an ECN echo flag in the header of the ACK and the

TCP sender reacts then to the mark as it would to a dropped packet. The advantage

of the mechanism is that it does not depend on the retransmit timeouts and the coarse

granularity of the TCP timer. With ECN support, TCP does not need to wait for

timeouts to react to a congestion indication. For flows with a small RTT, the coarse

granularity of the TCP timer^ can delay the detection of a lost packet, with the result

that the source lies idle and the link is underutiflzed. The improvement of the per

formance was studied in [1, 11]. ECN in conjunction with RED gateways addresses

the issue of unnecessary and multiple packet losses and the resulting delays in the

transmissions times, but it cannot guarantee a fair sharing of the available bandwidth.

The main goal of this research project was to investigate if it is possible to use the

congestion information provided by ECN to correct the bias against connections with

long RTTs. Usingthe idea of ECN with RED gateways, wedeveloped an algorithm that

^many implementations use a clock settingof > 100ms

1 INTRODUCTION AND PROBLEM DEFINITION 8

achieves a fair sharing of the available bandwidth by using the congestion feedback of

ECN. We used the main idea of ECN with RED gateways and made some modifications

to the TCP window algorithm.

This report is organized as follows. Section 2 explains the used protocols and gate

way mechanisms. Section 3 describes a simplified model with one bottleneck gateway

and two TCP-Reno connections. We introduce a modified window algorithm for TCP

and show that it can achieve a fair sharing of the available bandwidth. Section 4 verifies

the results of the simple model with the network simulator "ns" [6] for more complex

network topologies. Section5 summarizes the results found in this report and discusses

future work.

2 BACKGROUND 9

2 Background

2.1 Transport Control Protocol (TCP)

Thissection gives a more general overview over TCP. A detailed description on TCP/IP

and its implementations can be found in [7, 8, 12, 13, 14, 15, 16]. TCP is a connection

oriented, reliable byte stream protocol. It controls transmission errors and the flow of

data packets. TCP is widely used to reliably transfer data in computers networks. In

1988 V. Jacobson [7] developed the congestion avoidance and control mechanisms which

are used in TCP. The control mechanisms TCP uses are based on windows. It never

injects more than a window size of packets into the network. That means that TCP

never has more than a window size of unacknowledged packets in the network. Once

it has sent the window size, the TCP sender only sends out new data when it receives

an acknowledgment (ACK) for previously unacknowledged data from the receiver. In

this way, TCP avoids overloading the network. This window size is called congestion

window. The size of the congestion window is controlled by the two main algorithms of

TCP: (1) slow start, (2) congestion avoidance. Later, a few more enhancements were

made to TCP window algorithm: fast recovery and fast retransmit.

After a TCP connection is established the sender starts sending data packets with

the slow start algorithm. During slow start, every incomingACK increases the conges

tion window cwnd by 1 packet, which leads to an exponential increase of the window

size over time. During the congestion avoidance phase, TCP increases the congestion

window linearly by roughly one packet each RTT. The congestion window is bounded

above by the receiver-advertised window. With these two algorithms, TCP is con

stantly probing for bandwidth.

TCP infers from a packet loss the presence of congestion in the network. In case

of a packet loss, TCP cuts the congestion window by The window algorithm used

2 BACKGROUND 10

after a packet loss depends on the version of TCP. In [17]^ D. Chin and R. Jain

showed that a linear increase and multiplicative decrease algorithm is a fair and efficient

algorithm. The combination of the TCP window and congestion control algorithms is

described below for the TCP versions TCP-Tahoe and TCP-Reno. TCP-Vegas uses a

different approach for the window control, which is also described below. It has been

shown that TCP-Reno and TCP-Tahoe are biased against connections with longer

RTT [5], whereas TCP-Vegas enables the connections to achieve a fair sharing of the

bandwidth [18].

2.1.1 TCP-Tahoe

TCP-Tahoe uses in its original version only the slow start and congestion avoidance

algorithm. At the beginning of a connection, the congestion window is initiaUzed with

one packet and it is then increased by the slow start algorithm. Thus, TCP is probing

the network for bandwidth in an exponential manner. The slow start phase ends

if either a packet gets lost, which means that the sending rate exceeds the network

capacity, or the window size is greater than the slow start threshold ssthresh. In the

latter case, TCP enters the congestion avoidance phase. For the first case, a packet

loss was discovered by a timeout, the slow start threshold is set to ssthresh = ^ cwnd
and the congestion window set to 1 packet again. As long the window size is below

the slow start threshold, the slow start algorithm is used. Otherwise, the window size

is increased by the congestion avoidance algorithm.

In recent TCP-Tahoe versions, packet loss isalso discovered by duplicate ACKs. This

means the sender received multiple (usually three) ACKs with the same (expected) se

quence number. Receiving three ormore duplicate ACKs in a row isa strong indication

that a packet got lost. The missing packet is retransmitted immediately without wait-

^The analysis was done with the assumption that all connections are synchronized (i.e. have the
same delay)

2 BACKGROUND 11

ing for a timeout. This mechanism is called fast retransmit. After a fast retransmit

TCP-Tahoe resets the congestion window size to 1 and performs slow start.

2.1.2 TCP-Reno

TCP-Reno uses the same mechanism as TCP-Tahoe. To improve the behavior of

TCP in case of a packet loss, the fast retransmit algorithm in TCP-Reno is enhanced

by the fast recovery algorithm. TCP-Reno does not perform a slow start after a fast

retransmit. The congestion window is reduced by \ and the value ofthenew window is

stored in the slow start threshold. The lost packet is retransmitted and further incoming

duplicate ACKs are used to clock new subsequent outgoing packets. The congestion

window is now cwnd = cwnd + Udup.ACKs where Udup.ACKs is the number of duplicate

ACKs received so far. Thus, new data packets can be sent out. The fast recovery

algorithm enables the connection to reduce backlog in the "pipe" (communication path)

by half instead of flushing it completely. This provides a better throughput recovery

after a (single) packet loss. After the first ACK that acknowledges new data arrives,

the congestionwindow is reset to the slow start threshold^ and congestion avoidance is

entered. The fast recovery algorithm is working efficiently only for a single packet loss

in a window, but it does not recover very well from multiple packet losses. To cover

this case, some enhancements have been proposed, called New-Reno. The idea is that

the fast recovery phase is not left before all data that was outstanding at the beginning

of the fast recovery phase is acknowledged. New-Reno is described in detail in [19, 16].

2.1.3 TCP-Vegas

TCP-Vegas uses a different approach to estimate the available bandwidth in the net

work. It uses the difference between the actual flow rate and the estimated flow rate

^which has the half value of the congestion window before a duplicate ACK was discovered

2 BACKGROUND 12

to adjust the window size. The ACK scheme on the receiver side is not changed,

TCP-Vegas just requires changes to the sender side. The idea behind the Vegas al

gorithm is that as long the network is not congested, the estimated flow rate is ap

proximately the same as the actual flow rate. As soon as the network gets congested

the estimate and the actual flow rate will differ. This difference is used to update the

congestion window size in the following way:

CWTld 1 if [(rCitegxpected 6actual) ' R^1'minimwm\ ^ ^

cwnd = cwnd -I if [{rateexpected - raieactual) ' RTTminimum] > P (2.1)

cwnd else

with rate^pected = rateactuai = ' ^ '̂̂ minimum is the minimum

RTT, and RTTactuai is the actual (measured) RTT. Using equation 2.1 TCP-Vegas

is trying to keep at least a packets and at most P packets in transit. The advan

tage of TCP-Vegas is that, in contrast to TCP-Reno, it is not constantly probing for

bandwidth. Rather, it discovers new bandwidth as soon it is available by the differ

ences in the rates. Once it reaches the equilibrium, the window size does not change.

TCP-Vegas is not a biased algorithm and can also achieve a higher throughput than

TCP-Reno. Nevertheless, a major disadvantage ofTCP-Vegas is that it getsabout 50%

less bandwidth than TCP-Reno when it is competing with TCP-Reno for the same re

sources [18]. Since the window adjustment algorithm is based on the round trip times,

TCP-Vegas is sensitive to sudden changes of the RTT (e.g. rerouting). These issues in

TCP-Vegas were studied further in [20] and [18].

2.2 Random Early Detection (RED) Gateways

The Random Early Detection (RED) mechanism was proposed for packet switched

networks by S. Floyd and V. Jacobson in [4]. It was primarily designed for TCP

networks, but it also could be used in other packet or cell-based environments. In

contrast to drop-tail gateways, a RED gateway tries to detect congestion before the

2 BACKGROUND 13

gateway experiences a queue overflow. This early detection enables the gateway to

prevent multiple packet losses and globzd synchronization. A RED gateway can either

drop or mark a packet as congestion indication for the sources. Whether to mark or

to drop a packet depends on the protocol used by the sources. In case of TCP, the

gateway will drop the packets, since TCP infers congestion from packet drops. The

RED gateway drops packets randomly cis a function of the average queue size. The drop

algorithm is based on the average rather than on the instantaneous queue size to avoid a

bias against bursty traffic. By randomly dropping packets, RED limits synchronization

across multiple flows through the gateway. The RED algorithm makes it possible to

separate the congestion detection from the congestion notification. Another intention

was to penalize flows with an excessive share of bandwidth. The idea was that a flow

with a high rate has a higher number of packets arriving at the gateway and therefore

a higher probabiHty to see dropped packets in times of congestion. On the other hand,

a low bandwidth connection periodically sees packet drops, which prevents the flow

from reaching its fair share. This behavior is further studied in [21] by D. Lin and

R. Morris. They proposed a flow random early random drop mechanism to correct

this problem, but this requires a per flow accounting. The RED algorithm works

well in times of moderate congestion. In case of heavy congestion, the RED fails to

provide benefit to the network. This issue and enhancements to the RED algorithm are

studied in [22, 23, 24]. These papers propose adaptive RED algorithms that estimate

the number of active flows based on different information.

2.2.1 The RED Algorithm

The RED algorithm tries to keep the average queue length between two thresholds.

No packet is dropped while the average queue size is below the lower threshold. If the

average queue size exceeds the lower threshold and is still below the upper threshold,

incoming packets get dropped with the probabihty Pdrop, where pdrop is a function of

2 BACKGROUND 14

the average queue length. As soon as the average queue size is greater than the upper

threshold, every incoming packet is dropped. The two parts of the RED algorithm

are: (1) calculating the average queue length, and (2) calculating the packet dropping

probability. The first part determines the degree of burstiness allowed by the gateway

and the second part determines how often packets will be dropped. The goal is to

drop packets at roughly evenly spaced intervals in order to avoid biases and global syn

chronization, and also to drop packets with sufficient frequency to control the average

queue size.

The average queue length Qavg is an exponential weighted function of the instanta

neous queue size q with weight factor Wg

Qavg (1 ^9) Qavg Q (2*2)

which is calculated for every incoming packet. During idle times the RED algorithm

tries toestimate thenumber ofpackets that could have been transmitted by the gateway

in this idle period. For the first packet after an idle phase Qavg is calculated as if the

estimated number ofpackets had arrived to an empty queue during that period.

The computation of the dropping probabifity Pdrop is done inthe following two steps:

First, the 'raw' dropping probability Praw is calculated which increases linearly from 0

to Pmax while Qavg is increasing from mirith to maxth

Qavg ~ miritfi
Praw —Pmax ~ : (2.3)

maxth — fnirith

where mirith denotes the minimum threshold and maxth the maximum threshold. The

final dropping probability pdrop is calculated by

Praw

- I - count(2.4)

where count is the number of packets arrived since the last drop, pdrop is slowly
increasing with the number of non-dropped packets.

2 BACKGROUND 15

The RED algorithm combines the previous two parts as in Figure 2.1. Further

information on the implementation and a discussion on the parameters of the RED

algorithm can be found in [4].

for each packet arrival {

calculate the average queue size Qavg

if minth < Qavg < maxth {

calculate probability Pdrop

with probability Pdrop

drop the arriving packet

}

else if maxth < Qavg

drop the gurriving packet

}

Figure 2.1: RED algorithm

2.3 Explicit Congestion Notification (ECN)

TCP infers that the network is congested only from a packet drop, which is indicated

by retransmit timer timeouts or duplicate acknowledgements. This mechanism can be

an 'expensive' way to detect the presence of congestion. Explicit Congestion Notifica

tion enhances active queue management, like RED, that drops packets probabilistically

based on the queue state. In particular, when using ECN, packets axe marked rather

than dropped. This marking informs the source quickly about congestion, so that it

does not need to wait for duplicate acknowledgements (ACKs) or for a timeout. There

fore, delay sensitive connections will benefit from ECN. Packet drops and especially

multiple packet drops are reduced by the ECN mechanism.

S. Floyd and K. Ramakrishnan have proposed an extension to TCP/IP [2] to support

ECN. In general, TCP should respond to a single marked packet as it would to a lost

2 BACKGROUND 16

packet. That means TCP cuts down the congestion window cwnd by half and reduces

the slow start threshold ssthresh, with the exception that a marked packet should not

trigger a slow start in TCP-Tahoe and that TCP-Reno should not wait for roughly a

^RTT in the fast recovery phase. The next four sections summarize the modifications

to TCP needed to implement ECN.

2.3.1 ECN-TCP Header

ECN-TCP makes use of two bits in the header: one to indicate that the connection is

ECN capable (ECT-bit) and one to indicate congestion [CE-hit). If a connection uses

ECN for congestion control the ECT-bit is set to 1 in all packets, otherwise it is set

to 0. The CE-bit is set at a congested router^. How a gateway decides when to mark

packets is described in Section 2.3.2. A discussion on whether to use two bits or just

one bit can be found in [2] along with a detaileddescription of the position of the bits.

Furthermore, ECN introduces two new fiags In the reserved field of the TCP header.

The first flag is the ECN echo flag, which is set in an ACK by the receiver if an ECN

packet® has the CE-bit set. The second flag is the congestion window reduced (CWR)
flag. This flag is set by the sender after it has reduced it congestion window for any

reason (i.e. retransmission timer timeouts, duplicate ACKs, and ECN echo ACK®).

2.3.2 ECN-TCP Gateways

ECN-TCP uses RED gateways with a modified algorithmto set the CE-bit in the TCP

header. The underlying RED algorithm is described in Section 2.2. The difference is

that the gateway marks packets instead ofdropping them. A packet is always dropped

if the average queue length exceeds an upper threshold, even ifit is an ECN packet [3].

"^the terms gateway and router are used interchangeably in this report
®aji ECN packet is a packet ofa ECN capable connection (ECT-bit is set to 1)
®an ECN echo ACK is an ACK of a ECN capable connection with the ECN echo flag set to 1

2 BACKGROUND 17

2.3.3 ECN-TCP Sender

In the connection setup phase, the sender and receiver need to negotiate their ECN

capability. This is done by the sender setting the CWR and ECN echo flags in the

SYN packet and by the receiver setting the ECN echo flag in the SYN-ACK packet.

In the case that just the sender is ECN capable, the connection should not make use

of the ECT and CE bit. Otherwise, the ECT bit should be set by the sender in every

packet and must react to ECN echo ACKs.

The sender should treat an ECN echo ACK as a lost packet, but without the need

to retransmit the marked packet. Although this ACK acknowledges a data packet, it

does not increase the congestion window. If the sender receives multiple congestion

indications, including timeout, duplicate ACKs and ECN echo ACK, it should react

just once per RTT to the congestion indication. In the case that a retransmitted packet

is marked or dropped, the sender should react to congestion indication again. However,

it should not reduce the slow start threshold ssthresh if it has been reduced within the

last RTT. After the sender responds to a congestion indication, it sets the CWR flag

in the next data packet sent after the reduction of the window.

2.3.4 ECN-TCP Receiver

The receiver echoes the congestion indication of a CE packet^ back to the sender. After

it has received a CE packet, it sets the ECN echo flag of the subsequent ACK packet.

The receiver continues to set the echo flag imtil it receives a data packet with the

CWR flag set. This provides robustness in case an ACK packet with the echo flag set

gets lost.

CE packet is a packet of a ECN capable connection with the CE bit set to 1

2 BACKGROUND 18

2.4 Fairness

One of the most common fairness definitions is the max-min fairness [25]. A rate

vector Xis max-min fair if any rate Xi of flow i cannot be increased without decreasing

the rate xj of some flow j with xj <Xi. To date, no reliable decentralized algorithm is

known that achieves max-min fairness. Another definition of fairness, the proportional

fairness was defined by F. Kelly in [26]: A vector of rates is proportionally fair if it

is feasible (that is x > 0 and Ax < C)®, and if for any other feasible vector x*, the

aggregate of proportional changes is zero or negative:

E^<0 (2.5)

This report focuses only on a single bottleneck topology. For this case, the pro

portional fairness is equal to the max-min fairness. For a single bottleneck gateway,

fairness means that all connections through this gateway share the available bandwidth

equally. For the case that the flows do not share the bandwidth equally, D. Chiu and

R. Jain developed a fairness criterion to quantify the fairness [27, 17]. Fora bottleneck

link with n flows going through, the fairness index is

This index is 1 if all flows share the bandwidth equally and it is ^ ifone flow uses up

all the bandwidth. The fairness index is used in this report to measure and compare

the fairness of New-ECN TCP-Reno.

'C is the vector of link capacities, Aij = 1 if flow i uses resource j, Aij = 0 otherwise

3 DEVELOPING A FAIR WINDOW ALGORITHM USING ECN 19

3 Developing a Fair Window Algorithm Using ECN

ECN-TCP inherits the bias against connections with longer RTTs from TCP. We de

veloped a window control algorithm that corrects this bias and achieves a fair shar

ing of the available bandwidth by using the congestion information provided by the

ECN algorithm. We studied the behavior of a simplified network model with two

ECN TCP-Reno connections sharing one bottleneck router (see Figure 3.1). For this

model we wrote a simulation in Matlab and modified the TCP and ECN algorithm to

achieve an almost fair bandwidth sharing. The idea was to prevent the fast connection®

from opening its congestion window too quickly and to enable the slow connection to

open its window more aggressively. We experimented with a few algorithms based on

this idea and developed the New-ECN algorithm described in the next subsection.

TCP-Source

TCP-Source

RED Gateway
with ECN

Link 3

Figure 3.1: Simple model

3.1 New-ECN TCP-Reno Algorithm

TCP-Sink

for both sources

The New-ECN TCP-Reno algorithm tries to slow down a fast connection and gives

more bandwidth to a slow connection. The algorithm we developed modifies not only

the window size as a response to a marked packet^® but also the slope of the congestion

fast (slow) connection is a connection with a short (long) RTT
a marked packet means that the sender received a ECN echo ACK as a respond of the receivers

to a CE packet

3 DEVELOPING A FAIR WINDOW ALGORITHM USING EON 20

window increase. TCP increases the window size by for every received ACK,

which is roughly an increase by 1 every RTT. In New-ECN TCP-Reno this increase

is modified based on the type of the received ACK, an ECN echo ACK or a normal

ACK, New-ECN TCP-Reno uses TCP-Reno with ECN support as underlying TCP

code with the following enhancements.

While the TCP sender receives regular ACKs it increases its congestion window

using the formula

cwnd =cwnd H ^ •Syjnd (3.1)
cwnd ^ '

Thus, the window increases by roughly per RTT. In the connection setup phase

this value is initialized with S^und = 1 and it is not used in the slow start phase of

TCP. Hence, in the beginning ofa connection (until the flow sees a marked packet) the

increase is TCP like. After the first marked packet has been received, this value gets

updated once every RTT as a function of the round trip time^^:

Swnd —^ivnd d" P ' RTT"^ (3-2)

Swnd is only used in the congestion avoidance algorithm and does not affect the slow

start phase.

In case the sender receives a marked packet, it reduces the congestion window

cwnd —a-u,nd *cwnd (3.3)

along with the slow start threshold

ssthresh = 0!y,nd *ssthresh (3.4)

and decreases the slope of the window

^wnd ~ CCslp ' Sxund (3-5)

called window slope
^^In the implementation of the New-ECN algorithm in the network simulator 'ns', the smoothed

round trip time sRTT is used.

3 DEVELOPING A FAIR WINDOW ALGORITHM USING ECN 21

Similarly to normal ECN TCP, New-ECN TCP reacts at most once per RTT to a

congestion notification. In case of a loss, indicated by duplicate ACKs or a retransmit

timer timeout, New-ECN TCP-Reno reduces the congestion window cwnd by | and

also ,if Stund > 1> Svjnd by Furthermore, the TCP receiver should send out only one

ECN echo ACK after a received CE packetThe intuition behind this algorithm is

that a fast connection will most likely see more marks in the beginning of a connection

than a connection with a long RTT. Therefore, it reduces its window and its slope

more frequently. Additionally, the slow connection will increase its value of S^nd more

significantly, since it will not be repeatedly 'interrupted' in the increase by marked

packets. After some time both fiows will see roughly the same number of marks and

the congestion window will stabilize with some variance at a mean value. The following

simulation will show that the mean value of the window size is roughly linear in RTT.

The description in this section and implementation in the next sections demonstrates

the performance characteristics of New-ECN with the objective to achieve fairness

across multiple fiows sharing the same resources. Nevertheless, since the development of

the algorithm assumed rather simple networks, the parameters of the algorithm require

further refinement for the complex topologies found in the "real Internet world".

3.2 Simulation Results for the Simple Model

The following simulation results show that this algorithm can achieve a fair sharing of

bandwidth. In this simulation the following assumptions were made:

• constant packet size of 512 bytes

• constant round trip times

• TCP sources always have data to send

• the packet interarrival times at the gateway are uniformly distributed

• the queue size is large enough such that no packets get lost

^^This might be not robust enough. The number of ECN echo ACKs could be increased to a few
packets, say three. If too many ECN echo ACK are send out, the TCP sender might interpret them
as a new instant of congestion an reduces the window again.

3 DEVELOPING A FAIR WINDOW ALGORITHM USING EON 22

The parameters for New-ECN TCP and the RED gateway were:

• Pmax = 0.25 : RED gateway: maximum marking probability
• maxth = 20 : RED gateway: maximum threshold level (in packets)
• mirith = 10 : RED gateway: minimum threshold level (in packets)
• Wq = 0.002 : RED gateway: weighting factor for the queue average
• packetsize = 512 bytes

• OLwnd = 0.9 : window reduce factor

• OLsip = 0.7 : window slope reduce factor
• /? = 16 : window slope increase factor

• Link 1 —3: 5 Mbps

• Connection X: RTT = 40ms

• Connection Y: RTT = 20ms

The Figure 3.2 shows that the rates for each connection are almost the same. In this

figure, we can recognize one problem with this model: the connections are synchronized,

which is most likely an artifact caused by the implementation of the model. Computing

S.3
«

(3
IT

10 20

Rate X and Rate Y

30

Time [seconds]
40

Figure 3.2: Simple model: rates

Rate X, 40m5
Rate Y, 20ms

50 60

3 DEVELOPING A FAIR WINDOW ALGORITHM USING ECN 23

the fairness index for this simulation

F,=
(Ei=i ratCi)'

2 •EfLi ratei
0.99 (3.6)

demonstrates that the algorithm already achieves a good fair sharing. In Figure 3.3

the window size is traced over the time. Computing the average window size for both

60

50

40

'I'SO

20

10

10

Window of connection X and Y

20 30

Time [sseconds]
40

Window X. 40ms
Window Y, 20ms

50

Figure 3.3: Simple model: windows

60

connections, we get cwndx = 18.1 packets and cwndy = 10.4packets. The ratio of the

average window is slightly higher than the ratio of the RTT's. Thus, the mean window

size is almost linear in RTT. Looking at Figure 3.4 we can see that the bandwidth

allocation for each connection is stabilizing close to the fairness line.

This simulation shows some limitations of the implementation in Matlab. To gain

more confidence about the results and test the algorithm for other network topologies,

the New-ECN algorithmwas implemented in the UCB/LBL/VINT Network Simulator

"ns" [6].

3 DEVELOPING A FAIR WINDOW ALGORITHM USING ECN

ts
a

I 2.5

Rates of the connectionsx and y
— 1 1 • I r- 1

y'
yrates (x,y)

rate x+y=5Mbps
Fairness Line

\
y

y'

V

• /y

\

y^

y^

\

-

y

y

y \

y

y'
y'

v

y'
\

/ y
/ y

1 I 1 1 • I 1

\

1j
0.5 1 1-5 2 2.5 3 3.5 4 4.5 5 5.5

rate ofconnectionx [Mbps]

Figure 3.4: Simple model: rate trace

24

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 25

4 Verifying Results in the Network Simulator (NS)

4.1 Network Simulation Topology and Parameters

For verifying the results of the previous model, the following network topology with

one bottleneck gateway was used:

TCP-Source

TCP-Source

TCP-Source
RED Gateway

withECN Lnk7 TCP-Sink

for all sources

TCP-Source

TCP-Source

TCP-Source

Figure 4.1: Simulation topology

The number of flows varied from one to six. In all simulations, TCP-Reno was used

for the TCP flows and each flow was fed with an FTP traffic generator. The RED

gateway used the following parameters:

• Pmax = 0.1 : maximum marking probability

• maxth = 20 : maximum threshold level (in packets)

• mirith = 10 : minimum threshold level (in packets)

• Wq = 0.002 : weighting factor for the queue average

The New-ECN TCP-Reno used the following parameters

• packetsize = 512 bytes

• tcpTick- = 0.01 : TCP clock (in seconds)

• Oiwnd = 0.9 : window reduce factor

• OLsip = 0.9 : window slope reduce factor

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 26

• /? = 16 : window slope increase factor

• wndmax = 128 packets (64Kb) : maximum window size

4.2 Fairness of New-ECN

In this subsection, we look into the fairness of the New-ECN algorithm. We stud

ied the behavior of the New-ECN algorithm with multiple connections and compared

New-ECN TCP-Reno with ECN TCP-Reno.

4.2.1 4 New-ECN TCP-Reno Connections

Simulation Setup 1 This simulation uses 4 New-ECN TCP-Reno connection. The

parameters for the links can be found in Table 4.1. The four TCP-Reno flows with

the New-ECN algorithm are started at the times Os, 0.5s, Is, 1.5s (TCP 1, TCP 2,

TCP 3, TCP 4 respectively). These four flows compete for the bandwidth of the

gateway (link 7). The round trip delays for each flow can be found in Table 4.2.

Link 1 Link 2 Link 3 Link 4 Link 7

Delay 94ms 34ms 14ms 1ms 1ms

Bandwidth 10Mbps 10Mbps 10Mbps 10Mbps 10Mbps

Table 4.1: 4 New-ECN TCP-Reno flows: link parameter setup 1

TCP 1 TCP 2 TCP 3 TCP 4

Connection 81 ->D 82 D 83 -> D 84 ^ D

190ms 70ms 30ms 4ms

Table 4.2: 4 New-ECN TCP-Reno flows: round trip delays

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 27

Simulation Setup 2 This simulation is similar to the previous one, but it uses a

different link speed for link 7. The link parameters for this setup can be found in

Table 4.3. The minimums RTTs for the TCP connections are the same as for the

previous setup (Table 4.2).

Link 1 Link 2 Link 3 Link 4 Link 7

Delay 94ms 34ms 14ms 1ms 1ms

Bandwidth 10Mbps 10Mbps 10Mbps 10Mbps 2Mbps

Table 4.3: 4 New-ECN TCP-Reno flows: link parameter setup 2

Analysis of the Results To analyze the simulations we look at the ACK sequence

numbers. The sequence numbers of each connection are plotted over time in one graph.

The slope of the lines represents the rate of the flow. Hence, if two flows have the same

slope in the sequence number plot, they send at the same rate. Figure 4.2 shows the

ACK sequence number plot for the simulation setup 1. After a few seconds, the TCP

flows 1, 2 and 3 have similar slopes, so they send at similar rates. The fourth flow has

a slightly higher sending rate. Some experiments showed that it is possible to get the

fourth flow closer to the other flows by modifying the value of Pmax of the RED gateway.

The role of this parameter is further discussed later in this section. To evaluate the

performance of the algorithm we calculate the fairness index for this simulation:

F, = 2 « 0-99
'i-Zi=iratei

This confirms the result found with the simple model in the previous section.

(4.1)

Figure 4.3 shows the evolution of congestion window for each flow. The peak in

the beginning of the graph is caused by the slow start algorithm. After this phase,

all connections entered the congestion avoidance phase and the New-ECN algorithm is

activated. The graph also shows that the congestion window is oscillating after a few

seconds around an almost constant value and is staying close to the mean value. As

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

xlO

TCP 1:190ms

TCP 2:30ms

TCP 3:70ms

TCP 4:4ms

4 New-ECN TCP-Reno flows

30

Time (seconds]

28

Figure 4.2: 4 New-ECN TCP-Reno flows: ACK sequence number plot

Figure 4.4 shows the value of Srvnd is also converging to a nearly constant value. The

mean congestion window is plotted in the upper part of Figure 4.5. The ratio of the

mean congestion windows is roughly linear in the round trip time. In the lower part

of that flgure, the mean value of the window slope is shown. Comparison of the ratios

of these mean values reveals that these ratios are not linear in RTT, but proportional

to RTT" with 1 < a < 2. In Table 4.6 the difference between the ratio of the mean

(smoothed) RTT raised to a and the ratio ofthe measured mean value ofS^nd of two

flows i and j is calculated in order to find an approximation for a. From this Table it

appears that the value ofa is roughly |. Table 4.4 contains the mean values after 60

seconds and Table 4.5 the ratios of cwnd, sRTT^^, and S^uind-

Further simulations have shown that the maximum achievable fairness is bounded

by the maximum window size. If the maximum window size is set too small, a slow

connection can be prevented from claiming a fair share of the bandwidth.

^^sRTT is the smoothed round trip time, calculated every time when RTTmeaaured changes by
sRTT = Oi sRTT + (1 —a) RTTmeasured

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

4 New-ECN TCP-Reno flows

Time (seconds)

Figure 4.3: 4 New-ECN TCP-Reno flows: congestion window plot

4 New-ECN TCP-Reno flows

TCP 2

Time [seconds]

Figure 4.4: 4 New-ECN TCP-Reno flows: S^nd plot

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

10

4 New-ECN TCP-Reno flows

20

Time [seconds]

30 40
Time [seconds]

TCP1

TCP 2

TCP 3

TCP 4

TCP1

TCP 2

TCP 3
TCP 4

60

Figure 4.5: 4 New-ECN TCP-Reno flows: average window and Syjnd

TCP sRTT cwnd ^wnd

1 195ms 114.26 packets 7.627

2 75ms 46.86 packets 2.048

3 35ms 23.14 packets 0.758

4 15ms 8.21 packets 0.162

30

Table 4.4: 4 New-ECN TCP-Reno flows: mean values

Running the same simulation with a smaller link speed oflink 7 (Table 4.3) reveals

a certain sensitivity to the choice of Pmax- In Figure 4.6 it is obvious that there is

no longer a fair sharing of the bandwidth. The effect of the New-ECN algorithm is

minimal; it behaves similarly to the normal ECN algorithm. Changing the value of

Pmax to 0.2 we can again achieve a fair sharing. The sequence number plot for the

simulation with this value is shown in Figure 4.7.

As this simulation and the simulation with many flows in Section 4.2.3 show, the

valueofPmax is dependent on the gradeof congestion, namely on the number of connec-

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

sRTT ratio cwnd ratio ^wnd rSitio

TCPi : TCPa 13.02 13.91 47.22

TCP2 : TCPa 5.00 5.70 12.68

TCPz : TCPa 2.34 2.82 4.69

TCPi : TCP3 5.56 4.94 10.07

TCP2 : TCP3 2.14 2.02 2.7

TCPi : TCP2 2.60 2.44 3.72

Table 4.5: 4 New-ECN TCP-Reno flows: mean value ratios

a Ari,4(Q!) Ar2,4(Q!) A7'3,4(Q!) Ari,3(a) Ar2,3(Q:) Ari,2(Q:)

1.0 -34.20 -7.67 -2.35 -4.50 -0.56 -1.12

1.1 -30.39 -6.80 -2.14 -3.46 -0.40 -0.86

1.2 -25.46 -5.77 -1.92 -2.22 -0.21 -0.57

1.3 -19.10 -4.57 -1.67 -0.76 -0.02 -0.26

1.4 -10.87 -3.15 -1.40 0.99 0.19 0.09

1.5 -0.24 -1.49 -1.11 3.06 0.42 0.47

1.6 13.51 0.47 -0.79 5.51 0.67 0.89

1.7 31.28 2.77 -0.45 8.43 0.94 1.36

1.8 54.24 5.47 -0.07 11.89 1.22 1.87

1.9 83.93 8.63 0.34 16.00 1.53 2.43

2.0 122.30 12.36 0.79 20.89 1.87 3.05

Arij(a) :=
sRTT- ^wnd,i
sRTTj SwndJ

Table 4.6: 4 New-ECN TCP-Reno flows: approximation for a

31

(4.2)

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

14000

12000

10000

14000

12000

10000

4 New-ECN TCP-Reno, p =0.1

TCP 1:190fns

TCP 2:30ms

TCP 3:70ms

TCP 4:4ms

TCP 1:190ms

TCP 2:30ms

TCP 3:70ms

TCP 4:4ms

30
Time [seconds]

30

Time [seconds]

32

Figure 4.6: 4 TCP-Reno flows: ACK sequence numbers plot for setup 2, pmax = 0.1

tions and the capacity of the bottleneck link. One solution to this problem could be an

adaptive RED algorithm, which modifies the markingprobabilitybased on an estimate

of the number ofactive connections as proposed in [24], or based on the average queue

length as proposed in [22, 23]. In [23] it is shown that nosingle set ofRED parameters

will work well for different scenarios. If the value ofPmax is too small for a high load

(many active flows) the average queue size of the RED gateway will be close to the

upper threshold and often even exceed it. Therefore, most of the arriving packets are

dropped and the RED gateway starts to behave like a drop-tail gateway. On the other

hand, if the marking probability is too high, the connection will see too many marks

and 'overreact'. Experimenting with the value ofpmax showed that simulation setup 1

can achieve a fair sharing for ^ < Pmax < |. For p^ax > | we start seeing a bias
against fast connections. Fortunately, the sensitivity to Pmax is only moderate. The

interaction of a adaptive scheme as in [23] with New-ECN needs further study.

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

8000

'6000

4000

2000

14000

!- 12000
s
§ 10000
c

I 8000

i*
^ 4000
9
< 2000

TCP 1:190ms

TCP 2:30ms

TCP 3:70ms

TCP 4:4ms

TCP 1:190ms
TCP 2:30ms

TCP 3:70ms

TCP 4:4ms

10 20

30
Time [seconds]

30

Tmne [seconds]
40 50 60

33

Figure 4.7: 4 TCP-Reno flows: ACK sequence numbers plot for setup 2, Pmax = 0.2

4.2.2 4 New-ECN TCP-Reno vs. 4 EON TCP-Reno Connections

Simulation Setup In this simulation, two independent runs of four flows are com

pared. The first run is done with New-ECN TCP-Reno and the second with ECN ca

pable TCP-Reno. The setup parameters can be found in Table 4.1 and Table 4.2. The

TCP flows are started at the times Os, 0.5s, Is, 1.5s (TCP 1, TCP 2, TCP 3, TCP 4

respectively).

Analysis of the Results These simulations show when the benefit of the New-ECN

algorithm begins. The sequence number plots for both simulations can be found in

Figure 4.8. The upper part of this figure displays the complete plot for 60 seconds and

the lower part zooms into the first ten seconds. After a few seconds, the flow with the

longer RTT is sending faster than the flow with the same RTT without the New-ECN

algorithm. In contrast, the flow with the short RTT is slowed down. After roughly

ten seconds, all flows with the New-ECN algorithm are sending with a similar rate.

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 34

Comparing the fairness indices of the New-ECN with the normal EON algorithm

p _ (Ei=i rateif
^ I,New-ECN — -——3— 2 0.99 Fi,ecn =

(Ei=i ratei)'
4 • Ei=i ratei

0.48 (4.3)

shows that the fairness improved approximately by factor 2.

xlO

S4000

4ms RTT

^2000

New-ECN flows: solid, ECN flows: dashed

Time [seconds]

New-ECN flows: solid, ECN flows: dashed

30ms RTT . - • 30mS RTT

1B0ms RTT

4 5 6
Time [seconds]

RTT

TOms RTT

Figure 4.8: 4 New-ECN vs. 4 ECN TCP-Reno flows: ACK sequence number plot

4.2.3 Many New-ECN TCP-Reno Connections

Simulation Setup This simulation is done to test the New-ECN algorithm with

many flows. In particular, the algorithm is tested with 16 flows. Thenetwork topology

is similar to the one shown in Figure 4.1, but now 8 sources are connected to the gate

way (link 1 to link 8). The gateway is connected with one link to the TCP sink (link 9).

For each source, two connections are established with the TCP sink. The parameters

for the setup are given in Table 4.7 and Table 4.8. As earlier in Section 4.2.1 observed,

the parameter Pmax has a dependency on the grade of congestion. For this simulation

a value of pmax = 0.2 was needed to achieve a fair sharing of bandwidth.

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

Link 1 2 3 4 5 6 7 8 9

Delay [ms] 44 34 28 24 14 9 9 4 1

Bandwidth [Mbps] 10 10 10 10 10 10 10 10 10

Table 4.7: Many New-ECN TCP-Reno flows: link parameter

TCP 1,9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 15 8, 16

Flow source 51 52 53 54 55 56 57 58

Flow sink D D D D D D D D

KTTmin 90ms 70ms bSms 50ms 30ms 20ms 20ms 10ms

Start time 0.0s, 0.25s, 0.5s, 0.75s, 2.0s, 2.25s, 2.5s, 2.75s

4.0s 4.25s 4.5s 4.75s 6.0s 6.25s 6.5s 6.75s

Table 4.8: Many New-ECN TCP-Reno flows: round trip delays

14000

12000

10000

8000

i
3
tT

w 6000

4000

2000

16 New-ECN TCP-Reno connections

1 y

yy

.y

y

/
•0y

rVT / i
'

10 20 30 40 50

Time (seconds]
60 70 80

Figure 4.9: 16 New-ECN TCP-Reno connections: ACK sequence number plot

35

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 36

Analysis of the Results This simulation demonstrates that the algorithm also

works with many active flows. Figure 4.9 shows the sequence number plot for this

simulation. All flows have a similar slope in the sequence number plot and therefore

they have similar rates. These results are consistent with the results found earlier in

this section.

4.3 TCP / ECN-TCP Friendliness of New-ECN TCP-Reno

This subsection investigates the TCP and ECN-TCP friendliness of the New-ECN

algorithm. The majority of the Internet traflic is based on different versions of TCP

and a new protocol should not affect these established protocols. Therefore, the TCP

friendliness is an important issue to be studied for a new protocol in order to determine

if a protocol is deployable.

4.3.1 One New-ECN TCP-Reno vs. one ECN/non-ECN TCP-Reno Con

nection

Simulation Setup This simulation compares one New-ECN TCP-Reno flow with

one TCP-Reno flow with and without ECN support in independent runs. Each flow is

started at O.Os at TCP source 81 and connected with the TCP sink. The parameters

for the links are:

• Link 1 : 10Mbps, 14ms delay

• Link 7 : 6Mbps, 1ms delay

Analysis of the Results In Figure 4.10 the sequence number plots and the mean

rates are compared. We can see that the New-ECN algorithm performs slightly better

than the ECN extension to TCP and much better than simple TCP-Reno. ECN and

New-ECN TCP react before packets get lost, so these connections see fewer packets

dropped. Thus, ECN and New-ECN do not suffer from multiple losses and these

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 37

connections can achieve a better throughput. Additionally, New-ECN TCP can achieve

a slightly better performance than ECN because in "steady state" New-ECN has a

smaller variance in the window size, since it cuts the window with a^nd = 0.9. In

contrast, ECN TCP-Reno cuts the window by |.

S. Floyd and K. Fall defined TCP-friendly flows [28] as a flow with a arrival rate that

does not exceed the bandwidth of a corresponding TCP flow in the same environment.

They developed the following bound on the maximum sending rate

l.sTf-R

where B is the maximum packet size, p the packet drop rate and R the minimum RTT.

Calculating this bound for the New-ECN algorithm using the values from the previous

simulation

• packet size B = 512 bytes

• total packets sent: 72583 packets

• total dropped packets: 90 packets

• minimum RTT R = 30 ms

we get

ILi hit ^ ĉtnpackets fa ei\
= ^ • «4.75 Mhps « 1160^^ (4.5)New-ECN —

As we can see from Figure 4.10 the flows achieve the following mean rates

• TCP-Reno : 1077 packetsjs

• ECN TCP-Reno : 1157 packets/s

• New-ECN TCP-Reno : 1208 packets/s

The New-ECN flow is slightly higher than the TCP-friendliness bound. S. Floyd and

K. Fall derived the definition under the assumption that only packet drops are cause for

reducing the sending rate. In New-ECN and ECN in general, packet drops are reduced

in favor of marked packets. Thus, the bound in this form might not be applicable to

the New-ECN algorithm.

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

1200

1000
'ST
5 800

1
6 600
s
a

C 400

200

0
10

TCP friendliness of New-ECN TCP-Reno

Time [seconds]

Mean rate

20 30 40
Time [seconds]

Nnr-£CMrCI>

ECNTCP

TCP

60

38

Figure 4.10: One New-ECN flow vs. one ECN/non-ECN flow

4.3.2 TCP Friendliness of New-ECN

Simulation Setup In this simulation, the TCP friendliness is studied. Six flows are

competing for the bandwidth of a bottleneck gateway. Three of them are using the

New-ECN algorithm and the rest are using TCP-Reno without ECN support. The

parameters for this simulation can be found in Table 4.9 and Table 4.10. The flows

TCP 1, TCP 2, and TCP 3 are using the New-ECN algorithm and TCP 4, TCP 5,

and TCP 6 TCP-Reno without ECN. This simulation is compared with a simulation

with all six flows using TCP-Reno without ECN support.

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7

Delay 34ms 14ms 1ms 34ms 14ms 1ms 1ms

Bandwidth 10M6ps 10M6ps 10M6ps 10M6ps 10Mbps 10Mbps lOMfeps

Table 4.9: TCP / ECN-TCP friendliness: link parameter

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

TCP 1 TCP 2 TCP 3 TCP 4 TCP 5 TCP 6

Connection 81 D 82 -> D 83 D 84 ^ D 85 D 86

RTTmin 70ms 30ms 4ms 70ms 30ms 4ms

Start time 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s

Table 4.10: TCP / ECN-TCP friendliness; round trip delays

39

Analysis of the Results This simulation studies the effect of New-ECN flows to

normal TCP-Reno flows. Figure 4.11 shows the sequence number plots for this test.

The upper part of this figure shows the sequence number plot for the mixed (New-ECN

and TCP-Reno) flows and the lower part for the TCP-Reno only simulation. We can

see that the three New-ECN flows have a slight effect on the TCP-Reno flows. The fast

connection loses some bandwidth in favor of the New-ECN flows. After a few seconds,

the three New-ECN flows try to share the bandwidth almost equally, whereas the three

TCP-Reno flows claim the bandwidth in the expected biased way. The New-ECN flows

see roughly half the capacity of the bottleneck link and share it in a fair way.

New-ECN flows: solid. TCP-Reno (lows: dashedxlO

j84
E
3
C

« 3

»
3

a-2

Time (seconds]

1

- .

"

TCP 6

TCP 3

TCP 2
TCP1

TCP 5

TCP 4

10 20 30

Time [seconds]
40 50 60

Figure 4.11: TCP friendliness: ACK sequence number plot

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS)

4.3.3 ECN-TCP Friendliness of New-ECN

40

Simulation Setup This simulation is similar to the previous one. Now the ECN-

TCP friendliness is studied. Again, six flows are competing for the bandwidth of a

bottleneck gateway. This time three of them are using the New-ECN algorithm and

the remaining are using the TCP-Reno with ECN support. The parameters for this

simulation are the same and can be found in Table 4.9 and Table 4.10. The flows

TCP 1, TCP 2, and TCP 3 are using the New-ECN algorithm and TCP 4, TCP 5,

and TCP 6 are using the ECN algorithm. This simulation is then compared with all

six flows using TCP-Reno with ECN support.

xlO New-ECN flows: solid, ECN flows: dasfied

TCP 6
I 1 1 r 1

: : ; ; :

'

i

0 10 20 30

Time (seconds]
40 SO 60

xlO*
1

ECN TCP-Reno

20 30 40
Time (seconds]

TCP 3
TCP 2

TCP1

TCPS

TCP 4

TCPS

TCP 6

TCPS
TCP 2

TCP 4
TCP1

Figure 4.12: ECN-TCP friendliness: ACK sequence number plot

Analysis of the Results From Figure 4.12 we can see that the three New-ECN

flows do not signiflcantly reduce the sending rate of the three ECN flows. The upper

part of this figure shows the sequence number plot for the mixed (New-ECN and

ECN) simulation and the lower part for the ECN only simulation. As in the previous

simulation, the three New-ECN flows try again to share the bandwidth equally. The

4 VERIFYING RESULTS IN THE NETWORK SIMULATOR (NS) 41

bandwidth sharing of the ECN flows is also biased.

These simulations show that the New-ECN algorithm performs well even in a mixed

protocol environment. Furthermore, it has no considerable effect on flows of other

versions of TCP. In the TCP and ECN TCP friendliness simulations the New-ECN

flows share roughly half the capacity of the bottleneck link a fair way.

5 SUMMARY 42

5 Summary

5.1 Conclusions and Future Work

This report introduced an enhancement called New-ECN to TCP-Reno with EON

support. The aim of this algorithm was to achieve a fair sharing of available bandwidth

of a bottleneck router. The performance and behavior of this enhancement have been

studied for the single bottleneck case. With a variety of simulation scenarios, we

have demonstrated that the New-ECN algorithm achieves a fair sharing of bandwidth.

Furthermore, the simulations have shown that the New-ECN TCP-Reno algorithm is

TCP friendly and ECN TCP friendly while competing with them for bandwidth. It

does not affect other TCP-Reno (with or without ECN) flows. Additionally, New-ECN

also performed well with many flows going through one bottleneck router. This report

also revealed a sensitivity of the New-ECN algorithm to the marking probability pmax

at the RED gateway. We suggested an adaptive mechanism for the value of Pmax as

a solution to this problem. The interaction and performance of New-ECN with an

adaptive RED algorithm need further study.

So far, we have focused our research on the single bottleneck case. In the 'real

Internet world' a network topology with multiple congested gateways is more likely.

Therefore, we need to extend the studyto thiscase. Preliminary results with a topology

similarly to the one used in [5] have shown that the New-ECN algorithm provides also

some benefit. It performs better than a TCP-Reno connection with and without ECN

support in the same topology. Interestingly, in our simulation, the TCP-Reno flow

without ECN support performs better than a flow with ECN. New-ECN does not have

this problem in the multiple congested gateway simulation. These results need further

research to verify a benefit of the New-ECN algorithm.

Intuitively, we believe that the New-ECN algorithm has an advantage over the con

stant increase algorithm [5], since it tries to 'flnd' the right window increase value in

an adaptive way.

5 SUMMARY 43

The parameters used for the New-ECN algorithm were chosen initially arbitrarily.

They were refined in many simulation runs, but we do not claim that the values of

the parameters we used in this report are the optimal set of parameters. To find an

optimal set, the New-ECN algorithm needs further research. An important field of

future research is the development of a stochastic model for the New-ECN algorithm.

This model would make the understanding and the analysis of the dependency on the

parameters much easier.

Altogether, this report shows the potential benefit that the New-ECN algorithm can

bring to TCP flows. Although we have run many simulations with different scenarios,

further testing is required. One question is what tests should a new protocol pass

before it can be deployed in the network.

5.2 Acknowledgements

First, I would like to thank Prof. Jean Walrand for being my advisor during my research

project. The guidance and support I got from him helped me finding my way through

this project. His enthusiasm and intuition about networking have been very inspiring.

I appreciate that he had time for regular meetings although he was on an industrial

leave. I would also like to thank Matt Siler for helping me getting started in my research

and for his technical help. Thanks to Richard La for the few very helpful discussions

on the New-ECN algorithm.

I thank my officemates, Yogesh Bhumralkar, Lawrence Ip, Rene Vidal and Kiran,

for the technical advice, especially for the help with I^TJeK. They made my stay at the

University of California at Berkeley very interesting and unforgettable.

The research was supported in part by SBC Communications, a MICRO grant

from the State of California, and Odyssia Systems. Tilo Hamann was supported by a

scholarship provided by the Ditze-Foundation ofthe Technical University ofHamburg-

Harburg.

REFERENCES 44

References

[1] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer Communi

cation Review, 24(5):8-23, October 1994.

[2] S. Floyd and K. Ramakrishnan. A Proposal to add Explicit Congestion Notifica

tion (ECN) to IP. RFC 248I, January 1999.

[3] S. Floyd, D. Black, and K. Ramakrishnan. IPsec Interactions with ECN. Internet-

Draft: draft-ipsec-ecn-OO.txt, April 1999.

[4] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion

Avoidance. IEEE/ACM Transactions on Networking, l(4):pp.397-413, August

1993.

[5] S. Floyd. Connection with Multiple Congested Gateways in Packet-Switched

Networks, Part 1: One-Way Traffic. ACM Computer Communication Review,

21(5):30-47, October 1991.

[6] The UCB/LBNL/VINT Network Simulator, http://www-mash.cs.berkeley.edu/ns.

[7] V. Jacobson. Congestion Avoidance and Control. Pore. Computer Communication

Review, 18(4):314-329, August 1998.

[8] V. Jacobson. Modified TCP Congestion Avoidance Algorithm. Technical report,

End-2-End-Interest MaiUng List, April 1990.

[9] L. Zhang and D. Clark. Oscillating Behavior of Network Traffic: A Case Study

Simulation. Internetworking: Research and Experience, 1(2):101-112, December

1990.

[10] T. Lakshman and U. Madhow. The Performance of TCP/IP for Networks with

High Bandwidth-Delay Products and Random Loss. IEEE/ACM Transactions on

Networking, 5(3):336-350, June 1997.

REFERENCES 45

[11] H. Krishnan. AnalyzingExplicit Congestion Notification (EON) Benefits for TCP.

Master's thesis, UCLA, 1998.

[12] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. RFC 2001, January 1997.

[13] W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[14] G. Wright and W.Stevens. TCP/IP Illustrated, Volume 2: The Implementation.

Addison-Wesley, 1995.

[15] M. AUman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581,

April 1999.

[16] S. Floyd and T. Henderson. The NewReno Modification to TCP's FastRecovery

Algorithm. RFC 2582, April 1999.

[17] D . Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms for Congestion

Avoidance in Computer Networks. Journal of Computer Networks and ISDN,

17(1):1-14, June 1989.

[18] J. Mo, R. La, V. Anantharam, and J. Walrand. Analysis and Comparison of TCP

Reno and Vegas. INFOCOM 99, March 1999.

[19] J. Hoe. Start-up Dynamics of TCP's Congestion Control and Avoidance Schemes.

Master's thesis, MIT, June 1995.

[20] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidance on a

Global Internet. IEEE Journal on Selected Areas in Communications, 13(8):1465-

1480, October 1995.

[21] D. Lin and R. Morris. Dynamics of Random Early Detection. ACM Computer

Communication Review, 27(4):127-137, October 1997.

REFERENCES 46

[22] W. Feng, D. Kandlur, D. Saha, and K. Shin. Techniques for Eliminating Packet

Loss in Congested TCP/IP Networks. Technical report, CSE-TR-349-97, U. Michi

gan, 1997.

[23] W. Feng, D. Kandlur, D. Saha, and K. Shin. ASelf-Configuring RED Gateway.

INFOCOM 99, March 1999.

[24] T. Ott, T. Lakshman, and L. Wang. SRED: Stabilized RED. INFOCOM 99,

March 1999.

[25] D. Bersekas and R. Gallager. Data Networks. Prentice-Hall, Englwood Cliffs, N.J.,
1992.

[26] F. Kelly. Charging and Rate Control for Elastic Traffic. European Transactions

on Telecommunications, 8(l):33-37, 1997.

[27] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Dis

crimination for Resources Allocation in Shared Systems. Technical report, DEC

TR-301, Digital Equipment Corporation, Littleton, MA, September 1984.

[28] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion Control in the

Internet. To appear in IEEE/ACM Transactions on Networking, August 1999.

[29] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP. Computer Communication Review, 26(3):5-21, July 1996.

[30] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gateways.
Internetworking: Research and Experience, 3(3):115-156, September 1992.

[31] R. Gibbens and F. Kelly. Resource Pricing and the Evolution of Congestion
Control. Automatica, 35, 1999.

REFERENCES 47

[32] T. Henderson, E. Sahouria, S. McCanne, and R. Katz. On Improving the Fairness

of TCP Congestion Avoidance. Proceedings of IEEE Globecom '98, November

1998.

[33] F. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication Networks:

Shadow Prices, Proportional Fairness and Stability. Journal of the Operational

Research Society, 49(3):237-252, March 1998.

[34] D. Tan. Rate Control and User Behaviour in Communication Networks. 4.ih IN

FORMS Telecommunications Conference, 1998.

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION

A Matlab-File for the Simple Model Simulation

clear;

'/, Basic peurameters
Packetsize=512*8;

t_incr=10e-3;
MaxSteps=500;
RTTx=40e-3;
RTTy=20e-3;
MazRateX°5e6;
MazRateY-5e6;

7, New-ECN TCP parameters
alpha_slp=0.70;
alpha.vnd-0.9;
beta°16;

% TCP connection parameters
% Connection x

MaxIncrX=t_ incr/RTTx;
MaxCwndX=MaxRateX4<RTTx/Packets ize
xwO=i;

ssthreshX=65535*8/Packetsize;
counterx=l;

jx=l;
xw(l)=xwO;
DelayX=floor(RTTx/t_incr);
FlagX=l;
S_wnd_X=l;

% Connection y
MaxIncrY=t_incr/RTTy;
MaxCwndY=MiucRateY*RTTy/Packets ize
ywO=l;
ssthreshY=65535*8/Packetsize;
coimterysi;

jy=ij
yw(l)=ywO;
DelayY=floor(RTTy/t_incr);
FlagY=l;
S_wnd.Y=l;

% Outgoing link
c=5e6;

Servicetime-l/(c/Packetsize);

% RED pzurameters;
HaxTh=20;

MinTh=10;
MaxP=0.25;
wq=0.002;
Cl=HaxP/(MaxTh-MinTh);

C2=(MaxP*MinTh)/(MaxTh-MinTh);
q_i_time=0;
count=-l;

p.drop=0;
R=r2uid(l,l);

queue (DsO;
avgqueue(l)=0;

% Other parameters
HandlingPacket=-l;

% packet size [bytes]
7 time increasing factor [s]
% number of cycles
7i round trip time of connection x
7. round trip time of connection y
7i line rate connection x [bps]
7t line rate connection y [bps]

[s]

[s]

reduce factor for the slope of the window
7 reduce factor for the window

7. window slope increase factor

% window increment per t.incr
; 7 maximum window size
% initial window
% slow start threshold

% variable for handling slow start window evolution
7< variable for handling slow start window evolution
1, initialize window vector

variable for handling the delay of the first packets
% flag, set to zero after the first received mark
7, window slope

7 window increment per t.incr
: 7 maximum window size

7 initial window

7 slow start threshold

7 variable for hiuidling slow start window evolution
7 variable for handling slow steirt window evolution
7 initialize window vector

7 variable for handling the delay of the first packets
7 flug, set to zero after the first received mark
7 window slope

7 outgoing link rate of the bottleneck router [bps]
7 service time for one packet

7 upper threshold
7 lower threshold

7 maximum mjurking probability
7 queue weight factor for calculating the avg. queue size
7 values needed to calculate p.drop
7 values needed to calculate p.drop
7 queue idle time
7 packets since last marked packet
7 current marking probability
7 a random number, uniform on [0,1]
7 instantaneous queue size
7 average queue size

7 which packet is handled by the router: 0: X, 1:Y

48

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION

npx=0; '/, number of packets received on connection x [p]
npysQ; %number of packets received on connection y [p]
npmx(l)=0: 'U number of marked packets for connection x [p]
npmy(l)sO: %number of marked packets for connection y [p]
MaxServedPackets=(c/Packetsize)<*t_incr; X max number of packets that c be served during one step

49

CarryX=0;
CarryY=0;

X Init log variables
npx_log(l)=npx;
npy_log(l)=npy:
maxksx_log_log(1)=npmx(1):
m«u:ksy_log(l)=npmy(l);
npt_log(l)=0;
qi_log(l)=0;
mmx(1)=xw(1)*Packetsize/RTTx;
mmy (i) =yw(1) i-Packets ize/RTTy:
S.wnd_X.log(i)=l;
S_wnd_Y_log(l)=l;

X variable used to calculate the right number of packets at the router
X variable used to calculate the right number of packets at the router

X log number of packets received on connection x [p]
X log number of packets received on connection y [p]
X log msurks received on x
X log marks received on y
X log number of packets arrived at the router
X log queue idle time
X mejoi rate for connection x

X mean rate for connection y
X log vindov slope connection x
X log window slope connection x

Time_Now_X=0; X variable to handle the increase of the slope
Time_Now_X=0; X variable to handle the increase of the slope
Last_Time_X=0; X variable to handle the increase of the slope
Time_Now_Y=0; X variable to handle the increase of the slope
Last_Time_Y=6; X variable to handle the increase of the slope
Time_Now_2_X=0; X variable to handle the decrease of the slope and window
Last_Time_2_X=0; X variable to handle the decrease of the slope and window
Time_Now_2_Y=0; X variable to handle the decrease of the slope and window
Last_Time_2_Y=0; X variable to handle the decrease of the slope and window

X Start loop
for k=2:HaxSteps

X updating TCP parameters for connection X, window based
if (k-DelayX<l)

X marks not effective yet
if (xw(k-l)<ssthreshX)

X slow start?

xw(k)=min(MaxCwndX,xw(jx)+(xw(jx)*2-xw(jx))»MaxIncrX*counterx);
if (counterx>=l/MaxIncrX)

jx=k;
counterx-1;

else

counterx=:counterx+l;

end;

else

X congestion avoidance
xw(k)^in(MaxCwndX.xw(k-l)-«-MaxIncrX);

end;

else

X marks axe effective now
if ((npmx(k-DelayX)==0))

X no marks received

npmx(k-DelayX)=0; X reset marks
Time_Now_X = k »t_incr;
if ((FlagX<l)&(Tiffle_Now_X >= (Last_Time_X+RTTx))) X increase slope once per RTT

S_wnd_X=S_wnd_X+beta*RTTx"2;
Last.Time.X = Time_Now_X;

end;

if (xw(k-l}<ssthreshX)

X slow start

xw(k)=min(MaxCwndX,xw(jx)+(xw(jx)»2-xw(jx))*HaxIncrX*counterx*S_wnd_X):
if (counterx>=l/M€ucIncrX)

jx=k; counterx=:l;
else

counterxscounterx+1;

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION 50

end;

else

'/. congestion avoidance
xw(k}smin(MaxCvndX,xw(k-l)+MaxlncrX*S_wnd_X);

end;

else 7. marks received

% update window and threshold
Last_Time_X = k^t.incr;

Time_Now_2_X=k»t_incr;

if (FlagX—l) % first marks received
FlagX=0;
xw(k)=xw(k-l)*(alpha_wnd);
Last_Time_2_X=Time_Now_2_X;

else

if (Time_Now_2_X >= (Last_Time_2_X+RTTx)) X update window once per RTT
S_wnd_X=S_wnd_X'*(alpha_slp); 7« decrease slope
xw(k)=xw(k-l)* (alpha.wnd) ; decrease window
ssthreshXsmax(xw(k)/2,l); X decrease ssthresh
Last_Time_2_X=Time_Now_2_X;

else

xw(k)=xw(k-l);
end;

end;

npmx(k'-DelayX)=0; X reset marks
end;

end;

Xlog variables for connection x
ssthreshX_log(k)=ssthreshX; X log ssthresh
x(k)sxw(k)*Packetsize/RTTx; X calculate corresponding rate
S_wnd_X_log(k)sS_wnd_X; X log window slope
mmx(k)=mean(x); X log mean rate

X updating TCP pEirameters for connection y, window based
if (k-Delayy<l)

X meorks not effective yet
if (yw(k-l)<ssthreshY)

X slow start

yw(k)=min(MaxCwndY,yw(jy)+(yw(jy)»2-yw(jy))*MaxIncrY»countery);
if (countery>=l/MaxIncrY)

jy=k; countery=l;
else

countery=co\mtery+l;
end;

else

X congestion avoidance
yw(k)=min(MaxCwndY,yw(k-l)+MaxIncrY);

end;

else

X marks are effective now
if ((npmy(k-DelayY)==0))

X no meaks received

npmy(k-DelayY)=0; X reset marks
Time_Now_Y = k »t_incr;
if ((FlagY<l)ft(Time_Now_Y >= (Last.Time.Y+RTTy))) X increase slope once per RTT

S_wnd_Y=S_wnd_Y+beta*RTTy"2;
Last_Time_Y = Time_Now_Y;

end;

if (yw(k-l)<ssthreshY)
X slow start

yw(k)=min(MaxCwndY,yw(jy)+(yw(jy)»2-yw(jy))»MaxIncrY*countery»S_wnd_Y);
if (countery>=l/HaxIncrY)

jy=k;
countery=l;

else

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION

countery=countery+l;
end;

else

'^congestion avoidance
yw(k)=min(MaxCwndY,yw(k-l)+MaiIncrY*S_wnd_y);

end;

else '/, marks received

*/. update window and threshold
La8t_Time_Y=k*t_incr;
Time_Now_2_Y=k»t_incr;
if (FlagY~l) % first marks received

FlagY=0;
yw(k)=yw(k-l)*(2J.pha_wnd);
Last_Time_2_Y=Time_Now_2_Y;

else

if (Time_Now_2_Y >= (Last_Time_2_Y+RTTy)) % update window once per RTT
S_wnd_Y-S_wnd_Y<*'(alpha_slp); '/, decrease slope
yw(k)=yw(k-l)'i'(alpha_wnd);
ssthreshY=max(yw(k)/2,l);
Last_Time_2_Y=Time_Now_2_Y;

else

yw(k)=yw(k-l);
end;

end;
npmy(k-DelayY)=0; */, reset marks

end;

end;

%log variables for connection
ssthreshY_log(k)sssthreshY;
y(k)=yw(k)»Packetsize/RTTy;
S_wnd_Y_log(k)=S_wnd_Y;
mmy(k)=mean(y);

'/. decrease window

% decrease ssthresh

% log ssthresh
% calculate corresponding rate
1, log window slope
% log mean rate

% log queue idle time

51

qi_log(k)=q_i_time;

% queue management:
TemplXsfloor(zw(k))♦t_incr/RTTx;

TemplY=floor(yw(k))"»t_incr/RTTy;
CarryXsCarryX+modClemplX,1);
C£a:ryY=C€u:ryY+mod(Teiiq>lY,l);
Temp2Xsfloor(CarryX);
Temp2Y=floor(CarryY);
CarryX=C2u:ryX-Temp2X;
CarryY=CarryY-Temp2Y;
npx-floor(TemplX)+Temp2X;
npy=floor(TemplY)+Temp2Y;
npt=npx+npy;
npt_log(k)=npt;
npx_log(k)=npx;
npy-loE(j£)=npy;
qi_log(k)=q_i_time;
ServedPackets=0;

'/. Calculating the number of arrived packets
*/. Cedculating the number of arrived packets

Calculating the number of arrived packets
% Calculating the number of arrived packets
% Calculating the number of arrived packets
'/. Calculating the number of arrived packets
'/ Calculating the number of arrived packets
'/. Calculating the number of arrived packets
'/, number of packets arrived from X during one step
'/. number of packets arrived from Y during one step
'/. total number of packets arrived during one step
'/. log total number of packets arrived during one step
'/. log number of packets arrived during one step for connection x
% log number of packets arrived during one step for connection y
% log queue idle time

if (npt>0)
ServePerRun(k)s(MaxServedPackets/npt);
countto=(l/ServePerRun(k));

else

ServePerRun(k)=0;
end;

*/, number of packets served from the queue in each
'/, run of while

'/, serving queue for no arrival
if (npt==0)

if (queue(k-l)==0)
q_i_time=q_i_time+t_incr; */. setting queue idle time for the avg calculations

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION 52

queue(k)-0;
else

if (queue (k-l)>floor(MaxServedPackets)) */, serve queue
queue(k)=queue(k~l)-floor(MazServedPackets);

else

queue(k)-0;
end;

end;

if (queue(k)>0) V, queue is not empty
avgqueue(k)=avgqueue(k-1)+wq»(queue(k)-avgqueue(k-1));

else % queue is empty
avgqueue(k)= (l-wq)"(q_i_time/Servicetime)*avgqueue(k-l);

end;

end;

npmz(k)-0; npmy(k)=0; % reset marks for each connection
NoX=0; NoY=0;

QCarry=0;

% some calculation in order to handle packets in some kind of random way
if (npt>0)

if (npx==0)
NoX=l;

else

if (npy==0)
NoY=l;

else

Ratio=npx/npy;
if (Ratio>ol)

helplsfloor(Ratio);
QCeamry»mod(Ratio,l);

else

helpl=floord/Ratio);
QCarrysmod(l/Ratio,l):

end;

end;

end;

end;

X handling packets at the queue
while ((npx+npy)>0)

% decide which packet is placed in the queue
if (NoX==l)

HandlingPacketsi;
else

if (NoY==l)

HandlingPacketoQ;
else

if (Ratio>Bl)

if ((helpl>ssl)ft(npx>0))
HandlingPacket=0;
helplshelpl-l;

else

HemdlingPacket-l;
helplsfloor(Ratio+QCarry);
QCarry=mod(Ratio+QCarry,1):

end;

else

if ((helpl>=l)ft(npy>0))
HandlingPacketsi;
helplshelpl-l;

else

HandlingPacketsO;
helpi^loor((l/Ratio)+QC£urry);

A MATLAB-FILE FOR THE SIMPLE MODEL SIMULATION 53

QCarry=mod((l/Ratio)+QCarry,l);
end;

end;

end;

end;

queue(k)-queue(k-l)+l; % increase queue
% calculating average queuesize
if (queue(k)>0) % queue is not empty

avgqueue(k)=avgqueue(k-1)+wq*(queue(k)-avgqueue(k-1));
q_i_time=0;

else */, queue is empty
avgqueue(k)s (l-wq)"(q_i_time/Servicetime)•avgqueue(k-1);

end;

7, check for marking
if ((avgqueue(k)>-MinTh)ft(avgqueue(k)<MaxTh)} 7 queue size is between the thresholds

countscount+1;

p_drop=Cl*avgqueue(k)-C2; % calculating the marking probability
if ((count>0)ft(count>=(R/p_drop)))

if (HandlingPacket~0)
npmx(k)«npmx(k)+l; 7 memrk packet x

end;

if (HandlingPacket--i)
npmy(k)=npmy(k)+l; 7. m2irk packet y

end;

count-0;

end;

if (count~0) R-retnd(l,l);end;
else

if (avgqueue(k)>=MeLxTh) % queue size is beyond the upper threshold
if (HandlingPacketssQ)

npmz(k)=npmx(k)-i-l; 7. mark packet x
end;

if (HandlingPackets°l)
npmy(k)=npmy(k)+l; % mark packet y

end;

count=-l;

else

count=-l;

end;

end;

% serving queue
if ((queue(k)>0)ft(ServedPackets<s((MaxServedPackets)))}

queue(k)smax(0,queue(k)-(ServePerRun(k)));
ServedPackets=ServedPackets-f(ServePerRun(k));

end;

% reducing number of unserved packets left
if (HandlingPacketssO) npxsnpx-l;end;
if (HandlingPacketsKsi) npyBnpy-l;end;

end;

% log variables
ServedPerRun(k)«ServePerRun(k)•npt;
marksx_log(k)snpmx(k);
mea'ksy_log_log(k)=npmy(k);

end; 7 of for

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 54

B Modified Network Simulator TCP Source Code

The following subsections describe the changes to the source code to implement the

New-ECN TCP-Reno algorithm in the ns Network Simulator distribution V.21h5. Each

subsection shows only the modified function in the particular file. In the function the

modified parts are framed by //-begin and //-end . To use the New-ECN

algorithm, the TCP option windowOption. and the new option windowOptionS- are

set to the value 8. The first option tells the source to use the New-ECN algorithm

and the second changes the TCP-sink behavior for New-ECN. Additionally, the ECN

option in sources and gateways needs to be turned on.

B.l TCP.H

At the start of the file the block

#define CLOSE_SSTHRESH_HALF

#define CLOSE_CWND_HALF

#define CLOSE.CWND^RESTART

#define CLOSE.CWND.INIT

#define CLOSE_CWND_ONE

#define CLOSE_SSTHRESH_HALVE

#define CLOSE_CWND_HALVE

is extended by

#define CLOSE_CWND_NEW

#define CLOSE_SSTHRESH_NEW

0x00000001

0x00000002

0x00000004

0x00000008

0x00000010

0x00000020

0x00000040

0x00000080

0x00000100

In class TcpAgent : public Agent the following declarations are added in the

protected part:

int First_Time_; 11 flag, set to one after the first received mark
double Last_Time_; // variable for handling window slope increase
double Slope_Window_ ; // window slope
double Mark_Received_; // flag, set to one for a received mark

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 55

B.2 TCP.CC

TcpAgent::TcpAgent() : Agent(PT.TCP),
t_seqno_(0), t_rtt_(0), t_srtt_(0), t_rttvar_(0),
t_backoff_(0), ts_peer_(0),
rtx_tiffler_(this), delsnd_timer_(this), burstsnd_timer_(this) ,
dttpacks_(0), cur8eq_(0), highest.ack.(0), cvnd_(0), ssthresb_(0),
count_(0), fcnt_(0), rtt_active_(0), rtt_seq_(-l), rtt_ts_(0.0),
meUcseq.CO), cong_action_(0), ecn_bur8t_(0), ecn_backoff_(0),
ect_(0), restart.bugfix_(l), closed_(0), nrexmit_(0),
//-begin
Slope_Window_(l), La8t_Time_(0), Fir8t_Tinie_(0), Hau:k_Received_(0)
//-end

// Defaults for bound variables should be set in ns-default.tel.

bindCwindow.", ftwnd.);
bindC'windowInit.", ftwnd.init.);
bindC'windowInitOption.", ftwnd.init.option.);
bind.boolC'syn.", ftsyn.);
bind("windowOption.", ftwnd.option.);
bindC'windowConstant.", ftwnd.const.);
bindC'windowThresh.", ftwnd.th.);
bind.booK"delay.growth.", ftdelay.growth.);
bindC'overhead.", ftoverhead.);
bindC'tcpTick.", fttcp.tick.);
bind.boolC'ecn.", ftecn.);
bind.boolC'old.ecn.", ftold.ecn.);
bindC'eln.", fteln.);
bind("eln.rxmit.thresh.", fteln.rxmit.thresh.);
bindC'packetSize.", ftsize.);
bindC'tcpip.base.hdr.size.", fttcpip.base.hdr.size.);
bind.booK"bugFix."> ftbug.fix_);
bind.booK"slow.start.restart.", ftslow.start.restart.);
bind.boolC'restart.bugfix.", ftrestart.bugfix.);
bind.booK"timestamps."• ftts.option.);
bindC'maxburst.", ftmaxbiirst.);

bindC'maxcwnd.", ftmeixcwnd.);
bindC'maxrto.", ftmaxrto.) ;
bindC'srtt.init.", ftsrtt.init.);
bindC'rttveur.init.", ftrttvar.init.);
bindC'rtxcur.init.", ftrtxcur.init.);
bindC'T.SRTT.BITS", ftT.SRTT.BITS);
bind("T.RTTVAR.BITS", ftT.RTTVAR.BITS);
bind("rttvar.exp.", ftrttvar.exp.);

bittdC'dupacks.", ftdupacks.);
bindC'seqno.", ftcurseq.);
bind("t.seqno_", ftt.seqno.);
bindC'ack.", fthighest.ack.);
bind("cwnd.", ftcwnd.);

bind("awnd.", ftawnd.};
bindC'ssthresh.", ftssthresh.};
bindC'rtt.", ftt.rtt.);
bindC'srtt.", ftt.srtt.);

bindC'rttvar.", ftt.rttvar.);
bindC'backoff.", ftt.backoff.);
bindC'maxseq.", ftmaxseq.);

//-begin
bindC'slope.window.",ftSlope.Window.); // window slope
bind("last.time.",ftLast.Time.); // vturiable for handling window slope increase
bind("first.time.",ftFirst.Time.): // flag, set to one erfter the first received mark
bindC'mark.",ftMark.Received.): // flag, set to one for a received mark

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 56

//-end-

#ifdef OFF.HDR

bind("off_ip_", &off_ip_);
bind("off_tcp_", ftoff_tcp_);

#else

off_ip_ = hdr.ip::offset();
off_tcp_ = bdr.tcp::offset 0 ;

#endif

bittdC'ndatapack.", &ndatapack.);
bind("ndatabytes_", ftndatabytes.);
bind("nackpack_", ftnackpack.);
bind("nrexmit_", ftnrexmit.);
bind("nrexmitpack.", &nrexmitpack.);
bind("nrexmitbytes_", ftnrexmitbytes.);
bind_bool("trace_all_oneline_", &trace_all_oneline_);
bind_bool("nain_tracevar_", ftnam.tracevar.);

// reset used for dynamically created agent
reset();

TcpAgent::traceVar(TracedVar* v) {
double cuirtime;

Scheduler^ s = Scheduler::inst€Uice();
char wrk[500];
int n;

//-begin
curtime = fts ? s.clockO : 0;
if (!strcmp(v->naBe(), "cwnd.") 11 !strcmp(v->name(), "maxrto_"))

// added trace for Slope_Windov_
sprintf(wrk,"*/.-8.8f 7,-2d •/.-2d 7.-2d •/,-2d 7,s 7.-6.3f 7.-8.8f", curtime, addr_/256, addr_7.256,

dst_/256, dst_7.256, v->name(), double(*((TracedDouble*} v)),double(Slope_Window_));
else if (!strcmp(v->naffle(), "rtt_"))

// added trace for First_Time_
sprintf(wrk,"7.-8.8f 7.-2d 7.-2d 7.-2d 7.-2d 7.s 7.-6.3f FT=7.f". curtime, addr_/256, addr_7.256,

dst_/256, dst_7.256, v->name(), int(*((TracedInt*) v))*tcp_tick_, double(First_Time_));
else if (!strcmp(v->name(), "srtt_"))

sprintf(wrk,"7.-8.8f 7.-2d 7.-2d 7.-2d 7.-2d 7.s 7.-6.3f", curtime, addr_/256, addr_7.256,
dst_/2S6, dst_7.256, v->name(), (int(#((TracedInt») v)) » T_SRTT_BITS)*tcp_tick_);

else if (!strcmp(v->naffle(), "rttvar."))
sprintf(wrk,"7.-8.8f 7.-2d 7.-2d 7.-2d 7.-2d 7.s 7.-6.3f", curtime, addr_/256, addr_7.256,

dst_/256, dst_7.256, v->name(), int(*((TracedInt*) v))*tcp_tick_/4.0);
else

// added trace for Meurk.Received.
sprintf (wrk, "7.-8.8f 7.-2d 7.-2d 7.-2d 7.-2d 7.s 7.d 7.-8.8f", curtime, addr_/256, addr_7.256,

dst_/256, dst_7256, v->name(), int(*((TracedInt*) v)),double(Mark_Received_));
//-end

n - strlen(wrk);
wrk[n] = '\n';
urk[n+l] = 0;
if (channel,)

(void)Tcl_Hrite(channel_, wrk, n+1);
wrkCn] = 0;
return;

void TcpAgent:: reset () -(
rtt_init();
/«<XXX lookup variables */

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 57

dupacks. - 0;
curseq_ = 0;
set_initial_window();

//-begin
Last_Time_=0.0; // initial values
Slope_Window_=1.0; // initial values
First_Tiine_=0; // initial values
Mark_Received_=0.0; // initial values
//-end

t_seqno_ = 0;
maxseq. = -1;
last.ack. = -1;

highest.ack. = -1;
ssthresh. = int(vnd.):
wnd.restart. = 1•;

awnd. = imd_init_ / 2.0;
recover. = 0;

closed. = 0;

last.cwnd.action. = 0;

boot.time. = Random::uniformCtcp.tick.);

void TcpAgent::opencwnd()
//-begin
double Time.Now;

double f;

//-end

if (cvnd. < ssthresh.) {
/* slow-start (exponential) */
cund. += 1;

} else -(
/* linesur */

switch (wnd.option.)
case 0:

if (++count. >= cwnd.) {
count. = 0;

++cwnd.;

}
break:

case 1:

/* This is the standard algorithm. */
cwnd. += 1 / cwnd.;

break;

case 2:

/* These are window increase algorithms
* for experimental purposes only. */

f = (t.srtt. » T.SRTT.BITS) * tcp.tick.;
f *= f;

f *= wnd.const.;

f += fcnt.;

if (f > cwnd.) •{
fcnt. = 0;

++cwnd.;

} else

fcnt. = f;

break;

case 3:

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 58

f = awnd_;

f *= f;

f *= wnd_con8t_;

f += fcnt_;

if (f > cwnd.) •(
fcnt_ = 0;

++cwnd_;

} else
fcnt_ = f;

break;

case 4:

f = avnd_;

f *= wnd_const_;

f += fciit_;

if (f > cwnd_) {
fcnt_ = 0;

++cwnd_;

} else
fcat_ = f;

break;

case 5:

f = (t_3rtt_ » T_SRTT_BITS) * tcp_tick_;
f *= «nd_const_:

f += fcnt_;

if (f > cwnd_) {
fcnt_ = 0;

++cwnd_;

} else

fcnt_ = f;

break;

//-begin
case 8:

/* New-ECN TCP algorithm */
Time_Now = Scheduler::instance(},clock(); 11 get time
f = (t_srtt_ » T.SRTT.BITS) * tcp_tick_; // convert time to [s]
// increase slope once per RTT
if (((Time_Now - f) >= Last_Time_) kft (First_Time_)) {

Slope_Window_ = (Slope_Window_) + (16)» pow(f,2) ;
Last_Time_ = Time_Now;

}
cwnd_+=((l/cund_)*Slope_Window_); // increase window
break;

//-end

default:

ftifdef notdef

/♦XXX*/

error("illegal window option Zd", wnd_option_);
#endif

abort();

}

}
// if mazcwnd. is set (nonzero), make it the cwnd limit
if (maxcwnd. kk (int(cwnd_) > maxcwnd.))

cwnd_ s maxcwnd.;

return;

void TcpAgent::slowdown(int how) {

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 59

int halfwin - int(vindow() / 2);

//-begin
double factorwnd; // alpha.wnd
double factorslope; // edpha.slp
factoTvnd=0.9;

factorslope=0.9;
int ss»llvin = int(tfindov() * factorund); // reduced value of the congestion window
//-end- —

if (how & CLOSE.SSTHRESH.HALF)

ssthresh. - halfwin;

if (how & CLOSE.SSTHRESH.NEW)
ssthresh. = int(ssthresh. * factorwnd):

if (ssthresh. < 2}
ssthresh. - 2;

if (how & CLOSE.CWND.HALF)

cwnd. = halfwin;
else if (how k CLOSE.CWND.RESTART) <

cwnd. = int(wnd.restart.);

}
else if (how ft CLOSE.CWND.INIT) {

cwnd. = int(wnd.init.);

}
else if (how ft CLOSE.CWND.ONE) {

cwnd. = 1;

}
//-begin
else if (how ft CLOSE.CWND.NEW) •(// reduce window (mark received)

if (smallwin>=0)

cwnd. c smallwin;

}
if (how ft (CLOSE.CWND.HALFICLOSE.CWND.NEW)) { // reduce window slope (mark received)

if (First.Time. ftft (wnd.option. == 8))
Slope.Hindow. - Slope.Hindow. * factorslope;

>
if (how ft (CLOSE.CWND.INITICLOSE.CWND.RESTARTICLOSE.CWND.ONE)) {

11 reduce window after a lost packet
if (First.Time. ftft (imd.option. 8) ftft (Slope.Window.>1.0))

Slope.Window. = Slope.Window. ♦0.5 ;
}
if (how ft (CLOSE.CWND.HALFICLOSE.CWND.RESTARTICLOSE.CWND.INITICLOSE.CWND.ONEICLOSE.CWND.NEW))

cong.action. = TRUE;

Last.Time. s Scheduler::instance().clockO; // Time now, reset increase
//-end

fcnt. = count. = 0;

void TcpAgent: :ecn(int seqno) -(
if (seqno > recover. 11

last.cwnd.action. == CWND.ACTION.TIMEOUTII(wnd.option. ==7)) {
if (wnd.option.!=7) {

recover. = maxseq_;//-(int((maxseq. - highest_ack_)^0.75));
last.cwnd.action. = CWND.ACTION.ECN;

}
if (cwnd. <= 1,0) {
if (ecn.backoff.)

rtt.backoff0;
else ecn.backoff. = 1;

> else ecn.backoff. = 0;
//-begin

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 60

if (vnd_option_ = 8) {
slowdown(CLOSE_CHND.NEW|CLOSE_SSTHRESH_NEW);
First_Time_=l;

>
else -C

slowdovm(CLOSE_CWND_HALFICLOSE.SSTHRESH.HALF);
}

//-end--

}

void TcpAgent::recv_newack_helper(Packet •pkt) {
//hdr.tcp *tcph = hdr.tcp::access(pkt);
nevack(pkt);

//-begin
if (und_option_ == 8) {

if (!ect_ II !hdr_flags::access(pkt)->ecnecho()) •(
opencvndO;

}
}
else •(

/* If "old_ecn", this is not the first ACK carrying ECN-Echo
* after a period of ACKs without ECN-Echo.
* Therefore, open the congestion window. */

if (!ect_ II !hdr.flags::access(pkt)->ecnecho() || (old_ecn_ Aft ecn.bvirst.)) {
opencwndO;

>

>
//-end

if (ect_) •[
if (!hdr_flags::access(pkt)->ecnecho())

ecn_backoff_ = 0;

if (!ecn_burst_ kk hdr.flags::access(pkt)->ecnecho())
ecn_burst_ = TRUE;

else if (ecn_burst_ I hdr.flags::access(pkt)->ecnecho()}
ecn_burst_ = FALSE;

}

if (!ect_ Aft hdr.flags::access(pkt)->ecnecho() AA
!hdr.flags::access(pkt}->cong.action())
ect. = 1;

/* if the connection is done, call finish() */
if ((highest.ack. >= curseq_-l) AA !closed.) {

closed. = 1;

finishO;

}

void TcpAgent::recv(Packet *pkt. Handler*) {
hdr.tcp Ktcph = hdr.tcp::access(pkt);

#ifdef notdef

if (pkt->type. != PT.ACK) {
Tel::instance() .evalf("*/,s error \"received non-ack\"",

nameO);
Packet::free(pkt);
return;

>
#endif

++nackpack.;
ts.peer. = tcph->ts();

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 61

int ecnecho » hdr.flags::access(pkt}->ecnecho();

//-begin
if (ecnecho kk ecn_) {

ecn(tcph->8eqno());
Mark_Receivod_=l; 11 trace marks

} else if (.'ecnecho kk ecn.) {
Mark_Received_=0;

}
//-end

recv_helper(pkt);
/* grow cvnd and check if the connection is done */
if (tcph->8eqno() > last_ack_) {

recv_newack_helper(pkt);
if (last_ack_ == 0 delay_growth_) {

cwnd_ = initial.windowO;

>
} else if (tcph->seqno() = last_ack_) {

if (hdr.flags::access(pkt)->eln_ kk eln_) {
tcp_eln(pkt);
return;

}
if (++dupacks_ == NUMDUPACKS) {

dupack.actionO;
}

>
Packet::free(pkt);
/»

* Try to send more data.

*/
send_much(0, 0, muburst.);

B.3 TCP-RENO.CC

void RenoTcpAgent::recv(Packet *pkt, Handler*) {
hdr.tcp *tcph = (hdr_tcp*)pkt->access(off_tcp_);

#ifdef notdef

if (pkt->type_ != PT_ACK) {
fprintf(stderr,

"ns: confiuration error: tcp received non-ack\n");
ezit(l);

}
#endif

++nackpack_;
ts_peer_ = tcph->ts();

//-begin
if (((hdr_flags*)pkt->access(off_flags_))->ecnecho() kk ecn_) {

ecn(tcph->seqno()):
Mark_Received_=l; 11 trace meurks

} else if (!((hdr_flags*)pkt->access(off_flags_))->ecnecho() kk ecn_) {
Mark_Receivod_=0;

>
//-end

recv_helper(pkt);
if (tcph->seqno() > last_ack_) {

dupwnd. = 0;

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 62

recv_newack_helper(pkt);
if (last_ack_ 0 delay_growth_) {

cwnd. s initial.windowO:

}
} else if (tcph-*>seqno() == last_ack_) {

if (((hdr_flag8«)pkt->access(off_flags_))->eln_ kk eln_) {
tcp.elnCpkt);
return;

>
if (++dupacks_ == NUMDUPACKS) {

dupack_action();
dupund. = NUMDUPACKS;

} else if (dupacks. > NUMDUPACKS) {
++dupwnd_; // fast recovery

}

}
Packet::free(pkt);

#ifdef notyet
if (trace.)

plotO ;
#endif

/*
* Try to send more data

*/

>

if (dupacks. == 0 11 dupacks. > NUMDUPACKS - 1)
send.much(0, 0, maxburst.);

B.4 TCP-SINK.CC

void TcpSink::ack(Packet* opkt) {
Packet* npkt s allocpktO;
double now = Scheduler::instance().clockO;
hdr.flags *sf;

hdr.tcp *otcp = hdr.tcp::access(opkt);
hdr.tcp *ntcp s hdr.tcp::access(npkt);
ntcp->seqno() = acker.->Seqno();
ntcp->ts() = now;

if (ts.echo.bugfix.) /» TCP/IP Illustrated, Vol. 2, pg. 870 */
ntcp->ts.echo() = acker.->ts.to.echo();

else

ntcp->ts.echo() = otcp->ts();

hdr.ip* oip = (hdr.ip»)opkt->access(off_ip.);
hdr.ip* nip = (hdr.ip»)npkt->acces8(off.ip.);
nip->flowidO = oip->flowidO ;

hdr.flags* of = (hdr.flag8*)opkt->access(off.flags.);
hdr.flags* nf = (hdr.flag8*)npkt->access(off.flags.);
if (save. != NULL)

sf = (hdr.flags*)save.->access(off.flags.):
// Look at delayed packet being acked.

if ((save. != NULL kk sf->cong_action()) II of->cong.action())
11 Sender has responsed to congestion.
acker.->update.ecn.unacked(0);

if ((save. != NULL kk sf->ect() kk sf->ce()) 11

B MODIFIED NETWORK SIMULATOR TCP SOURCE CODE 63

(of->ect() ftfi: of->ce()))
// New report of congestion.
acker.->update_ecn_unacked(l);

//-begin
if (wnd.option. == 8) {

if ((save. != NULL ftft sf->ect() bb sf->ce()) || (of->ect() bb of->ce()))
// Set EcnEcho bit.
nf->ecnecho() = 1;

}
else {

if ((save. != NULL bb sf->ect()) || of->ect())
11 Set EcnEcho bit.

nf->ecnecho() = acker.->ecn.unacked();

}
//-end

if (!of->ect() bb of->ecnecho() 11

(save. != NULL bb !sf->ect() bb sf->ecnecho()))
11 This is the negotiation for ECN-capability.
11 We are not checking for of->cong.action() also.
11 In this respect, this does not conform to the
11 specifications in the internet draft

nf->ecnecho() = 1;
acker.->append.ack((hdr.cinn*)npkt->access(off.cmn.),

ntcp, otcp->seqno());
add.to.ack(npkt);
8end(npkt, 0);

B.5 NS-DEFAULT.TCL

The following lines have been added to the ns-default.tcl file. These lines set the

default values for the new parameters of New-ECN.

Agent/TCP set slope_window_ 1.0
Agent/TCP set mark. 0.0
Agent/TCP set last_time_ 0.0
Agent/TCP set first.time. 0
Agent/TCPSink set windowOptionS. 1

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 64

C TCL Scripts for the Simulations in Section 4

To activate the New-ECN algorithm for TCP flows in the network simulator, the fol

lowing parameters need to be set:

• Agent/TCP: windowOption.

— 8: New-ECN window algorithm
— 1: standard TCP window algorithm

• Agent/TCP: ecn-

— 1: ECN and New-ECN support for TCP flows
— 0: no ECN or New-ECN support for TCP flows

• Agent/TCPSink: windowOptionS-

— 8: New-ECN window algorithm
— 1: standard TCP window algorithm

• queue: setbit-

— 1: mark packets if they are from a ECN or New-ECN flow

— 0: drop packets

All of the ns simulation scripts are using the following function to create data flies from

the trace-files for a Matlab analysis:

create data from the trace-files for a Matlab anzilysis
proc makeplot number -C

set avkCodeCund •(

•c
if ($6 == "cwnd_") {

print $1 » "temp.t.cwnd":
print $7 » "tomp.v.cwnd";

> }

}
set awkCodeSrtt {

{
if ($6 == "srtt.") {

print $1 » "temp.t.srtt";
print $7 » "temp.v.srtt";

} }
}
set awkCodeAck •(

•C
if ($6 == "max8eq_") •{

print $1 » "temp.t.ack";
print $7 » "temp.v.ack";

} }
>
set awkCodeMark {

{
if ($6 == "ack_") -C

print $8 » "temp.m.ack";

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

} }

}
set awkCodeSD {

if ($6 == "cwnd_") {
print $1 » "temp.t.sd";
print $8 » "temp.v.sd";

} }
}

set cwndt [open "tcp$nmber.tcund" w]
set srttt [open "tcp$number.tsrtt" w]
set ackt [open "tcp$number.tack" w]
set sdft [open "tcp$nunber.tsd" w]
set mark [open "tcpSnnmber.vmiurk" w]

set cwndv [open "tcp$number.vcwnd" w]
set srttv [open "tcp$nufflber.vsrtt" v]
set ackv [open "tcp$number.vack" v]
set sdfv [open "tcp$number.vsd" w]

set ct "temp.t.cvnd"
set St "temp.t.srtt"
set at "temp.t.ack"
set am "temp.m.ack"
set sdv "temp.v.sd"

set cv "temp.v.cwnd"
set sv "temp.v.srtt"
set av "temp.v.ack"
set sdt "temp.t.sd"

exec rm

exec rm

exec rm

exec rm

exec rm

exec rm

exec rm

exec rm

exec rm

-f $am

-f $ct

-f $st

-f $at

-f $sdt

-f $cv

-f $sv

-f $av

-f $8dv

exec

exec

exec

exec

exec

exec

exec

exec

exec

touch

touch

touch

touch

touch

touch

touch

touch

touch

$am

$ct

$st

$at

$sdt

$cv

$sv

Sav

$sdv

exec awk $awkCodeCwnd "tcp$number.tr"
exec awk $avkCodeSD "tcp$number.tr"
exec awk $awkCodeSrtt "tcp$number.tr"
exec awk $awkCodeAck "tcp$number.tr"
exec awk $awkCodeMuk "tcp$number.tr"

exec cat $ct >Q $cimdt

exec cat $st >0 $srttt

exec cat $at >0 $ackt

exec cat $am >0 $mark

exec cat $sdv >0 $sdfv

exec cat $cv >4) $cwndv

exec cat $sv >0 $srttv

exec cat $av >Q $ackv

exec cat $sdt >Q $sdft

close $cwndt

close $srttt

close $ackt

close $sdft

close $mark

close $cwndv

close $srttv

close $ackv

close $sdfv

C.l 4 New-ECN TCP-Reno Connections

The next script was used for the simulation setup 1 in Section 4.2.1:

9 ns simulator script for section 4.2.1: 4 New-ECN TCP-Reno connections
Setup 1: 4 New-ECN TCP-Reno connections, Link 7: 10Mbps, 1ms
set ns [new Simulator]

create trace-files and define the trace psorameters

65

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

proc tracestart O {
global ns Itrace 2trace Strace 4trace tcpl tcp2 tcp3 tcp4

set Itrace [open tcpl.tr v]
set Strace [open tcp3.tr w]

set 2trace [open tcp2.tr w]
set 4trace [open tcp4.tr w]

$tcpl tracevar cwnd_ ; $tcpl tracevar srtt_

$tcpl tracevar ack_ ; $tcpl tracevu mzLxseq.

$tcp2 traceveor cwnd_ ; $tcp2 tracevar srtt_

$tcp2 tracevar ack_ ; $tcp2 tracevar maxseq.

$tcp3 tracevar cwnd_ ; $tcp3 tracevu srtt_

$tcp3 tracevar ack_ ; $tcp3 tracevar mtucseq.

$tcp4 tracevar cwnd_ ; $tcp4 tracevar srtt_

$tcp4 tracevar ack_ ; $tcp4 tracevsu: maxseq.

$tcpl attach $ltrace ; $tcp2 attach $2trace

CO
Oe

O

attach $3trace ; $tcp4 attach $4trace

9 create data from the trace-file for a Matlab ansilysis
proc makeplot number •(

9 end the simulation

proc finish •[} <
global ns Itrace 2trace Strace 4trace

9 close trace-files

$ns flush-trace

close $ltrace ; close $2trace
close $3trace ; close $4trace

9 create Matlab data

makeplot "1" ; makeplot
makeplot "3" ; makeplot

exit 0

"2"

"4"

9 Create network topology:
9 create nodes:

set node.Crl) [$ns node]
set node_(d) [$ns node]
set node_(sl) [$ns node]
set node_(s2) [$ns node]
set node_(s3} [$ns node]
set node_(s4} [$ns node]

9 create links

$ns duplex-link $node_(si) $node_(rl) 10Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(rl) 10Mb 14ms DropTail
$ns duplex-link $node_(s3) $node_(rl) 10Mb 34ms DropTail
$ns duplex-link $node_(s4) $node_(rl) 10Mb 94ms DropTail

9 setup RED router
$ns duplex-link $node_(rl) $node_(d) 10Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl) 500

9 setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

set RED router pemrameters

66

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 67

set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit_ true
$redq set linterm. 10
$redq set thresh. 10
$redq set maixthresh. 20
$redq set q.veight. 0.002

set general TCP parameters
Agent/TCP set tcpTick. 0.01
Agent/TCP set vindowOption. 8
Agent/TCPSink set windovOptionS. 8

create TCP connections and set individued parameters
set tcpl C$ns create-connection TCP/Reno $node_(sl) TCPSink $node_(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set packetSize. 512

set tcp2 C$ns create-connection TCP/Reno $node.(s2} TCPSink $node.(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(s3) TCPSink $node.(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set packetSize. 512

set tcp4 C$ns create-connection TCP/Reno $node.(s4} TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set packetSize. 512

attach ftp traffic generators
set ftpl C$tcpl attach-app FTP] ; set ftp2 [$tcp2 attach-app FTP]
set ftp3 [$tcp3 attach-app FTP] ; set ftp4 [$tcp4 attach-app FTP]

schedule events

$ns at 0.0 "tracestart"

$ns at 1.5 "$ftpl start"
$ns at 1.0 "$ftp2 start"
$ns at 0.5 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 60.0 "finish"

start simulation

$ns run

The next script was used for the simulation setup 2 with 4 New-ECN TCP-Reno

flows in Section 4.2.1. One simulation was done with Pmax = 0.1 {$redq set linternL.

10) and one withp^ax = 0.2 {$redq set lintenn. 5).

ns simulator script for section 4.2.1: 4 New-ECN TCP-Reno connections
Setup 2; 4 New-ECN TCP-Reno connections, Link 7: 2Mbps, 1ms
set ns [new Simulator]

create trace-files and define the trace psurameters
proc tracestart •[} {

global ns Itrace 2trace 3trace 4trace tcpl tcp2 tcp3 tcp4

set Itrace [open tcpl.tr w] ; set 2trace [open tcp2,tr w]

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

set Strace [open tcp3.tr v] ; set 4trace [open tcp4.tr w]

$tcpl
$tcpl
$tcp2
$tcp2
$tcp3
$tcp3
$tcp4
$tcp4
$tcpl
$tcp3

tracevtur cvnd_

tracevar ack_

tracevar cwnd_

tracevar ack_

tracevar cwnd_

tracevar ack_

tracevar cwnd_

tracevar ack_

attach $ltrace

attach $3trace

$tcpl
$tcpl
$tcp2
$tcp2
$tcp3
$tcp3
$tcp4
$tcp4
$tcp2
$tcp4

tracevar srtt_

tracevar maxseq.

tracevar srtt_

tracevar maxseq.

tracevar srtt_

tracevar maxseq.

tracevar srtt_

tracevar museq.

attach $2trace

attach $4trace

create data from the trace-file for a Hatlab analysis
proc makeplot number -C

end the simulation

proc finish {} •£
global ns Itrace 2trace 3trace 4trace

close trace-files

$ns flush-trace

close $ltrace ; close $2trace
close $3trace ; close $4trace

9 create Hatlab data

makeplot "1" ; makeplot "2"
makeplot "3" ; makeplot "4"

exit 0

9 Create network topology:
9 create nodes:

set node_(rl) [$ns node]
set node_(d} [$ns node]
set node_(sl) C$ns node]
set node.(82) C$ns node]

set node_(s3) [$ns node]
set node.(s4) [$ns node]

9 create links

$ns duplex-link $node_(sl} $node_(ri) 10Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(rl) 10Mb 14ms DropTail
$ns duplex-link $node_(s3) $node_(rl) lOHb 34ms DropTail
$ns duplex-link $node_(s4) $node_(rl) 10Mb 94ms DropTail

9 setup RED router
$ns duplex-link $node_(rl) $node_(d} 2Mb 1ms RED
$ns queue-limit $node_Crl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl) 500

9 setup for "nam"
$n8 duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

9 set RED router parameters
set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit. true

9 one simulation was done with "set linterm. 10" (p_max=0.1)
9 and one with "set linterm. 5" (p.max=0.2)

$redq set linterm. 10

68

C TCL SCFUPTS FOR THE SIMULATIONS IN SECTION 4 69

$redq set thresh. 10
$redq set maxthresh. 20
$redq set q_weight. 0.002

set general TCP parameters
Agent/TCP set tcpTick. 0.01
Agent/TCP set vindowOption. 8
Agent/TCPSink set windovOptionS. 8

S create TCP connections and set individual parameters
set tcpl [$ns create-connection TCP/Reno $node.(sl) TCPSink $node.(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node.(s2) TCPSink $node_(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(83) TCPSink $node.(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set packetSize. 512

set tcp4 [$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set packetSize. 512

S attach ftp traffic generators
set ftpl [$tcpl attach-app FTP] ; set ftp2 [$tcp2 attach-app FTP]
set ftp3 C$tcp3 attach-app FTP] ; set ftp4 C$tcp4 attach-app FTP]

schedule events

$ns at 0.0 "tracestart"

$ns at 1.5 "Sftpl start"
$ns at 1.0 "$ftp2 start"
$ns at 0.5 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 60.0 "finish"

start simulation

Ins run

The next script was used for the simulation setup 2 with 4 ECN TCP-Reno flows in

Section 4.2.1. One simulation was done with pmax = 0.1 ($redq set linterm- 10)

and one withprnai = 0.2 {$redq set linterm. 5),

ns simulator script for section 4.2.1: 4 New-ECN TCP-Reno connections
Setup 2: 4 ECN TCP-Reno connections. Link 7: 2Mbps, 1ms
set ns [new Simulator]

create trace-files and define the trace puameters
proc tracestart {} {

globsil ns Itrace 2trace Strace 4trace tcpl tcp2 tcp3 tcp4

set Itrace [open tcpl.tr w] ; set 2trace [open tcp2.tr w]
set Strace [open tcp3.tr w] ; set 4trace [open tcp4.tr w]

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 70

$tcpl tracevar cwnd_ : $tcpl tracevar srtt_

$tcpl tracevar ack_ ;; $tcpl tracevar maxseq_

$tcp2 tracevar cwnd_ ; $tcp2 tracevar 8rtt_

$tcp2 tracevar ack_ i; $tcp2 tracevar maxseq.

$tcp3 tracevar cwnd_ ; $tcp3 tracevar srtt_

$tcp3 tracevar ack_ :; $tcp3 tracevar maxseq_

$tcp4 tracevar cund_ : $tcp4 tracevar srtt_

$tcp4 tracevu ack_ ;; $tcp4 tracevar maxseq.

$tcpl attach $Itrace : $tcp2 attach $2trace

}

$tcp3 attach $3trace ; $tcp4 attach $4trace

» create data from the trace-•file for a Matlab analysis
proc makeplot

1

number {

« end the simulation

proc finish O {
global ns Itrace 2trace 3trace 4trace

close trace-files

$ns flush-trace

close $ltrace ; close $2trace
close $3trace ; close $4trace

create Matlab data

makeplot "1" ; oakeplot "2"
makeplot "3" ; makeplot "4"

exit 0

msdceplot "1"
makeplot "2"
medceplot "3"
mzikeplot "4"

exit 0

Create network topology:
create nodes:

set node_(rl) [$ns node]
set node_(d) C$ns node]
set node_(sl) [$ns node]
set node_(s2) [$ns node]

set node_(s3) C$ns node]
set node_(s4) C$ns node]

create links

$ns duplex-link $node_(sl) $node_(rl) lOHb 1ms DropTail
$ns duplex-link $node_(s2) $node_(rl) 10Mb 14ms DropTail
$ns duplex-link $node_(s3) $node_(rl) 10Mb 34ms DropTail
$ns duplex-link $node_(s4) $node_(rl) 10Mb 94ms DropTail

setup RED router
$ns duplex-link $node_Crl) $node_(d) 2Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node.(rl) 500

setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 71

$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

set RED router parameters
set redq CC$ns link $node_(rl) $node_(d)] queue]
$redq set setbit. true

one simulation was done with "set linterm_ 10" (p_max=0.1)
and one with "set linterm. 5" (p_m2ucss0.2)

$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q.weight. 0.002

ft set genered TCP parameters
Agent/TCP set tcpTick. 0.01
Agent/TCP set windowOption. 1
Agent/TCPSink set vindowOptionS. 1

ft create TCP connections «md set individual parameters
set tcpl C$ns create-cozmection TCP/Reno $node_(sl) TCPSink $node_(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node.(s2) TCPSink $node_(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(s3) TCPSink $node_(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set packetSize. 512

set tcp4 C$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set packetSize. 512

ft attach ftp traffic generators
set ftpl [$tcpl attach-app FTP]
set ftp2 [$tcp2 attach-app FTP]
set ftp3 C$tcp3 attach-app FTP]
set ftp4 C$tcp4 attach-app FTP]

ft schedule events

$ns at 0.0 "tracestart"

$ns at 1.5 "$ftpl start"
$ns at 1.0 "$ftp2 start"
$ns at 0.5 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 60.0 "finish"

ft start simulation

$ns run

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 72

C.2 4 New-ECN TCP-Reno vs. 4 EON TCP-Reno Connec

tions

The next script was used for the simulations with 4 New-ECN/EON TCP-Reno flows in

Section 4.2.2. One simulation was done with 4 New-ECN TCP flows (Agent/TCP set

windowOption- 8 and Agent/TCPSink set windowOptionS- 8) and one was done

with 4 ECN TCP flows {Agent/TCP set windowOption. 1 and Agent/TCPSink set

windowOptionS. 1).

ns simulator script for section 4.2.2: 4 New-ECN TCP-Reno vs.
S 4 ECN TCP-Reno connections

set ns [new Simulator]

create trace-files and define the trace peurameters
proc tracestart {]• •(

global ns Itrace 2trace Strace 4trace tcpl tcp2 tcp3 tcp4

set Itrace [open tcpl.tr w] ; set 2trace [open tcp2.tr w]
set Strace [open tcp3.tr w] ; set 4trace [open tcp4.tr w]

Ct

tracevar cwnd_ $tcpl tracevar srtt.

$tcpi tracevar ack_ $tcpl tracevar msixseq.

$tcp2 tracevar cwnd_ $tcp2 tracevar srtt_

$tcp2 tracevar ack_ $tcp2 tracevar maxseq.

$tcp3 tracevar cwnd_ $tcp3 tracevar srtt_

$tcp3 tracevar ack_ $tcp3 tracevar maxseq_
$tcp4 tracevar cwnd_ $tcp4 tracevar srtt.

$tcp4 tracevsu: ack_ $tcp4 tracevar maxseq.

$tcpl attach $Itrace $tcp2 attach $2trace

}

$tcp3 attach $3trace $tcp4 attach $4trace

9 create data from the trace-file for a Matlab analysis
proc makeplot number {.

end the simulation

proc finish {> <
global ns Itrace 2trace Strace 4trace

close trace-files

$ns flush-trace

close $ltrace ; close $2trace

close $3trace ; close $4trace

create Matlab data

mcikeplot "1" ; makeplot "2"
makeplot "3" ; makeplot "4"

exit 0

>

9 Create network topology:
9 create nodes:

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 73

attach ftp traffic generators
set node.Crl) C$ns node]
set node_(d) [$ns node]
set node_(sl) [$ns node]
set node_(s2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) C$ns node]

create links

$ns duplex-link $node_(sl) $node_(rl) lOHb Iras DropTail
$ns duplex-link $node_(82) $node_(rl) lOHb 14ras DropTail
$ns duplex-link $node_(s3) $node_(rl) 10Mb 34ms DropTail
$ns duplex-link $node_(84) $node_(rl) 10Mb 94qs DropTail

setup RED router
$ns duplex-link $node_(rl) $node_(d) 10Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl} 500

ft setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

ft set RED router puameters
set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit_ true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q_weight. 0.002

ft set general TCP peurameters
Agent/TCP set tcpTick. 0.01

ft one simulation was done with "set windowOption. 8" and "set windowGptionS. 8" (New-ECN)
ft one was done with "set windowOption. 1" and "set windowOptionS. 1" (EON)

Agent/TCP set windowOption. 1
Agent/TCPSink set windowOptionS. 1

ft create TCP connections and set individual parameters
set tcpl [$ns create-connection TCP/Reno $node.(sl} TCPSink $node.(d} 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set packetSize. 512

set tcp2 C$ns create-connection TCP/Reno $node.(s2} TCPSink $node.(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(s3) TCPSink $node.(d} 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set packetSize. 512

set tcp4 [$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set packetSize. 512

ft attach ftp traffic
set ftpl [$tcpl attach-app FTP] ; set ftp2 [$tcp2 attach-app FTP]
set ftp3 [$tcp3 attach-app FTP] ; set ftp4 [$tcp4 attach-app FTP]

ft schedule events

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

$ns at 0.0 "tracestart"

$118 at 1.5 "$ftpl start"
$ns at 1.0 "$ftp2 start"
$ns at 0.5 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 60.0 "finish"

start simulation

$ns run

C.3 Many New-ECN TCP-Reno Connections

The next script was used for the simulation in Section 4.2.3:

ns simulator script for section 4.2.3: many New-ECN TCP-Reno connections
set ns [new Simulator]

create trace-files and define the trace parameters
proc tracestsurt O {

global ns Itrace 2trace 3trace 4trace 5trace 6trace 7trace Strace tcpl \
tcp2 tcp3 tcp4 tcp5 tcp6 tcp7 tcp8 9trace lOtrace lltrace 12trace \
13trace 14trace 15trace lOtrace tcp9 tcplO tcpll tcpl2 tcpl3 tcpl4 \
tcpl5 tcplB

set Itrace

set 3trace

set 5trace

set 7trace

set 9trace

set lltrace

set 13trace

set 15trace

[open tcpl.tr w]
[open tcp3.tr w]
[open tcp5.tr w]
[open tcp7.tr v]
[open tcp9.tr w]

[open tcpll.tr w]
[open tcpl3.tr v]
[open tcpl5.tr u]

set 2trace [open tcp2.tr v]
set 4trace [open tcp4.tr w]
set 6trace [open tcp6.tr v]
set Strace [open tcp8.tr w]
set lOtrace [open tcplO.tr w]
set 12trace [open tcpl2.tr w]
set 14trace [open tcpl4.tr v]
set IStrace [open tcpl6.tr u]

$tcpl tracevar cwnd_
$tcp2 tracevar cvnd_
$tcp3 tracevao: cwnd_
$tcp4 tracevu cwnd_
$tcp5 tracevar cwnd_
$tcp6 tracevar cwnd_
$tcp7 tracevar cwnd_
$tcp8 tracevar cwnd.
$tcp9 tracevar cinid.
$tcplO traceveir cwnd_
$tcpll tracevar cwnd_
$tcpl2 tracevar cwnd_
$tcpl3 tracevar cvnd.
$tcpl4 tracevar cund_
$tcpl5 tracevar cund_
$tcpl6 tracevar cimd.

$tcpl attach $ltrace ;
$tcp4 attach $4trace ;
$tcp7 attach $7trace ;
$tcplO attach $10trace
$tcpl3 attach $13trace
$tcpl6 attach $16trace

$tcpl traceveo: srtt_
$tcp2 tracevar srtt_
$tcp3 tracevar srtt_
$tcp4 tracevar srtt.
$tcp5 tracevar srtt.
$tcp6 tracevar srtt.
$tcp7 tracevar srtt_
$tcp8 tracevar srtt_
$tcp9 tracevar srtt_
$tcplO tracevar srtt_
$tcpll tracevsu: srtt.
$tcpl2 tracevar srtt.
$tcpl3 tracevar srtt.
$tcpl4 tracevar srtt.
$tcpl5 tracevar srtt.
$tcpl6 tracevsir srtt.

$tcp2 attach $2trace
$tcp5 attach $5trace
$tcp8 attach $8trace
$tcpll attach $1Itrace
$tcpl4 attach $14trace

create data from the trace-file for a Matlab aneUysis
proc makeplot number -[

$tcpl tracevar ack_
$tcp2 tracevzu: ack_
$tcp3 tracevu ack_
$tcp4 tracevar ack_
$tcp5 tracevar ack_
$tcp6 tracevar ack_
$tcp7 tracevar ack_
$tcp8 tracevfo: ack_
$tcp9 tracevu ack_
$tcplO tracevar ack_
$tcpll tracevar ack_
$tcpl2 tracevar ack_
$tcpl3 tracevzu: ack_
$tcpl4 tracevar ack_
$tcpl5 tracevar ack_
$tcpl6 tracevar ack_

$tcp3 attach $3trace
$tcp6 attach $6trace
$tcp9 attach $9trace
$tcpl2 attach $12trace
$tcpl5 attach $15trace

74

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

end the simulation

proc finish O •(
global ns Itrace 2trace Strace 4trace Strace 6trace 7trace Strace 9trace \

lOtrace 1Itrace 12trace IStrace 14trace IStrace IGtrace

9 close trace-files

$ns flush-trace

close $ltrace

close $5trace

close $9trace

close $IStrace

close $2trace

close $6trace

close $10trace

close $14trace

• create Matlab data

makeplot "1"
msdteplot "5"
makeplot "9"
makeplot "13"
exit 0

close $3trace

close $7trace

close $1Itrace

close $15trace

close $4trace

close $8trace

close $12trace

close $16trace

makeplot "2" ; makeplot "3"
makeplot "6" ; makeplot "7"
makeplot "10" ; medceplot "11'
makeplot "14" ; makeplot "15'

"8"

makeplot
makeplot
makeplot "12"
makeplot "16"

Create network topology:
create nodes:

set node.Crl) [$ns node]
set node_(d) [$ns node]
set node_(sl) [$ns node]
set node_(s2)

set node_(s3)

set node_(s4)
set node.CsB)
set node_(s6)

set node_(s7)

set node_(s8)

[$ns node]
[$ns node]
C$ns node]
[$ns node]
[$ns node]
C$ns node]
C$ns node]

ft create links

$ns duplex-link $node_(sl) $node_(rl}
$ns duplex-link $node_(s2) $node_(rl)
$ns duplex-link Snode.CsS) $node_(rl)
$ns duplex-link $node_(s4) $node_(rl)
$ns duplex-link $node_(s5) $node_(rl)
$ns duplex-link $node_(s6} $node_(rl)
$ns duplex-link $node_(s7) $node_(rl)
$ns duplex-link $node_(s8} $node_(rl)

lOHb 44ms DropTail
10Mb 34ms DropTail
10Mb 29ms DropTail
10Mb 24ms DropTail
10Mb 14ms DropTail
10Mb 9ms DropTail
10Mb 9ms DropTail
10Mb 4ms DropTail

ft setup RED router
$ns duplex-link $node_(rl) $node_(d}. 10Mb 1ms RED
$ns queue-limit $node.(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl) 500

ft setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

ft set RED router parameters
set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit_ true
$redq set linterm. 5
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q.weight. 0.002

set general TCP parameters

75

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 76

Agent/TCP set tcpTick. 0.01
Agent/TCP set vindowOption. 8
Agent/TOPSink set windowOptionS. 8

create TCP connections and set individual parameters
set tcpl [$ns create-connection TCP/Reno $node_(sl) TCPSink $node_(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set packetSize. 512

set tcp2 C$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(s3) TCPSink $node.(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set packetSize. 512

set tcp4 [$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set packetSize. 512

set tcp5 [$ns create-connection TCP/Reno $node.(s5) TCPSink $node_Cd) 4]
$tcp5 set window. 128
$tcp5 set ecn. 1
$tcp5 set packetSize. 512

set tcp6 [$ns create-connection TCP/Reno $node.(s6) TCPSink $node_(d) 5]
$tcp6 set window. 128
$tcp6 set ecn. 1
$tcp6 set packetSize. 512

set tcp7 [$ns create-connection TCP/Reno $node.(s7) TCPSink $node_(d) 6]
$tcp7 set window. 128
$tcp7 set ecn. 1
$tcp7 set packetSize. 512

set tcp8 [$ns create-connection TCP/Reno $node.(s8) TCPSink $node.(d) 7]
$tcp8 set window. 128
$tcp8 set ecn. 1
$tcp8 set packetSize. 512

set tcp9 [$ns create-connection TCP/Reno $node.(s7) TCPSink $node.(d) 16]
$tcp9 set window. 128
$tcp9 set ecn. 1
$tcp9 set packetSize. 512

set tcplO [$ns create-connection TCP/Reno $node.(sl) TCPSink $node.(d) 8]
Step10 set window. 128
$tcplO set ecn. 1
$tcplO set packetSize. 512

set tcpll [$ns create-connection TCP/Reno $node.(s8) TCPSink $node.(d) 17]
$tcpll set window. 128
$tcpll set ecn. 1
$tcpll set packetSize. 512

set tcpl2 C$ns create-connection TCP/Reno $node.(s2) TCPSink $node_(d) 9]
$tcpl2 set window. 128
$tcpl2 set ecn. 1

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

$tcpl2 set packetSize. 512

set tcpl3 [$ns create-connection TCP/Reno $node_(s3) TCPSink $node_(d) 12]
$tcpl3 set window. 128
$tcpl3 set ecn. 1
$tcpl3 set packetSize. 512

set tcpl4 [$ns create-connection TCP/Reno $node_(s4) TCPSink $node_(d} 13]
$tcpl4 set window. 128
$tcpl4 set ecn. 1
$tcpl4 set packetSize. 512

set tcpl5 C$ns create-connection TCP/Reno $node_(s5) TCPSink $node.(d) 14]
$tcpl5 set window. 128
$tcpl5 set ecn. 1
$tcpl5 set packetSize. 512

set tcpl6 C$ns create-connection TCP/Reno $node_(s6) TCPSink $node_(d) 15]
$tcpl6 set window. 128
$tcpl6 set ecn. 1
$tcpl6 set packetSize. 512

attach ftp traffic generators
set ftpl C$tcpl attach-app FTP]
set ftp3 C$tcp3 attach-app FTP]
set ftp5 C$tcp5 attach-app FTP]
set ftp? C$tcp7 attach-app FTP]
set ftp9 [$tcp9 attach-app FTP]
set ftpll [$tcpll attach-app FTP]
set ftplS [$tcpl3 attach-app FTP]
set ftpl5 C$tcpl5 attach-app FTP]

schedule events

set ftp2 C$tcp2 attach-app FTP]
set ftp4 [$tcp4 attach-app FTP]
set ftp6 C$tcp6 attach-app FTP]
set ftp8 [$tcp8 attach-app FTP]
set ftplO C$tcplO attach-app FTP]
; set ftpl2 [$tcpl2 attach-app FTP]
: set ftpl4 [$tcpl4 attach-app FTP]
; set ftpl6 [$tcpl6 attach-app FTP]

$ns at 0.0 '"tracestaurt"

$ns at 0.0 '"$ftpl start"
$ns at 0.25 "$ftp2 start"
$ns at 0.5 '"$ftp3 start"
$ns at 0.75 "$ftp4 start"
$ns at 2.0 '"$ftp5 start"
$ns at 2.25 "$ftp6 staurt"
$ns at 2.5 '"$ftp7 start"
$ns at 2.75 "$ftp8 start"
$ns at 4.0 '"$ftp9 start"
$ns at 4.25 "$ftplO start'
$ns at 4.50 "$ftpll start'
$ns at 4.75 "$ftpl2 staort
$ns at 6.0 '"$ftpl3 staa't"
$ns at 6.25 "$ftpl4 stairt
$ns at 6.5 '"$ftpl5 start"
$ns at 6.75 "$ftpl6 staurt
$ns at 80.0 "finish"

start simulation

$ns run

77

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 78

C.4 One New-ECN TCP-Reno vs. one ECN/non-ECN TCP-Reno

Connection

The next script was used for the simulation with one New-ECN TCP-Reno flow in

Section 4.3:

S ns simulator script for section 4.3.1: One Nev-ECN TCP-Reno vs.
0 one ECN/non-ECN TCP-Reno connections

set ns [new Simulator]

create trace-files and define the trace parameters
proc tracestart {> {

global ns Itrace tcpl

set Itrace [open tcpl.tr v]
$tcpl tracevar cvnd_ ; $tcpl tracevar srtt_ ; $tcpl tracevar ack_
$tcpl attach $ltrace

}

0 create data from the trace-file for a Hatlab analysis
proc makeplot number •[

0 count packet drops
proc CoimtDrops <} •[

set awkCode {

{
if ($1 == "d") {
print $1, $2 » "drops";
}

}
>
exec awk $avkCode queuel.tr
}

0 end the simulation

proc finish {} {
global ns Itrace qtrace

0 close trace-files

$ns flush-trace

close $Itrace

close Sqtrace

0 create Matlab data

CountDrops
makeplot "1"
exit 0

}

0 create queue trace
set qtrace [open queuel.tr w]
$ns trace-all $qtrace

0 Create network topology:
0 create nodes:

set node_(rl) C$ns node]
set node.Cd) [$ns node]

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 79

set node_(sl) C$ns node]

ft create links

$ns duplex-link $node_(sl) $node_(ri) 10Mb 14ms DropTail

ft setup RED router
$ns duplex-link $node_(rl) $node_(d) 5Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl) 500

ft setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

ft set RED router parameters
set redq CC$ns link $node_(rl) $node_(d)] queue]
$redq set setbit. true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q_weight. 0.002

ft set general TCP parameters
Agent/TCP set tcpTick. 0.01

ft create TCP connections and set individual peurameters
set tcpl [$ns create-connection TCP/Reno $node.(8l) TCPSink $node.(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set windowOption. 8
$tcpl set windowOptionS. 8
$tcpl set packetSize. 512

ft attach ftp traffic generators
set ftpl C$tcpl attach-app FTP]

ft schedule events

$ns at 0.0 "tracestart"

$ns at 0.0 "$ftpl start"
$ns at 60.0 "finish"

ft start simulation

$ns run

The next script was used for the simulation with one ECN/non-ECN TCP-Reno

flow in Section 4.3. One simulation was done with ECN TCP-Reno ($tcpl set ecn.

1) and one with TCP-Reno {$tcpl set eon. 0)

ft ns simulator script for section 4.3.1: One New-ECN TCP-Reno vs.
ft one ECN/non-ECN TCP-Reno connections

set ns [new Simulator]

ft create trace-files and define the trace parameters
proc tracestart O {

global ns Itrace tcpl

set Itrace [open tcpl.tr w]
$tcpl tracevar cwnd. ; $tcpl tracevar srtt. j $tcpl tracevar ack.
$tcpl attach $ltrace

}

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 80

create data from the trace-file for a Matlab analysis
proc makeplot number {

end the simulation

proc finish O {
global ns Itrace

close trace-files

#puts "in finish"
$ns flush-trace

close $ltrace

create Matlab data

makeplot "1"
exit 0

Create network topology:
create nodes:

set node.Crl) [$ns node]
set node_(d) C$ns node]
set node_(sl) [$ns node]

create links

$ns duplex-link $node_(si) $node_(rl) 10Mb 14ms DropTail

setup RED router
$ns duplex-link $node_(rl} $node_(d) 5Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node.(d) $node_(rl) 500

setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

set RED router parameters
set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit_ true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q.weight. 0.002

set general TCP parameters
Agent/TCP set tcpTick. 0.01

create TCP coimections and set individual paremeters
set tcpl [$ns create-connection TCP/Reno $node_(sl) TCPSink $node_(d} 0]
$tcpl set window. 128

one simulation was done with "set ecn. 1" (TCP-Reno with ECN)
and one with "set ecn. 0" (TCP-Reno without ECN)

$tcpl set ecn. 1
$tcpl set windowOption. 1
$tcpl set windowOptionS. 1
$tcpl set packetSize. 512

attach ftp trsiffic generators
set ftpl [$tcpl attach-app FTP]

schedule events

$ns at 0.0 "tracestart"

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

$ns at 0.0 "$ftpl start"
$ns at 60.0 "finish"

steo't simulation

$ns run

81

C.5 TCP Friendliness of New-ECN

The next script was used for the simulation with three New-ECN flows and three

TCP-Reno flows in Section 4.3.2.

ns simulator script for section 4.3.2: TCP Friendliness of Nev-ECN
set ns [new Simulator]

create trace-files and define the trace parameters
proc tracestart O •(

global ns Itrace 2trace Strace 4trace Strace Gtrace tcpl tcp2 tcp3 tcp4 tcpS tcp6

set Itrace [open tcpl.tr v]
set 3trace [open tcp3.tr v]
set Strace [open tcp5.tr v]

set 2trace- [open tcp2.tr w]
set 4trace [open tcp4.tr v]
set Strace [open tcp6.tr v]

$tcpl tracevar cwnd_
$tcp2 tracevar cvnd_
$tcp3 tracevar cmid.
$tcp4 tracev2u: cwnd.
$tcp5 tracevar cvnd.
$tcp6 tracevar cwnd_

$tcpl attach $ltrace
$tcp4 attach $4trace

$tcpl tracevar srtt_
$tcp2 tracevar srtt_
$tcp3 tracevar srtt.
$tcp4 tracevar srtt_
$tcp5 tracevar srtt_
$tcp6 tracevar srtt_

$tcp2 attach $2trace
$tcp5 attach $5trace

ft create data from the trace-file for a Matlab analysis
proc makeplot number {

$tcpl tracevu ack_
$tcp2 tracevar ack_
$tcp3 tracevar ack_
$tcp4 tracevar ack_
$tcp5 tracevar ack_
$tcp6 tracevar ack_

$tcp3 attach $3trace
$tcp6 attach $6trace

ft end the simulation

proc finish {} <
global ns Itrace 2trace 3trace 4trace Strace Strace

ft close trace-files

$ns flush-trace

close $itrace ; close $2trace ; close $3trace
close $4trace ; close $Strace ; close $6trace

ft create Matlab data

makeplot "1" ; makeplot "2" ; makeplot "3"
makeplot "4" ; makeplot "S" ; makeplot "6"
exit 0

ft Create network topology:
ft create nodes:

set node_(rl) [$ns node]
set node_(d) [$ns node]

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 82

set node_(sl) C$ns node]
set node.(82) [$ns node]
set node.(83) [$ns node]
set node.(s4) [$ns node]

set node.CsS) [$ns node]

set node.(s6) [$ns node]

create links

$ns duplex-link $node.(sl) $node.(rl) 10Mb 1ms DropTail
$ns duplex-link $node.(s2) $node.(rl) 10Mb 14ms DropTail
$ns duplex-link $node.(s3) $node.(rl) 10Mb 34ms DropTail
$ns duplex-link $node.(s4) $node_(rl) 10Mb 1ms DropTail
$ns duplex-link $node.(s5) $node.(rl) 10Mb 14ms DropTail
$ns duplex-link $node.(s6) $node.(rl) 10Mb 34ms DropTail

setup RED router
$ns duplex-link $node.(rl) $node_(d) 10Mb 1ms RED
$ns queue-limit $node.(rl) $node.(d) 500
$ns queue-limit $node.(d) $node.(rl) 500

f setup for "nam"
$ns duplex-link-op $node.(rl) $node.(d) queuePos 0.5
$ns duplex-link-op $node.(d) $node.(rl) queuePos 0.5

set RED router pimrameters
set redq C[$n8 link $node.(rl) $node.(d)] queue]
$redq set setbit. true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q.weight. 0.002

set general TCP parameters
Agent/TCP set tcpTick. 0.01

9 create TCP connections and set individual parameters
set tcpl [$ns create-connection TCP/Reno $node.(sl) TCPSink $node.(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set windowOption. 8
$tcpl set windowOptionS. 8
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node.(s2) TCPSink $node.(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set windowOption. 8
$tcp2 set windowOptionS. 8
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node.(s3) TCPSink $node_(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set windowOption. 8
$tcp3 set windowOptionS. 8
$tcp3 set packetSize. 512

set tcp4 [$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 0
$tcp4 set windowOption. 1
$tcp4 set windowOptionS. 1
$tcp4 set packetSize. 512

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

set tcp5 C$ns create-connection TCP/Reno $node_(s5) TCPSink $iiode_(d) 4]
$tcpS set window. 128
$tcp5 set ecn. 0
$tcp5 set windowOption. 1
$tcp5 set windowOptionS. 1
$tcp5 set packetSize. 512

set tcp6 C$n8 create-connection TCP/Reno $node_(s6} TCPSink $node_(d) 5]
$tcp6 set window. 128
$tcp6 set ecn. 0
$tcp6 set windowOption. 1
$tcp6 set windowOptionS. 1
$tcp6 set packetSize. 512

9 attach ftp traffic generators
set ftpl [$tcpl attach-app FTP]
set ftp3 C$tcp3 attach-app FTP]
set ftp5 [$tcp5 attach-app FTP]

set ftp2 [$tcp2 attach-app FTP]
set ftp4 [$tcp4 attach-app FTP]
set ftp6 [$tcp6 attach-app FTP]

schedule events

$ns at 0.0 "tracestaort"

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 steort"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$ftp6 start"
$ns at 60.0 "finish"

start simulation

$ns run

83

The next script was used for the simulation with six TCP-Reno flows in Section 4.3.2.

« ns simulator script for section 4.3.2: TCP Friendliness of New-ECN
set ns [new Simulator]

create trace-files and define the trace parameters
proc tracestart {} •[

global ns Itrace 2trace 3trace 4trace Strace 6trace tcpl tcp2 tcp3 tcp4 tcp5 tcpS

set Itrace [open tcpl.tr u]
set 3trace [open tcp3.tr w]
set 5trace [open tcp5.tr w]

set 2trace [open tcp2.tr w]
set 4trace [open tcp4.tr w]
set Strace [open tcp6.tr w]

$tcpl tracevar cwnd.
$tcp2 tracevar cwnd.
$tcp3 tracevar cwnd.
$tcp4 tracevar cwnd.
$tcp5 tracevee: cwnd.
$tcp6 tracevsu: cwnd.

$tcpl attach $ltrace
$tcp4 attach $4trace

$tcpl tracevar srtt.
$tcp2 tracevar srtt.
$tcp3 tracevar srtt.
$tcp4 tracevar srtt.
$tcp5 tracevar srtt.
$tcp6 tracevar srtt.

$tcp2 attach $2trace
$tcp5 attach $5trace

create data from the trace-file for a Matlab analysis
proc makeplot number {

end the simulation

proc finish {} {

$tcpl traceveo: ack.
$tcp2 tracevar ack.
$tcp3 tracevar ack.
$tcp4 tracevar ack.
$tcp5 tracevar ack.
$tcp6 tracevar ack.

$tcp3 attach $3trace
$tcp6 attach SStrace

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 84

global ns Itrace 2trace Strace 4trace Strace 6trace

ft close trace-files

$ns flush-trace

close $ltrace ; close $2trace ; close $3trace
close $4trace ; close $5trace ; close $6trace

ft create Matlab data

makeplot "1" ; makeplot "2" ; maheplot "3"
medceplot "4" ; makeplot "5" ; medceplot "6"
exit 0

ft Create network topology:
ft create nodes:

set node_(ri) [$ns node]
set node_(d) C$ns node]
set node_(sl) [$ns node]
set node_(s2} [$ns node]
set node_(s3) [$ns node]
set node.(s4) [$ns node]
set node.CsS) [$ns node]
set node_(s6) C$ns node]

ft create links

$ns duplex-link $node_(sl) $node_(rl) 10Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(rl) 10Mb 14ms DropTail
$ns duplex-link $node_(s3) $node_(rl) 10Mb 34ms DropTail
$ns duplex-link $node_(s4) $node_(rl) 10Mb 1ms DropTail
$ns duplex-link $node_(s5) $node_(rl) 10Mb 14ffls DropTail
$ns duplex-link $node_(86) $node_(rl) 10Mb 34ms DropTail

ft setup RED router
$ns duplex-link $node_(rl) $node_(d) 10Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl} 500

ft setup for "nam"
$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

ft set RED router piO'ameters
set redq [C$ns link $node_(rl) $node_(d)] queue]
$redq set setbit. true
$redq set linterm. 10
$redq set thresh. 10
$redq set msucthresh. 20
$redq set q.weight. 0.002

ft set general TCP parameters
Agent/TCP set tcpTick. 0.01

ft create TCP connections and set individual paurameters
set tcpl [$ns create-connection TCP/Reno $node.(sl) TCPSink $node.(d) 0]
$tcpl set window. 128
$tcpl set ecn. 0
$tcpl set windowOption. 1
$tcpl set windowOptionS. 1
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 0
$tcp2 set windowOption. 1

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 85

$tcp2 set windovOptionS. 1
$tcp2 set packetSize. 512

set tcp3 [$ns create-connection TCP/Reno $node_(s3) TCPSink $node_(d) 2]
$tcp3 set window. 128
$tcp3 set ecn_ 0
$tcp3 set windowOption. 1
$tcp3 set windowOptionS. 1
$tcp3 set packetSize. 512

set tcp4 C$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 0
$tcp4 set windowOption. 1
$tcp4 set windowOptionS. 1
$tcp4 set packetSize. 512

set tcp5 [$ns create-connection TCP/Reno $node.(s5} TCPSink $node.(d) 4]
$tcp5 set window. 128
$tcp5 set ecn. 0
$tcp5 set windowOption. 1
$tcp5 set windowOptionS. 1
$tcp5 set packetSize. 512

set tcp6 C$ns create-connection TCP/Reno $node.(s6) TCPSink $node.(d) 5]
$tcp6 set window. 128
$tcp6 set ecn. 0
$tcp6 set windowOption. 1
$tcp6 set windowOptionS. 1
$tcp6 set packetSize. 512

attach ftp traffic generators
set ftpl [$tcpl attach-app FTP] ; set ftp2 [$tcp2 attach-app FTP]
set ftp3 C$tcp3 attach-app FTP] ; set ftp4 [$tcp4 attach-app FTP]
set ftp5 [$tcp5 attach-app FTP] ; set ftp6 [$tcp6 attach-app FTP]

schedule events

$ns at 0.0 "tracestart"

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$ftp6 steirt"
$ns at 60.0 "finish"

9 start simulation

$ns run

C.6 ECN-TCP Friendliness of New-ECN

The next script was used for the simulation with three New-ECN flows and three ECN

TCP-Reno flows in Section 4.3.3.

« ns simulator script for section 4.3.3: ECN-TCP Friendliness of New-ECN
set ns [new Simulator]

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

create trace-files and define the trace parameters
proc tracestart {} {

global ns Itrace 2trace Strace 4trace Strace 6trace tcpl tcp2 tcp3 tcp4 tcpS tcp6

set Itrace [open tcpl.tr w]
set Strace [open tcp3.tr v]
set Strace [open tcpS.tr w]

set 2trace [open tcp2.tr u]
set 4trace [open tcp4.tr v]
set Strace [open tcp6.tr v]

$tcpl tracevar cwnd_
$tcp2 tracevar cwnd_
$tcp3 tracevar cwnd.
$tcp4 tracevar cwnd.
$tcpS tracevzu: cwnd.
$tcp6 tracevar cwnd.

$tcpl attach $ltrace
$tcp4 attach $4trace

$tcpl tracevar srtt.
$tcp2 tracevar srtt.
$tcp3 tracevar srtt.
$tcp4 tracevar srtt.
$tcpS tracevar srtt.
$tcp6 tracevar srtt.

$tcp2 attach $2trace
$tcpS attach $Strace

* create data from the trace-file for a Hatlab anedysis
proc makeplot number •[

$tcpi tracevar ack.
$tcp2 tracevar ack.
$tcp3 tracevar ack.
$tcp4 tracevar ack.
$tcpS tracevar ack.
$tcp6 tracevar ack.

$tcp3 attach $3trace
$tcp6 attach $6trace

end the simulation

proc finish {} •(
global ns Itrace 2trace Strace 4trace Strace Strace

close trace-files

$ns flush-trace

close $ltrace ; close $2trace
close $4trace ; close $5trace

close $3trace

close $6trace

create Matlab data

makeplot "1" ; makeplot
makeplot "4" ; makeplot
exit 0

ii^ii

"5"

Create network topology:
create nodes

set node_(rl) [$ns node]
set node.(d) [$ns node]
set node.(si) [$ns node]
set node.Cs2) [$ns node]
set node.CsS) [$ns node]
set node_(s4) [$ns node]
set node.(sS) [$ns node]
set node.(sS) [$ns node]

create links

$ns duplex-link $node.(sl) $node.(rl)
$ns duplex-link $node.(s2) $node.(rl)
$ns duplex-link $node_(s3) $node_(rl)
$ns duplex-link $node.(s4) $node.(rl)
$ns duplex-link $node.(sS) $node.(rl)
$ns duplex-link $node_(sS) $node.Crl)

makeplot "3"
makeplot "S"

10Mb 1ms DropTail
10Mb 14ms DropTail
10Mb 34ms DropTail
10Mb 1ms DropTail
10Mb 14ms DropTail
10Mb 34ms DropTail

setup RED router
$ns duplex-link $node.(rl) $node.(d) 10Mb 1ms RED
$ns queue-limit $node.(rl) $node.(d) 500
$ns queue-limit $node.(d) $node.(rl) 500

setup for "nam"

86

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4 87

$ns duplex-link-op $node_(rl) $node_(d) queuePos 0.5
$ns duplex-link-op $node_(d} $node_(rl) queuePos 0.5

set RED router parameters
set redq [[$ns link $node_(rl) $node_(d)] queue]
$redq set setbit_ true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q.weight. 0.002

set general TCP peirameters
Agent/TCP set tcpTick. 0.01

create TCP connections <ind set individual parameters
set tcpl [$ns create-connection TCP/Reno $node_(sl) TCPSink $node_(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set windowOption. 8
$tcpl set windowOptionS. 8
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node.(s2) TCPSink $node.(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set windowOption. 8
$tcp2 set windowOptionS. 8
$tcp2 set packetSize. 512

set tcp3 C$ns create-connection TCP/Reno $node.(s3) TCPSink $node.(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set windowOption. 8
$tcp3 set windowOptionS. 8
$tcp3 set packetSize. 512

set tcp4 [$ns create-connection TCP/Reno $node.(s4) TCPSink $node.(d) 3]
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set windowOption. 1
$tcp4 set windowOptionS. 1
$tcp4 set packetSize. 512

set tcp5 C$ns create-connection TCP/Reno $node.(s5) TCPSink $node.(d) 4]
$tcp5 set window. 128
$tcp5 set ecn. 1
$tcp5 set windowOption. 1
$tcp5 set windowOptionS. 1
$tcp5 set packetSize. 512

set tcp6 C$ns create-connection TCP/Reno $node.(s6) TCPSink $node.(d) 5]
$tcp6 set window. 128
$tcp6 set ecn. 1
$tcp6 set windowOption. 1
$tcp6 set windowOptionS. 1
$tcp6 set packetSize. 512

S attach ftp traffic generators
set ftpl [$tcpl attach-app FTP] ; set ftp2 [$tcp2 attach-app FTP]
set ftp3 [$tcp3 attach-app FTP] ; set ftp4 C$tcp4 attach-app FTP]
set ftp5 [$tcp5 attach-app FTP] ; set ftp6 [$tcp6 attach-app FTP]

schedule events

$ns at 0.0 "tracestart"

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

$ns at 0.0 "$ftpl steort"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 stsurt"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 stut"
$ns at 0.0 "$ftp6 start"
$ns at 60.0 "finish"

start sinmlation

$ns run

88

The next script was used for the simulation with six ECN TCP-Reno flows in Sec

tion 4.3.3.

ns simulator script for section 4.3.3:
set ns [new Simulator]

ECN-TCP Friendliness of New-ECN

create trace-files and define the trace parameters
proc tracestart O {

global ns Itrace 2trace 3trace 4trace Strace Strace tcpl tcp2 tcp3 tcp4 tcpS tcp6

set Itrace [open tcpl.tr w]
set 3trace [open tcp3.tr w]
set Strace [open tcp5.tr w]

set 2trace [open tcp2.tr v]
set 4trace [open tcp4.tr w]
set Strace [open tcp6.tr w]

$tcpi tracevar cvnd_
$tcp2 tracevar cwnd_
$tcp3 tracevar cwnd_
$tcp4 tracevar cwnd.
$tcp5 tracevar cwnd_
$tcp6 tracevar cwnd_

$tcpl attach $ltrace
$tcp4 attach $4trace

$tcpl tracevar srtt_
$tcp2 tracevar srtt_
$tcp3 tracevar srtt_
$tcp4 tracevar srtt_
$tcp5 tracevar srtt_
$tcp6 tracevar srtt_

$tcp2 attach $2trace
$tcp5 attach $5trace

S create data from the trace-file for a Matlab analysis
proc makeplot number {

$tcpl tracevar ack_
$tcp2 tracevar ack_
$tcp3 tracevar ack_
$tcp4 tracevar ack_
$tcp5 tracevar ack_
$tcp6 traceveo: ack_

$tcp3 attach $3trace
$tcp6 attach $6trace

end the simulation

proc finish O •(
global ns Itrace 2trace 3trace 4trace Strace Strace

$ close trace-files

$ns flush-trace

close $ltrace ; close $2trace
close $4trace ; close $5trace

create Matlab data

makeplot "1" ; makeplot "2"
makeplot "4" ; makeplot "5"
exit 0

Create network topology:
create nodes:

set node.Crl) [$ns node]

set node_(d) [$ns node]

set node.(si) [$ns node]

close $3trace

close $6trace

makeplot "3"
makeplot "6"

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

set iiode_(s2)

set node_(s3)
set node_(s4)
set node_(s5)
set node_(s6)

[$ns node]
C$ns node]
[$ns node]

[$ns node]
[$ns node]

create links

$ns duplex-link $node_(sl) $node_(rl)
$ns duplex-link $node_(s2) $node_(rl)
$ns duplex-link $node_(s3) $node_(rl)
$ns duplex-link $node_(s4) $node_(rl)
$ns duplex-link $node_(s5) $node_(rl)
$ns duplex-link $node_(s6) $node_(rl)

iOMb 1ms DropTail
10Mb 13ms DropTail
10Mb 34ms DropTail
10Mb 1ms DropTail
10Mb 13ms DropTail
lOHb 34ms DropTail

9 setup RED router
$ns duplex-link $node_(rl) $node_(d) 10Mb 1ms RED
$ns queue-limit $node_(rl) $node_(d) 500
$ns queue-limit $node_(d) $node_(rl) 500

9 setup lor "nam"
$ns duplex-link-op $node_(rl) $node_(d} queuePos 0.5
$ns duplex-link-op $node_(d) $node_(rl) queuePos 0.5

9 set RED router parameters
set redq [C$ns link $node_(rl} $node_(d)] queue]
$redq set setbit. true
$redq set linterm. 10
$redq set thresh. 10
$redq set maxthresh. 20
$redq set q_weight. 0.002

9 set general TCP parameters
Agent/TCP set tcpTick. 0.01

9 create TCP connections and set individual parameters
set tcpl [$ns create-connection TCP/Reno $node.(8l} TCPSink $node.(d) 0]
$tcpl set window. 128
$tcpl set ecn. 1
$tcpl set windowOption. 1
$tcpl set windowOptionS. 1
$tcpl set packetSize. 512

set tcp2 [$ns create-connection TCP/Reno $node.(s2) TCPSink $node.(d) 1]
$tcp2 set window. 128
$tcp2 set ecn. 1
$tcp2 set windowOption. 1
$tcp2 set windowOptionS. 1
$tcp2 set packetSize. 512

set tcp3 [Sns create-connection TCP/Reno $node.(s3) TCPSink $node.(d) 2]
$tcp3 set window. 128
$tcp3 set ecn. 1
$tcp3 set windowOption. 1
$tcp3 set windowOptionS. 1
$tcp3 set packetSize. 512

set tcp4 C$ns create-connection TCP/Reno $node.(s4} TCPSink $node_(d)
$tcp4 set window. 128
$tcp4 set ecn. 1
$tcp4 set windowOption. 1
$tcp4 set WindowOptionS. 1
$tcp4 set packetSize. 512

3]

set tcp5 [Sns create-connection TCP/Reno $node_(s5) TCPSink $node_(d) 4]

89

C TCL SCRIPTS FOR THE SIMULATIONS IN SECTION 4

$tcp5 set window. 128
$tcp5 set ecn. 1
$tcp5 set windowOption. 1
$tcp5 set windowOptionS. 1
$tcp5 set packetSize. 512

set tcp6 C$ns create-connection TCP/Reno $node_(s6) TCPSink $node_(d)
$tcp6 set window. 128
$tcp6 set ecn. 1
$tcp6 set windowOption. 1
$tcp6 set windowOptionS. 1
$tcp6 set packetSize. 512

attach ftp traffic generators
set ftpl C$tcpl attach-app FTP]
set ftps [$tcp3 attach-app FTP]
set ftp5 [$tcp5 attach-app FTP]

set ftp2 [$tcp2 attach-app FTP]
set ftp4 [$tcp4 attach-app FTP]
set ftp6 [$tcp6 attach-app FTP]

schedule

$ns at 0.0

$ns at 0.0

$ns at 0.0

$ns at 0.0

$ns at 0.0

$ns at 0.0

$ns at 0.0

$ns at 60.0

events

"tracestart"

"$ftpl start"
"$ftp2 start"
"$ftp3 start"
"$ftp4 start"
"$ftp5 start"
"$ftp6 start"
"finish"

steort simulation

$ns run

5]

90

	Copyright notice 1999
	ERL-99-35

