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Abstract

The prevailing efforts to study the standard formulation of motion and structure recovery
have been recently focused on issues of sensitivity and and robustness of existing techniques.
While many cogent observations have been made and verified experimentally, many statements
do not hold in general settings and make a comparison of existing techniques difficult. With an
ultimate goal of clarifying these issues we study the main aspects of the problem: the choice
of objective functions, optimization techniques and the sensitivity and robustness issues in the
presence of noise.

We clearly reveal the relationship among different objective functions, such as "(normalized)
epipolar constraints", "reprojection error" or "triangulation", which can all be be unified in a
new " optimal triangulation" procedure. Regardless of various choices of the objective function,
the optimization problems all inherit the same unknown parameter space, the so called "essential
manifold". Based on recent developments of optimization techniques on Riemannian manifolds,
in particular on Stiefelor Grassmann manifolds, wepropose a Riemannian Newton algorithm to
solve the motion and structure recovery problem, makinguseof the natural differential geometric
structure of the essential manifold.

Using these analytical results we provide a clear account of sensitivity and robustness of the
proposed linear and nonlinear optimization techniques and study the analytical and practical
equivalence of different objective functions. The geometric characterization of critical points
and the simulation results clarify the difference between the effect of bas relief ambiguity and
other types of local minima leading to a consistent interpretations of simulation results over
large range of signal-to-noise ratio and variety of configurations.

Key words: motion and structure recovery, optimal triangulation, essential manifold, Riemannian
Newton's algorithm, Stiefel manifold.

1 Introduction

The problem of recovering structure and motion from a sequence of images has been one of the
central problems in computer vision over the past decade and has been studied extensively from
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various perspectives. The proposed techniques have varied depending on the type of features they
used, the types of assumptions they make about the environment, projection models and the type of
algorithms. Based on image measurements the techniques can be viewed either as discrete: using
point or line features, or differential: using measurements of optical flow. While the geometric
relationships governing the motion and structure recovery problem have been long understood,
the robust solutions are still sought. New studies of sensitivity of different algorithms, search for
intrinsic local minima and new algorithms are still subjects ofgreat interest. Algebraic manipulation
of intrinsic geometric relationships typically gives rise to different objective functions, making the
comparison of the performance of different techniques often inappropriate and often obstructing
issues intrinsic to the problem. In this paper, we provide new algorithms and insights by giving
answers to the following three questions, what we believe are the main aspects of the motion and
structure recovery problem (in the simplified two-view, point-feature scenario):

(i) What is the correct choice of the objective function and its associated statistical and
geometric meaning? What are the fundamental relationships among different existing
objective functions from an estimation theoretic viewpoint?
(ii) What is the core optimization problem which is common to all objective functions
associated with motion and structure estimation? We propose a new intrinsic (i.e.,
independent of any particular parameterization of the search space) optimization scheme
which goes along with this problem.
(iii) Using extensive simulations, we show how the choice of the objective functions and
configurations affects the sensitivity and robustness of the estimates. We also clearly
reveal the effect of the bas relief ambiguity and other ambiguities on the sensitivity and
robustness of the proposed algorithms.

The seminal work of Longuet-Higgins [12] on the characterization of the so called epipolar
constraint, enabled the decoupling of the structure and motion problems and led to the development
of numerous linear and nonlinear algorithms for motion estimation (see [17, 6,10,30] for overviews).
The epipolar constraint has been formulated both in a discrete and a differential setting and the
recent work of the authors [15] demonstrated the possibility of a parallel development of linear
algorithms for both cases: namely using point feature correspondence and optical flow. The original
8-point algorithm proposed by Longuet-Higgins is easily generalizable to the uncalibrated camera
case, where the epipolar constraint is captured by the so called fundamental matrix. Detailed
analysis of linear and nonlinear techniques for estimation of fundamental matrix, exploring the use
of different objective functions can be found in [13].

While the (analytic) geometrical aspects of the linear approach have been understood, the
proposed solutions to the problem have been shown very sensitive to noise and have often failed in
practical applications. These experiences have motivated further studies which focus on the use of a
statistical analysis of existing techniques and understanding of various assumptions which aflFect the
performance of existing algorithms. These studies have been done both in an analytical [3, 24] and
experimental setting [28]. The appeal of linear algorithms which use the epipolar constraint (in the
discrete case [30, 10, 12, 17] and in the differential case [9, 15, 27]) is the closed form solution to the
problem which, in the absence of noise, provides true estimate of the motion. However, a further
analysis of linear techniques reveals an inherent bias in the translation estimates [9]. Attempts
made to compensate for the bias slightly improve the performance of the linear techniques [10].

Such attempts to remove the bias have led to different choice of nonlinear objective functions.
The performance of numerical optimization techniques which minimize nonlinear objective func-



tions has been shown superior to linear ones. The objective functions used are either (normalized)
versions of the epipolar constraint or distances between measured and reconstructed image points
(the so called reprojection error) [31, 13, 33, 8]. These techniques either require iterative numer
ical optimization [30, 22] or use Monte-Carlo simulations [9] to sample the space of the unknown
parameters. Extensive experiments revealed problems with convergence when initialized far away
from the true solution [28]. Since nonlinear objective functions have been obtained from quite
different approaches, it is necessary to understand the relationship among all the existing objective
functions. Although a preliminary comparison has been made in [33], in this paper, we provide a
more detailed and rigorous account of this relationship and how it affects the complexity of the
optimization. In this paper, we will show, by answering the question (i), "minimizing epipolar con
straint", "minimizing (geometrically or statistically^) normalized epipolar constraint" [31, 13, 33],
"minimizing reprojection error" [31], and "triangulation" [7] can all be unified in a single geometric
optimization procedure, the so called "optimal triangulation". As a by-product of this approach, a
much simpler triangulation method than [7] is given along with the proposed algorithm. A highlight
of our method is an iterative scheme between motion and structure without introducing any 3D
scale (or depth).

Different objective functions have been used in different optimization techniques [8, 31, 26].
Horn [8] first proposed an iterative procedure where the update of the estimate takes into account
the orthonormal constraint of the unknown rotation. This algorithm and the algorithm proposed
in [26] are some of the few which explicitly consider the differential geometric properties of the
rotation group 50(3). In most cases, the underlying search space has been parameterized for
computational convenience instead of being loyal to its intrinsic geometric structure. Consequently,
in these algorithms, solving for optimal updating direction typically involves using Lagrangian
multipliers to deal with the constraints on the search space; and "walking" on such a space is done
approximately by an update-then-project procedure, rather than exploiting geometric properties of
the entire space of essential matrices as characterized in our recent paper [15] or in [22]. As an answer
to the question (ii), we will show that optimizing existing objective functions can all be reduced
to optimization problems on the essential manifold. Due to recent developments of optimization
techniques on Riemannian manifolds (especially on Lie groups and homogeneous spaces) [21, 5],
we are able to explicitly compute all the necessary ingredients, such as gradient, Hessian and
geodesies, for carrying out intrinsic nonlinear search schemes. In this paper, we will first give a
review of the nonlinear optimization problem associated with the motion and structure recovery.
Using a generalized Newton's algorithm as a prototype example, we will apply our methods to
solve the optimal motion and structure estimation problem by exploiting the intrinsic Riemannian
structure of the essential manifold. The rate of convergence of the algorithm is also studied in some
detail. We believe the proposed geometric algorithm will provide us with an analytic framework
for design of (Kalman) filters on the essential manifold for dynamic motion estimation (see [23]).
It also provides us new perspectives for design of algorithms for multiple views.

In this paper, only the discrete case will be studied, since in the differential case the search space
is essentially Euclidean and good optimization schemes already exist and have been well studied,
see [22, 32]. For the differential case, recent studies [22] have clarified the source of some of the
difficulties (for example, rotation and translation confounding) from the point of view of noise and
explored the source and presence of local extrema which are intrinsic to the structure from motion
problem {i.e., these local extrema are independent of the choice of objective functions). The bas

'in the literature, they are respectively referred to as distcince between points and epipolfir lines, and gradient-
weighted epipolar errors [33] or epipolsn* improvement [31].



relief ambiguity, in general, can characterized as the most sensitive direction in which the rotation
and translation estimates are prone to be confound with each other (for example, see [1, 31, 22]
for a more detailed analysis). Here we apply the same line of thought to the discrete case. Since
the bas reliefeffect is evident only when the field of view and the depth variation of the scene are
small, we here are moreinterested in characterizing, besides the bas relief ambiguity, other intrinsic
extrema which may show up at a high noise level even for a general configuration, i.e., with large
base line, field of view and depth variation. As an answer to the question (iii), we will show both
analytically and experimentally that some ambiguities are introduced at a high noise level by cer
tain bifurcation of the objective function and usually result in a sudden 90° flip in the translation
estimate. Understanding such ambiguities is crucial for properly evaluating the performance (espe
cially the robustness) of the algorithms when applied to general configurations. Based on analytical
and experimental results, we will give a clear profile of the performance of different algorithms over
a large range of signal-to-noise ratio, and under various motion and structure configurations.

Paper outline: Section 2, 3 and 4 rely on some familiarity with Edelman et aVs work [5] and
somebackground ofRiemannian geometry (good references for Riemannian geometry are [25,11]).^
Section 2 shows how to generalize optimization schemes on a single Riemannian manifold to their
product space. Section 3 then studies the intrinsic Riemannian structure of the essential manifold
(the space of all essential matrices). Section 4 outlines how to optimize a general objective function
on the essential manifold using the (Riemannian) Newton's algorithm. Section 5 spells out in
detail explicit formulae of gradient, Hessian and geodesies, which are needed by the (Riemannian)
Newton's algorithm for optimizing various objective functions associated with the motion recovery
problem. Different objective functions proposed in the literature are unified in Section 6 by a
single optimization procedure proposed for estimating optimal structure and motion altogether.
This procedure gives clear answers to both questions (i) and (ii). Section 7 gives a geometric
characterization of extrema of any function on the essential manifold. Among all the possible
ambiguities, we characterize those which most likely occur in the motion and structure recovery
problem. Sensitivity study and experimental comparison between different objective functions are
given in Section 8. Section 7 and 8 give a detailed account of the question (iii).

2 Optimization on Riemannian Manifold Preliminsiries

Newton's and conjugate gradient methods are classical nonlinear optimization techniques to mini
mize a function /(x), where x belongs to an open subset of Euclidean space K". Recent develof)-
ments in optimization algorithms on Riemannian manifolds have provided geometric insights for
generalizing Newton's and conjugate gradient methods to certain clcisses of Riemannian manifolds.
Smith [21] gave a detailed treatment of a theory of optimization on general Riemannian manifolds;
Edelman, Arias and Smith [5] further studied the case of Stiefel and Grassmann manifolds,^ and
presented a unified geometric framework for applying Newton and conjugate gradient algorithms
on these manifolds. These new mathematical schemes solve the more general optimization prob
lem of minimizing a function /(x), where x belongs to some Riemannian manifold (M,g), where
g : TM xTM C°°(M) is the Riemannian metric on M (and TM denotes the tangent space

^Readers who are not famili£ir with differential geometry termsmayskip technical details in thesesections without
losing much continuity.

^Stiefel manifold V(n,fc) is the set of all orthonormal fc-frames in R"; Grassmann memifold G{n,k) is the set of
all k dimensioned subspaces in R". Then canonicedly, V(n, k) = 0{n)/0{n —k) eind G(n, k) = 0{n)/0{k) x 0{n —k)
where 0(n) is the orthogoned group of R".



of M). An intuitive comparison between the Euclidean and Riemannian nonlinear optimization
schemes is illustrated in Figure 1.

Euclidean Xi+i = Xi + Ai Riemannian Xi+i = exp(Xi^Ai)

Figure 1: Comparison between the Euclidean and Riemannian nonlinear optimization schemes. At
e2u:h step, an (optimal) updating vector A,- € T^M is computed using the Riemannian metric
at Xi. Then the state variable is updated by following the geodesic from Xi in the direction A,-
by a distance of A,) (the Riemannian norm of A,). This geodesic is usually denoted in
Riemannian geometry by the exponential map exp(a;,-, Aj).

Conventional approaches for solving such an optimization problem are usually application de
pendent. The manifold M is first embedded as a submanifold into a higher dimensional Euclidean
space by choosing certain (global or local) parameterization of M. Lagrangian multipliers are
often used to incorporate additional constraints that these parameters should satisfy. In order
for X to always stay on the manifold, after each update, it needs to be projected back onto the
manifold M. However, the new analysis of [5] shows that, for "nice" manifolds, i.e., for example
Lie groups or homogeneous spaces such as Stiefel and Grassmann manifolds, one can make use of
the canonical Riemannian structure of these manifolds and systematically develop a Riemannian
version of the Newton's algorithm or conjugate gradient methods for optimizing a function defined
on them. Since the parameterization and metrics are canonical and the state is updated using
geodesies (therefore always staying on the manifold), the performance of so obtained algorithms is
no longer parameterization dependent, and in addition they typically have polynomial complexity
and super-linear (quadratic) rate of convergence [21]. An intuitive comparison between the con
ventional update-then-project approach and the Riemannian method is demonstrated in Figure 2
(where M is illustrated as the standard 2D sphere = {a: GR^ | ||a;|p = 1}).

One of the purposes of this paper is to apply these new Riemannian optimization schemes to
solve the nonlinear optimization problem of recovering 3D motion from image correspondences.
As we will soon see the underlying Riemannian manifold for this problem (the so called essential
manifold) is a product of Stiefel manifolds instead of a single one. We first need to generalize
Edelman et aVs methods [5] to the product of Stiefel (or Grassmann) manifolds. Suppose {M\^gi)
and (M2,5f2) are two Riemannian manifolds with Riemannian metrics:

5i(-,-): TMi X TMi

flf2(-,-): TM2 X TM2

C°°(Mi),

C~(M2)

where TMi is the tangent bundle of Mi, similarly for TM2. Thecorresponding Levi-Civita connec
tions {i.e., the unique metric preserving and torsion-free connection) of these manifolds are denoted
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Figure 2: Comparison between the conventional update-then-project approach and the Riemannian
scheme. For the conventional method, the state Xi is first updated to according to the updating
vector At and then is projected back to the manifold at x,+i. For the Riemannian scheme,
the new state a;,+i is obtained by following the geodesic, i.e., a;,4.1 = exp(a;,-. A,).

as:

Vi : M(Mi) X X(Mi) -> X(Mi),

V2 : X(M2) XX(M2) X{M2)

where X(Mi) stands for the space of smooth vector fields on Mi, similarly for X(M2)'

Now let M be the product space of Mi and M2, i.e., M = Mi x M2. Let ii : Mi M
and 12 : M2 —)• M be the natural inclusions and tti : M Mi and 1^2 - M M2 be the
projections. To simplify the notation, we identify TMi and TM2 with ii*(rMi) and i2*{TM2)
respectively. Then TM = TMi x TM2 and X{M) = A'(Mi) x X{M2). For any vector field
X € X{M) we can write X as the composition of its components in the two subspaces TMi and
TM2: X = {Xi,X2) € TMi XTM2. The canonical Riemannian metric g{', •) on M is determined
as:

9{X, Y) = gi{Xi,Yi) + g2{X2, Y2), X,Y e X{M).

Define a connection V on M as:

VxV = (Vix.yi, V2X3F2) 6 X{Mi) XX{M2), X,Ye X{M).

One can directly check that this connection is torsion free and compatible with the canonical
Riemannian metric p on M (i.e., preserving the metric) hence it is the Levi-Civita connection for
the product Riemannian manifold {M,g). From the construction of V, it is also canonical.

According to Edelman et al [5], in order to apply Newton's or conjugate gradient methods on
a Riemannian manifold, one needs to know how to explicitly calculate parallel transport of vectors
on the manifolds and an explicit expression for geodesies. The reason that Edelman et aVs methods
can be easily generalized to any product of Stiefel (or Grassmann) manifolds is because there are
simple relations between the parallel transports on the product manifold and its factor manifolds.
The following theorem follows directly from the above discussion of the Levi-Civita connection on
the product manifold.



Theorem 1 Consider M = M\ x M2 the product Riemannian manifold of Mi and M2. Then for
two vector fields X,Y ^ X{M), Y is parallel along X if and only ifYi is parallel along Xi and Y2
is parallel along X2.

As a corollary to this theorem, the geodesies in the product manifold are just the products
of geodesies in the two factor manifolds. Consequently, the calculation of parallel transport and
geodesies in the product space can be reduced to those in each factor manifold.

3 Riemannian Structure of the Essential Manifold

In this section we study the Riemannian structure of the essential manifold, which plays an impor
tant role in motion recovery from image correspondences (for details see [15]). To simplify notation,
for any vector u = (ui, U2, € R^, the notation u means the associated skew-symmetric matrix:

(0 -U3 U2
U3 0 -ui ' -td>3x3

-U2 Ui 0

Then for any two vectors u, u € R^, the cross product ux v is equal to uv.

Camera motion is modeled as rigid body motion in R^. Thedisplacement of the camera belongs
to the special Euclidean group SE{S):

SE{3) = {{R,S):SeR^Re 50(3)} (1)

where 50(3) € R^^^ is the space of rotation matrices (orthogonal matrices with determinant
-fl). An element g = {R,S) in this group is used to represent the coordinate transformation
of a point in R^. Denote the coordinates of the point before and after the transformation as
X= (x^, a;^)^ GR^ and y = (y^, y^,y^)^ GR^ respectively. Then, x and y are associated by:

y= R^x 5. (2)

We here use a transpose on R to simply later notation. Without loss of generality, (perspective
projection) images of x and yare given by p = (p\p^, 1)^ = (4, 4,1)^ GR^ and q= (o\ 1)^ =
12 XX

(^j 1)^ € R^ respectively.'* The main purpose of this paper is to study the following:

Motion and structure recovery problem: For a given set of corresponding images
points {(Pt, 9»)}ilij how to recover the camera motion (i?, 5) and the 3D coordinates
(3D structure) of the points that these image points correspond to?

It is well known in computer vision literature that two corresponding images p and q satisfy the so
called epipolar constraint [12]:

p^RSq —0. (3)

A good property of this constraint is that it decouples the problem of motion recovery from that of
structure recovery. The first part of this paper will be devoted to recovering motion from directly

^We here assume the camera model is a perspective projection with focal length 1. The spherical projection case
is similar and omitted here for simplicity.



using this constraint or its variations. In Section 6, we will see how this constraint has to be
adjusted when we consider recovering motion and structure simultaneously.

The matrix RS in the epipolar constraint is the so called essential matrix, and the essential
manifold is defined to be the space of all such matrices, denoted by:

e = {RS I R € 50(3), 5 € so(3)}.

50(3) is a Lie group of 3 X3 rotation matrices, and so(3) is the Lie algebra of 50(3), i.e., the
tangent plane^of 50(3) at the identity. so(3) then consists of all 3 x 3 skew-symmetric matrices.
In particular 5 Gso(3). As we will show later in this paper, for the problem of recovering camera
motion {R, 5) from the corresponding image pointsp and q, the associated objective functions are
usually functions of the epipolar constraint. Hence they are of the form f(E)eR with E e S.
Moreover such functions in general are homogeneous in E. Thus the problem of motion recovery
is equivalent to optimize functions defined on the so called normalized essential manifold:

£i ={RS\R€ 50(3), 5€so(3), ijr(S^5) =1}.

Note that ^tr{S^S) = 5^5. In order to study the optimization problem on such a manifold, it
is crucial to understand the Riemannian structure of the normalized essential manifold. We start
with the Riemannian structure on the tangent bundle of the Lie group 50(3), i.e., T(50(3)).

The tangent space of 50(3) at the identity e is simply its Lie algebra so(3):

re(50(3)) = so(3).

Since 50(3) is a compact Lie group, it has an intrinsic bi-invariant metric [2] (such metric is unique
up to a constant scale). In matrix form, this metric is given explicitly by:

Po(5i,52) = 2^r(SfS2)^ Si,$2 Gso(3).

Notice that this metric is induced from the Euclidean metric on 50(3) as a Stiefel submanifold
embedded in The tangent space at any other point R G50(3) is given by the push-forward
map R^:

Tr{S0{3)) = R4so{S)) = {R5|5 Gso(3)}.

Thus the tangent bundle of 50(3) is:

r(50(3))= U Tfi(50(3))
fl650(3)

Since the tangent bundle of a Lie group is trivial [25], r(50(3)) is then equivalent to the product
50(3) X so(3). r(50(3)) can then be expressed as:

r(50(3)) = {{R, RS)\Re 50(3), 5 Gso(3)} ^ 50(3) x so(3).

If we identify the tangentspace of so(3) with itself, then the metric go of50(3) induces a canonical
metric on the tangent bundle T(50(3)):

y) = 9o(Xi,X2) + gQ{Yi,Y2), AT,y Gso(3) x so(3).



Note that the metric defined on the fiber 5o(3) of T(50(3)) is the same as the Euclidean metric if
we identify so(3) with Such an induced metric on r(50(3)) is left-invariant under the action
of 50(3).

Then the metric g on the whole tangent bundle r(50(3)) induces a canonical metric g on the
unit tangent bundle of r(50(3)),

Ti(SO(3)) S{(R, RS)\Re S0(3), 5€so(3), ^tr(5^5) =1}.
It is direct to check that with the identification of so(3) with the unit tangent bundle is simply
the product 50(3) x where is the standard 2-sphere embedded in According to Edelman
et al [5], 50(3) and both are Stiefel manifolds V(n, k) of the type n = k = 3 and n = 3, ik = 1,
respectively. As Stiefel manifolds, they both possess canonical metrics by viewing them as quotients
between orthogonal groups. Here 50(3) = 0(3)/0(0) and = 0(3)/0(2). Fortunately, for Stiefel
manifolds of the special type k = n or k = 1, the canonical metrics are the same as the Euclidean
metrics induced as submanifold embedded in R"^^. From the above discussion, we have

Theorem 2 The unit tangent bundle Ti(50(3)) is equivalent to 50(3) x S^. Its Riemannian
metric g induced from the bi-invariant metric on 50(3) is the same as that induced from the
Euclidean metric with Ti(50(3)) naturally embedded in Further, (Ti(SO(Z)),g) is the product
Riemannian manifold of (50(3), (/i) and (8^,5^2) with gi and g2 canonical metrics for 50(3) and

as Stiefel manifolds.

However, the unit tangent bundle Ti(50(3)) is not exactly the normalized essential manifold
El. It is a double covering of the normalized essential space 5i, i.e., Si = ri(50(3))/Z^ (for details
see [15]). The natural covering map from ri(50(3)) to Si is:

h-.TiiS0(3)) Si

{R, RS) € ri(50(3)) ^ RSe Si.

The inverse of this map is given by:

ft-'(flS) =[(R,RS), (flexp(-5jr),/es)}.

Comment 1 As we know, the two pairs of rotation and translation corresponding to the same
normalized essential matrix RS are {R,S) and (i2exp(-57r),exp(57r)5). As pointed out by Wein-
stein, this double covering h is equivalent to identifying a left-invariant vector field on 50(3) with
the one obtained by flowing it along the corresponding geodesic by distance tt, the so-called time-w
map of the geodesic flow on 50(3).

If we take for Si the Riemannian structure induced from the covering map h, the original opti
mization problem ofoptimizing f{E) on Si can be converted to optimizing f{R,5) on ri(50(3)).®
Generalizing Edelman et aPs methods to the product Riemannian manifolds, we may obtain intrin
sic geometric Newton's or conjugate gradient algorithms for solving such an optimization problem.
Due to Theorem 2, we can simply choose the induced Euclidean metric on ri(50(3)) and explicitly

Although the topological structures ofSi and Ti(50(3)) are different, the nonlinear optimization only relies on
local Riemannian metric and this identification will not affect effectiveness of the search schemes.



give these intrinsic algorithms in terms of the matrix representation of ri(50(3)). Since this Eu
clidean metric is thesame as the intrinsic metrics, the apparently extrinsic representation preserves
all intrinsic geometric properties of the given optimization problem. In this sense, the algorithms
we are about to develop for the motion recovery are different from other existing algorithms which
make use of particular parameterizations of the underlying search manifold Ti(SO{S)).

4 Optimization on the Essential Manifold

Let /(i?,5) be a function defined on ri(50(3)) = 50(3) x with R € 50(3) represented by
a 3 X 3 rotation matrix and 5 G a vector of unit length in This section gives Newton's
algorithm for optimizing a function defined on this manifold (please refer to [5] for the details of
the Newton's or other conjugate gradient algorithms for general Stiefel or Grassmann manifolds).

In order to generalize Newton's algorithm to a Riemannian manifold, we need to know how to
compute three things: the gradient, the Hessian of a given function and the geodesies of the mani
fold. Since the metric of the manifold is no longer the standard Euclidean metric, the computation
for these three needs to incorporate the new metric. In the following, we will give general formulae
for the gradient and Hessian of a function defined on 50(3) X using results from [5]. In the next
section, we will however give an alternative approach for directly computing these ingredients by
using the explicit expression of geodesies on this manifold.

Let gi and p2 be the canonical metrics for 50(3) and respectively and Vi and V2 be
the corresponding Levi-Civita connections. Let g and V be the induced Riemannian metric and
connection on the product manifold 50(3) xS^. The gradient ofthe function f{R,5) on 50(3) xS^
is a vector field G = grad(/) on 50(3) x such that:

df(Y) = g(G^Y), for all vector fields Y on 50(3) x S^.

Geometrically, so defined gradient G has the same meaning as in the standard Euclidean case, i.e.,
G is the direction in which the function f increases the fastest. On 50(3) x S^, it can be shown
that the gradient is explicitly given as:

G={fn- RflR, fs - 5/JS) € Tr{S0{3)) x Ts(S^)
where fji G E^^^ is the matrix of partial derivatives of / with respect to the elements of R and
fs GE^ is the vector of partial derivatives of / with respect to the elements of 5, i.e..

Geometrically, the Hessian of a function is the second order approximation of the function at
a given point. However, when computing the second order derivative, unlike the Euclidean case,
one should take the covariant derivative with respect to the Riemannian metric g on the given
manifold.6 On 50(3) x S^, for any X = (XuX2),Y = {YuY2) Gr(50(3)) x 7(8^), the Hessian
of f(R^ 5) is explicitly given by:

Hessf[X,Y) = fRR{XuYi)-trflrn{XuYi)
+ fss(.Xi,Y2)-trfTrs(X2,Y2)
+ fRsi^lty2) + fsR{Yi,X2).

'it is a fact in Riemannian geometry that there is a unique metric preserving eind torsion-free covariant derivative.
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where the Christoffel functions Tr for 50(3) and Fs for are:

and the other terms are:

rfl(Xi,y,) = -R{xiYi + Y^^x,),

rs(X2,y2) = \s(x^Y2-\-Y^x.i)

fss(X,,Y,) =E^iXMV.h,
ifj

fMXuY,) =Eg^^ix^uy^u, fs„iYuX,) =Eg^^(Yl)m)j,
ijtk itjk

For Newton's algorithm, we need to find the optimal updating tangent vector A such that:

Hess /(A, y) = p(—O, y) for all tangent vectors Y.

A is then well-defined and independent of the choice of local coordinate chart. In order to solve for
A, first find the tangent vector Z{A) = {Zi,Z2) 6 r/?(50(3)) x r5(S^) (in terms of A) satisfying
the linear equations:

/R/i(Ai,yi) + /5i?(yi, A2) = giiZi^Yi) for all tangent vectors Yi Gr(50(3))
755(^2, Y2) + fnsiAi, y2) = g2{Z2, Y2) for all tangent vectors y2 € r(S2)

From the expression of the gradient G, the vector A = (Ai, A2) then satisfies the linear equations:

Zi-R skew(/jAi) - skew(Ai/^)it! = -(/a - RfnR)
Z2-/j5A2 = -(/5-5/j5)

with i2^Ai skew-symmetric and 5^A2 = 0. In the above expression, the notation skew(i4) means
the skew-symmetric part of the matrix A: skew(A) = (A - A^)/2. For this system of linear
equations to be solvable, the Hessian has to be non-degenerate, in other words the corresponding
Hessian matrix in local coordinates is invertible. This non-degeneracy depends on the chosen
objective function /.

According to Newton's algorithm, knowing A, the search state is then updated from (R,S) in
direction A along geodesies to (exp(i2, Ai), exp(5, A2)), where exp(i2, •) stands for the exponential
map from r/j(5G(3)) to 50(3) at point i2, similarly for exp(5, •). Explicit expressions for the
geodesies exp(i?.Ait) on 50(3) and exp(5, A2t) on will be given in the next section. The
overall algorithm can be summarized in the following:

Riemannian Newton's algorithm for minimizing /(/?, 5) on the essential manifold:

• At the point (R, 5),

- Compute the gradient G = {/r- Rf^Ry fs - SfgS),
- Compute A = - Hess~^G.

Move (R, 5) in the direction A along the geodesic to (exp(i2, Ai), exp(5, A2)).

11



• Repeat ||G|| > e for pre-determined e > 0.

Since the manifold 50(3) x is compact, this algorithm is guaranteed to converge to a (local)
extremum of the objective function f(R, S). Note that this algorithm works for anyobjective func
tion defined on 50(3) xS^. For an objective function with non-degenerate Hessian, the Riemannian
Newton's algorithm has quadratic (super-linear) rate of convergence [21].

5 Optimal Motion Recovery

In this section, we apply the Riemannian Newton's algorithm to various objective functions associ
ated with the motion recovery problem in computer vision. Relationship among different objective
functions will be studied in detail in the section after.

5.1 Minimizing Epipolar Constraint

From preceding sections, we know that two corresponding image points p, g e satisfy the so
called epipolar constraint:

p^RSq = 0 (4)

where R € 50(3) and 5 € are relative rotation and translation between the two image frames.^
Thus to recover the motion R, 5 from a given set of image correspondences pt, g,- € E^, i = 1,..., A^,
it is natural to minimize the following objective function:

N

F{R,S) = ^(pjRSqif, Pi,9i€K® (fl,5)e50(3)xS^ (5)
t=l

In this section, we apply the Newton's algorithm introduced in the previous section to solve
this problem. We will give explicit formulae for calculating all the ingredients needed: geodesies,
gradient G, Hessian Hess F and the optimal updating vector A = -Hess~^G (and we will show
later how these formulae can be extensively reused for obtaining corresponding formulae of all
the other objective functions). It is well known that an explicit formula for the Hessian is also
important for sensitivity analysis of the motion estimation [3]. Further, using this formula, we will
be able to show that, under certain conditions, the Hessian is guaranteed non-degenerate, whence
the Newton's algorithm has quadratic rate of convergence.

Instead of using formulae given in the previous section, the computation of the gradient and
Hessian can also be carried out by using explicit formulae of geodesies on these manifolds. On
50(3), the formula for the geodesic at R in the direction Ai € Tr(S0{3)) = R*(so(3)) is:

R{t) = exp(R,Ait) = RexpQt —it!(/+ Dsin i-|-ai^(l - cost)) (6)

where t € E,a; = € so(3). The last equation is called the Rodrigues' formula (see [19]).
(as a Stiefel manifold) also has very simple expression of geodesies. At the point 5 along the

direction A2 € Ts{S^) the geodesic is given by:

5{t) = exp(5, A2O = Scos(Tt-\-Usinat (7)

^In the literatiire, for different definitions ofthe rotation R, the matrix Rin the above expression might differ by
a transpose.
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where a = IIA2II and V — then S^IJ = 0 since 5^A2 = 0.

Using the formulae (6) and (7) for geodesies , we can calculate the first and second derivatives
of F(R, S) in the direction A = (Ai, A2) € Tr(S0{3)) x T$(S'̂ ):

dF{R{t),S{t)) ^
dF{A) =

dt

HessF(A,A) =

N

= y^pjRSqi{pjAiSqi-\-pjRA2qi),
t=o ^

t=l

cfiF(R(t},S{t))
dt^ t=o

= ^ pf(AiS + BA2)9i + pjRSgi pf(-AiAjRS-AlA2RS +2AiA2)qi
t=l

(8)

(9)

From the first order derivative, the gradient G = {Gi,G2) € Tr(SO(3)) x Ts{S^) of F(S, R) is:

G=^pjRSgi [piqJS^ - RSqipJR, %R^Pi - SpjRqJ5)
t=i

(10)

It is direct to check that RFGi 6 so(3) and S Gj = 0, so the G given by the above expression is a
vector in Tfi(S0(3)) x Ts(S2).

For any pair of vectors X,Y ^ Tit{S0{3)) x TsCS^), polarize Hess F(A, A) to get the expression
for Hess F{X,Y):

HessF(J>f,y) = i [Hess F(A'+ y,X +y)-Hess F(A:-y,A'-y)]
N

= 53pf(Xi5 +flX2)9ipf(yiS + Fy2)ft
t=l

pI +yiX^)RS -XlYiRS +(X1Y2 +YiXi-^ qi+ PiRSqi (.11)

To make sure this expression is correct, if we let A" = V = A, then we get the same expression for
Hess F(A, A) as that obtained directly from the second order derivative.

The following theorem shows that this Hessian is non-degenerate in a neighborhood of the
optimal solution, therefore the Newton's algorithm will have a quadratic rate of convergence by
Theorem 3.4 of Smith [21].

Theorem 3 Consider the objectivefunction F{R^S) as above. Its Hessian is non-degenerate in a
neighborhood of the optimal solution if there is a unique (up to a scale) solution to the system of
linear equations:

pjEqi = 0, i=\,...,N.

If SO, the Riemannian Newton's algorithm has quadratic rate of convergence.

Proof: It suffices to prove for any A 0, Hess F(A, A) > 0. According to the epipolar
constraint, at the optimal solution, we have pjRSqi = 0. The Hessian is then simplified to:

N

Hess F(A, A) =^ [pT(Ai5 +FA2)?,'
»=1
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Thus Hess F(A, A) = 0 if and only if

p[(Ai5 + RA2)qi = 0, 2= 1,..., AT.

Since we also have

pjRSqi = 0, 2= 1,... , AT.

Then both AiS + R^2 ^nd RS are solutions for the same system of linear equations which by
assumption has a unique solution, hence Hess F(A, A) = 0 if and only if

Ai5 + R^2 = Ai25, for some A € K

<=!> (AiS + Rhi) = \S <=!• iDS + A2 = AS
^ OS = A5, and A2 = 0, since S^A2 = 0

^ u = 0, and A2 = 0, since 5 7^ 0

^ A = 0.

Remark 1 In the previous theorem, regarding the 3x3 matrix E in the equations pJEqi = 0 as
a vector in R®, one needs at least eight equations to uniquely solve E up to a scale. This implies
that we need at least eight image correspondences {{pi,qi)}iLi, N > S to guarantee the Hessian
non-degenerate whence the iterative search algorithm converges in quadratic rate. If we study this
problem more carefully, using transversality theory, one may show that five image correspondences
in generalposition is the minimal data to guarantee the Hessian non-degenerate [17]. However, the
five point technique usually leads to many (up to twenty) ambiguous solutions, as pointed out by
Horn [8]. Moreover, numerical errors usually make the algorithm not work exactly on the essential
manifold and the extra solutions for the equations pfEqi = 0 may cause the algorithm to converge
very slowly in these directions. It is not just a coincidence that the conditions for the Hessian to
be non-degenerate are exactly the same as that for the eight-point linear algorithm (see [17, 15]) to
have a unique solution. A heuristic explanation is that the objective function here is a quadratic
form of the epipolar constraint which the linear algorithm is directly based on.

Returning to the Newton's algorithm, assume that the Hessian is non-degenerate, i.e., invertible.
Then, we need to solve for the optimal updating vector A such that A = Hess"^G, or equivalently:

Hess F{Y, A) = g{-G, Y) = -dF{Y), for all vector fields Y.

Pick five linearly independent vectors, i.e., a basis of rH(50(3)) XTs{S^): E^,j = 1,... ,5. One
then obtains five linear equations:

Hess F{E^, A) = -dF(E'), j = 1,..., 5.

Since the Hessian is invertible, these five linear equations uniquely determine A. In particular,
one can choose the simplest basis such that for j = 1,2,3: E^ = (Rej,0) with ej, j = 1,2,3 the
standard basis for and for j = 4,5: E^ = (0, ej) such that {5,64,65} form an orthonormal basis
for E^. The vectors €4,65 can be obtained using Gram-Schmidt process.
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Define a 5 x 5 matrix A € and a 5 dimensional vector b € R® to be:

(A)jk = Hess F(E^\ E^), (b)^ = -dF{E'), j, A: = 1,..., 5.

Then solve for the vector a = (oi, a2, as, 04, € R^:

a = A~^b.

Let ij = (ai,a2, as)^ € R^ and v = 0464 + 0565 € R^. Then for the optimal updating vector
A = (Ai,A2), we have Ai = Ru) and A2 = v. We now summarize the Riemannian Newton
algorithm for the optimal motion recovery, which can be directly implemented.

Riemannian Newton's algorithm for motion recovery from the objective function:

N

F{R,S) = Pi,9i e {R, S) € S0(3) XS^.
X=1

• At the point {R,S) € 50(3) x S^, compute the optimal updating vector A = —Hess~^G:

— Compute the vectors 64,65 from S using Gram-Schmidt process and obtain the five basis
tangent vectors E^ G7^(50(3)) XT5(S^), 1 < j < 6 as defined in the above,

- Compute the 5 X5 matrix {A)jk = Hess F{E^, E'̂ ), I < j,k < b using:

N

Hess F(X,Y)=J^pT(XiS +RX2)gipJ(YiS + RY2)qi
i=l

+ Pi RSqi pj + YiXj')RS - X^Y2RS + (XiKj + gi

—Compute the 5 dimensional vector (b)j = —dF(E^), 1 < i < 5 using:

N

dF(X) = ^pjRSgiipJXiSgi +pfRX2gi),
1=1

—Compute the vector a = (ai, 02, as, a4, a^)^ € R^ such that a = A~^h,
—Define u) = (ai,a2,as)^ G R^ and v = a4e4 + a^e^ G R^. Then the optimal updating

vector

A = -Hess-^G= (RO,u).

• Move {R,S) in the direction A along the geodesic to (exp(R, Ai), exp(5, A2)), using the for
mula for geodesies on 50(3) and respectively:

exp(R, Ai) = i2(/+ tD sin i + D^(l —cost)),
exp(5, A2) = 5 cos a-\-Usin a,

where t=y'̂ |tr(A^Ai),a; =R^Ai/t and a=IIA2II, U=
• Repeat ||b|| > e for some pre-determined € > 0.
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Remark 2 From calculations above, we note that one can consider a more general objective func
tion with a (positive) weights Wi GM"*" associated with each image correspondence (pi,qi):

N

F{R, S) = ^ Wi{pjRSqif, Pi, q{ G {R, S) G50(3) XS^.
t=i

For example, one may choose w- ^= l|PtiP||9i|P to convert the image points from perspective pro
jection to spherical projection. Then, in the above algorithm, the expressions of the gradient, dF
and the Hessian only need to be slightly modified.

5.2 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (4) gives the only necessary (depth independent) condition that
image pairs have to satisfy, motion estimates obtained from minimizing the objective function (5):

N

F(R,S) = P(, 9i € E®,(R,S) 6 SO(3) xS^ (12)
1=1

are not necessarily statistically or geometrically optimal for the commonly used noise model of
image correspondences. In general, in order to get less biased estimates, we need to normalize (or
weight) the epipolar constraints properly, which has been initially observed in [31]. In this section,
we will give a brief account of these normalized versions ofepipolar constraints.* These normalized
versions in general are still functions defined on the essential manifold. The reason will become
clear in the next section when we see that these normalizations in fact can be unified by a single
procedure of getting optimal estimates of motion and structure.

We here discuss this issue forthe perspective projection case.® In the perspective projection case,
coordinates of image points p and q areof the form p= (p^,p^, 1)^ GR® and q = (g^g®, 1)^ GR®.
Suppose that the actual measured image coordinates of N pairs of image points are:

Pi=Pi + Xi, qi = qi + yh i=l,...,N (13)

where piand g,- areideal (noise free) image coordinates, Xi = (x],xf, 0)^ GR® and t/,- = (yl,yf,0)^ G
R® and x\,x'i,y\,yf are independent Gaussian random variables ofidentical distribution A^(0, a^).
Substituting pi and g,- into the epipolar constraint (4), we obtain:

pj RSqi = xj RSqi + pjRSyi + xfRSyi.

Since the image coordinates pi and g, usuallyare magnitude larger than x, and y,-, one can omit the
last term in the equation above. Then pJRSqi are independent random variables approximately of
Gaussian distribution iV(0, cr2(||e3R5g,j|® + ||pfi25e3|p)) where 63 = (0,0,1)^ GR®. If we assume
the a prior distribution of the motion {R, S) is uniform, the maximum a posterior(MAP) estimates
of (R, S) is then the global minimum of the objective function:

The spherical projection case is similar and is omitted for simplicity.

16



We here use Fs to denote the statistically normalized objective function associated with the epipolar
constraint. This objective function is also referred in the literature under the name gradient criteria
[13] or epipolar improvement [30]. Therefore, we have:

{R,S)map « argminFs (it:, 5) (15)

Note that in the noise free case, Fg achieves zero, just like the unnormalized objective function F of
equation (5). Asymptotically, MAP estimates approach the unbiased minimum mean square esti
mates (MMSE). So, in general, the MAP estimates give less biased estimates than the unnormalized
objective function F.

Note that Fg is still a function defined on the manifold 50(3) x S^. The discussion given in
Section 4 about optimizing a general function defined on the essential manifold certainly applies
to Fg. Moreover, note that the numerator of each term of Fg is the same as that in F, and the
denominator of each term in Fg is simply:

||e3fl%|P + llpfflSejf = (e^RSqif + (elBSqif+ (pjRSe{f + {pjRSeif (16)

where ej = (1,0,0)'^ € and ej = (0,1,0)^ € That is, components of each term of the nor-
malized objective function Fg are essentially of the same form as that in the unnormalized one F.
Therefore, we can exclusively use the formulae of the first and second order derivatives dF(A) and
HessF(A, A) of the unnormalized objective function F to express those for the normalized objective
Fg by simply replacing p, or qi with e\ or 63 at proper places. This is one of the reasons why the
epipolar constraint is so important and studied first. Since for each term of F^, we now need to eval
uate the derivatives of five similar components (efFS^j)^, (e^F5g,)^, (pfF5ei)^, (pfF5ei)^ and
ipjRSqif, as oppose to one in the unnormalized case, the Newton's algorithm for the normalized
objective function is in general five times slower than that for the unnormalized objective function
F. But the normalized one gives statistically much better estimates, as we will demonstrate in the
experiment section.

Another commonly used criteria to recover motion is to minimize the geometric distances be
tween image points and corresponding epipolar lines. This objective function is given as:

Fg(R,S) = + pi,9i€E^(i^,5)G50(3)xS• (17)

We here use Fg to denote this geometrically normalized objective function. For a more detailed
derivation and geometric meaning of this objective function see [13, 33]. Notice that, similar to
F and Fs, Fg is also a function defined on the essential manifold and can be minimized using the
given Newton's algorithm.

The relationship between the statistically normalized objective function Fg and the geometri
cally normalized objectivefunction Fg will be clearly revealed in the next section whenwestudy the
optimal motion and structure recovery as a constrained optimization problem. As we know from
[16], in the differential case, the normalization has no effect when the translational motion is in the
image plane, i.e., the unnormalized and normalized objective functions are in fact equivalent. For
the discrete case, we have a similar claim. Suppose the camera motion is given by (F,5) € 5F(3)
with 5 G and R = e^^ for some a; G and ^ GR. If a; = (0,0,1)^ and 5 = (si,S2>0)^, i.e.,
the translation direction is in the image plane, then, since R and 63 now commute, the expression
lle^FSgilP simply becomes ||5|p = 1. Similarly, \\pjRSelW^ = ||5|p = 1. Hence, in this case, all
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the three objective functions F, Fs and Fg are very similar to each other around the actual (F, 5).®
Practically, when the translation is in the image plane and rotation is small (i.e., R » /), the
normalization will have little effect on the motion estimates, as will be verified by the simulation.
Therefore, in certain cases, minimizing the objective function F which is directly related to the
epipolar constraint is not necessarily a wrong thing to do.

6 Optimal Triangulation

Note that, in the presence of noise, for the motion (R, S) recovered from minimizing the unnor-
malized or normalized objective functions F, Fs or Fg, the value of the objective functions is not
necessarily zero. That is, in general:

pjRSqi^O, i = l,...,N. (18)
Consequently, if one directly uses pi and qi to recover the 3D location of the point to which the
two images pi and qi correspond, the two rays corresponding to p, and qi may not be coplanar,
hence may not intersect at one 3D point. Also, when we derived the normalized epipolar constraint
Fs, we ignored the second order terms. Therefore, rigorously speaking, it does not give the exact
MAP estimates. Here we want to clarify the effect of such approximation on the estimates both
analytically and experimentally. Furthermore, since Fg also gives another reasonable approximation
of the MAP estimates, can we relate both Fs and Fg to the MAP estimates in a unified way? This
will be studied in this section. Experimental comparison will be given in the next section.

Under the assumption of Gaussian noise model (13), in order to obtain the optimal (MAP)
estimates of camera motion and a consistent 3D structure reconstruction, in principle we need to
solve the following optimization problem:

Optimal Triangulation Problem: Seek camera motion (R, S) and points pi €
and qi € on the image plane such that they minimize the distance from pi and qi:

N

Ft(R,S,pi,qi) = ^||Pt-Ptj|^ + ||ft-g,jp (19)
t=i

subject to the conditions:

pjRSqi = 0, pje3 = l, qfe3 = l, i = l,...,N. (20)

We here use Ft to denote the objective function for triangulation. This objective function is also
referred ii^ literature as the reprojection error. Unlike [7], we do not assume a known essential
matrix RS. Instead we seek Pi,qi and {R,S) which minimize the objective function Ft given
by (19). The objective function Ft then implicitly depends on the variables {R,S) through the
constraints (20). Clearly, the optimal solution to this problem is exactly equivalent to the optimal
MAP estimates of both motion and structure. Using Lagrangian multipliers, we can convert the
minimization problem to an unconstrained one:

N

b"?'-"- H llPi -P'H^ + lift - + >^iPlRSqi +Piipjes - 1) +7,(#63 - 1). (21)
t=l

9

lOi

'Around a small neighborhood of the actual (/?, 5), they only differ by high order terms.
'Strictly speeJdng, this is the case only when the noise level is low, t.e., corrupted objective functions are not yet

so different from the noise-free one.
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The necessary conditions for minima of this objective function are:

2(Pi - Pi) + ><iRSqi + A-ea = 0 (22)
2(gt - ft) + ^iS^R^Pi + jiCs = 0 (23)

Under the necessary conditions, we obtain:

where A,- is given by:

or

Pi = Pi - ^^e^esRSqi
ft ^ = ft - \\ielhS'̂ R'̂ Pi (24)
pjRSqi = 0

^ ^ '̂ (pjRSqi-\-qJS'̂ R'̂ Pi)
qj R^e^e^RSqi + pJRSe^e^S'̂ R!^pi

X. = ^PjRSqi ^ 2qTs'̂ RTp.
' qJS-^RT^ezRSqi pTRSelesSTRTpr

Substituting (24) and (25) into Ft, we obtain:

F,(R,S,pi,gi) = ipjRSqi +pjRSqi)^:^p3fl5?.IP +l|prflSer|p
and using (24) and (26) instead, we get:

F,iR,s,pi,qi) = +j£5££i)l (28)

Geometrically, both expressions of Ft are the distances from the image points p,- and ft- to the
epipolar lines specified by A,ft {R^S). Equations (27) and (28) give explicit formulae of the
residue of ||A- Pi\\^ + ||ft - ft-|p as pi, qi being triangulated by pi, qi. Note that the terms in Ft are
normalized crossed epipolar constraints between p,- and qi or between pi and g,-. These expressions

further used to solve for {^R,S) which minimizes Ft. This leads to the following
iterative scheme for obtaining optimal estimates ofboth motion and structure, without explicitly
introducing scale factors (or depths) of the 3D points.

Optimal Triangulation Algorithm Outline: The procedure for minimizing Ft can be outlined
as follows:

1. Initialize p,- (R, S), qi(R, S) as pi,qi.

2. Motion: Update {R,S) by minimizing F;(R,S) = Ft{R,S,p*i(R,S),q^(R,S)) given by (27)
or (28) as a function defined on the manifold 50(3) x S^.

3. Structure (Triangulation): Solve forp*{R, S) and q*[R,S) which minimize the objective
function Ft (19) with respect to {R,S) computed in the previous step.

4. Back to step 2 until updates are small enough.
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At step 2, F*{R,S):

N

F-(RS) = = f. {pfRSgrf . (pfRSgd'' ' SP3fl%|P+||p?^iJ5ei'|P £ril«3fi%IP llpffiSei-IP (29)

is a sum of normalized crossed epipolar constraints. It is a function defined on the manifold
50(3) X again hence can be minimized using the Riemannian Newton's algorithm, which is
essentially the same as minimizing the normalized epipolar constraint (14) studied in the preceding
section. The algorithm ends when (R,5) is already a minimum of F*. It can be shown that if
(i2,5) is a critical point of F*, then (F,5,p*(F,5),g*(i2,5)) is necessarily a critical point of the
original objective function Ft given by (19).

At step 3, for a fixed (F, 5), p*(F,5) and 9*(F, 5) can becomputed by minimizing the distance
WPi - Pi\\^ + IIfor each pair of image points. Let U e be the normal vector (of unit
length) to the (epipolar) plane spanned by (g,-,5). Given such a t,-, pi and qi are determined by:

where

^ \ ,• eg Pi + t'i t'iez e^UtJe^Qi + tfueaPtKh) - - frrf '
elt'it'iez e^tftiez

where = Rti. Then the distance can be explicitly expressed as:

ll9.-9if +l|p.-Pif = +III+llrf +

(30)

(31)

Ai = I - {ezQigfel + Jeg+ ez%), Bi = el63 . .
Ci = I - (ezpipjel-\-Pih-\-ezpi), Di = elez' ^ ^

Then the problem of finding p*(F,5) and g*(F, 5) becomes one of finding t* which minimizes the
function of a sum of two singular Rayleigh quotients:

min V(t) = /QQXtTs=o,tTu=i tjBiti tjR'̂ DiRti' ^ ^
This is an optimization problem on a unit circle in the plane orthogonal to the vector 5 (there
fore, geometrically, motion and structure recovery from N pairs of image correspondences is an
optimization problem on the space 50(3) x X where is an iV-torus, i.e., an iV-fold
product of S^). If 711,712 € are vectors such that 5,711,712 form an orthonormal basis of R^,
then ti = cos(^)7ii -}-sin(0)7i2 with 0 € R. We only need to find 6* which minimizes the function

^(^i(^))- From the geometric interpretation of the optimal solution, we also know that the global
minimum 6* should lie between two values: 61 and 62 such that t,(^i) and ^(^2) correspond to
normal vectors ofthe two planes spanned by (9,-, 5) and [R^pi, S) respectively (ifp,-, qi are already
triangulated, these two planes coincide). Therefore, in our approach the local minima is no longer
an issue for triangulation, as oppose to the method proposed in [7]. The problem now becomes a
simple bounded minimization problem for a scalar function and can be efficiently solved using stan
dard optimization routines (such as "fmin" in Matlab or the Newton's algorithm). If one properly
parameterizes ti{6), t* can also be obtained by solving a 6-degree polynomial equation, as shown in
[7] (and an approximate version results in solving a 4-degree polynomial equation [30]). However,
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the method given in [7] involves coordinate transformation for each image pair and the given pa
rameterization is by no means canonical. For example, if one chooses instead the commonly used
parameterization of a circle

2A 1 —
sin(2^) = cos(2^) = AGM, (34)

then it is straightforward to show from the Rayleigh quotient sum (33) that the necessary condition
for minima of V(i,) is equivalent to a 6-degree polynomial equation in A.^^ The triangulated
pairs {"PiiQi) and the camera motion (i2,5) obtained from the minimization automatically give a
consistent (optimal) 3D structure reconstruction by two-frame stereo.

The optimal triangulation algorithm successfully resolves some mysteries about the epipolar
geometry. First, it clarifies the relationship between previously obtained objective functions based
on normalization, including Fg and Fg. In the expressions of if we simply approximate
t>y PitQi respectively, we may obtain the normalized versions of epipolar constraints for recovering
camera motion. From (27) we get:

N

F,{R,S) = Y] , ,

or from (28) we have:

N (pjRSqj)^ {pjRSqi)^Fg{R,S) = -h (36)
hWesRSqilP WpjRSeU' ^ ^

The first function (divided by 4) is exactly the same as the statistically normalized objective
function Fg introduced in the preceding section; and the second one is exactly the geometrically
normalized objective function Fg. From the above derivation, we see that there is essentially no
difference between these two objective functions - they only differ by a second order term in terms

Pi ~ Pi fi-ud qi —q{. Although such subtle difference between Fg., Fg and Ft has previously been
pointed out in [33], our approach discovers that all these three objective functions can be unified
in the same optimization procedure - they are just slightly different approximations of the same
objective function F*. Practically speaking, using either normalized objective function Fg or i^,
one can already get camera motion estimates which are very close to the optimal ones.

Secondly, as we noticed, the epipolar constraint type objective function F* given by (29) ap
pears as a key intermediate objective function in an approach which initially intends to minimize
the so called reprojection error given by (19). The approach of minimizing reprojection error was
previously considered in the computer vision literature as an alternative to methods which di
rectly minimize epipolar constraints [31, 7]. We here see that they are in fact profoundly related.
Further, the crossed epipolar constraint F^ given by (29) for motion estimation and the sum of
singular Rayleigh quotients V{ti) given by (33) for triangulation are simply different expressions of
the reprojection error under different conditions. In summary, "minimizing (normalized) epipolar
constraints" [13, 33], "triangulation" [7] and "minimizing reprojection errors" [31] are all deeply
related to each other. They are in faot different (approximate) versions of the same procedure of
obtaining the optimal motion and structure estimates from image correspondences.

Since there is no closed form solution to 6-degree polynomial equations, directly minimizing the Rayleigh quotient
sum (33) avoids unnecessary transformations hence can be much more efficient.

21



7 Critical Values and Ambiguous Solutions

Note that all objective functions Fg and F* that we have encountered are even functions in
5 e We can then view them as functions on the manifold 50(3) xEP^ instead of50(3) xS^,
where is the two dimensional real projective plane. Although such an objective function could
have numerous critical points, numbers of different types of critical points have to satisfy the so
called Morse inequalities^ which is associated to topological invariants of the underlying manifold
(see [18]). A study of these inequalities will help us to understand how patterns of the objective
function's critical points may switch from one to another when the noise level varies.

Given a Morse function / (i.e., critical points areall non-degenerate) defined ona w-dimensional
compact manifold M, according to the Morse lemma [18], by changing the local coordinates of a
neighborhood around a critical point, say q e M, the function / locally looks like:

-®i + + (37)

The number Ais called the index of the critical point q. Note that g is a local minimum when A= 0
and a maximum when A= n. Let C\ denote the number of critical points with index A. Let Dx
denote the dimension of the homology group Hx(M, K) of M overany field IK, the so called X^^
Beta number. Then the Morse inequalities are given by:

0 0

^(-1)''-^Da < ^(-I)'-^Ca, j= 0,l,2,...n-l (38)
X=i X=i

f^(-l)^DA = f^(-l)^CA. (39)
A=0 A=0

Note that is the Euler characteristic x{^) of the manifold M.

Now we compute the dimension of homology groups of 50(3) x RP^. Since 50(3) ~
the manifold 50(3) x RP^ is the same as RP® x RP^. From algebraic topology, if we pick the field
K to be homology groups of RP" are given by:

FA(Rr,Z2) = Z2, A= 0,l,...,n. (40)

Moreover, homology groups (over a field) of a product space M x M' are given by the so called
tensor formula ofKunneth: Hx{M x M') = ®p^g=,x Hp(M)<S> This allows us to compute
the homology groups of 50(3) x RP^ over Z2:

ifA(5'0(3)xRr,Z2) =

Z2, A = 0

Z2 0 Z2, A = 1

Z2 ® Z2 ® Z2, A = 2
Z2 ® Z2 © Z2, A = 3
Z2 © Z2, A = 4

Z2, A = 5

0, A > 6

(41)

even function /(5) on satisfies f{—S) = f{S).
is the three dimensional real projective plane - the set of iJl one dimensional subspaces in 50(3) is

diffeomorphic to RP^ is because the three dimensional sphere is a double covering of50(3) which is clear from
the quaternion representation of 50(3).

"Z2 is the field of {0,1).
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Then D\ = 1,2,3,3,2,1 for A = 0,1,2,3,4,5 respectively. In particular, this gives the Euler
characteristic x('S'0(3) x RP^) = 0. All the Morse inequalities above give necessary constraints on
the numbers of different types of critical points of the function F(i2,5).

Among all the critical points, those belonging to type 0 are called (local) minima^ type n are
(local) maxima, and types 1 to n —1 are saddles. Since, from the above computation, the Euler
characteristicof the manifold 50(3) xRP^ is 0, any Morse function defined on it must have all three
kinds of critical values. The nonlinear search algorithms proposed in the above are trying to find
the global minimum of given objective functions. The search process, if not properly initialized,
may stop at any kind of the abovecritical points, especially the local minima.^® Moreover, like any
nonlinear system, when increasing the noise level, new critical points can be introduced through
bifurcation (see [20]). An example of bifurcation is shown in Figure 3. The Morse inequalities

Figure 3: Bifurcation which preserves the Euler characteristic by introducing a pair of saddle and
node. The indices of the two circled regions are both 1.

give necessary conditions of how the patterns of critical points may change from one to another.
Although, in general, many different types of bifurcations may occur when increasing the noise
level, the fold bifurcation illustrated in Figure 3 occurs most frequently in the motion and structure
estimation problem. We therefore need to understand how such a bifurcation may occur and how
it affects the motion estimates.

Since the nonlinear search schemes are usually initialized by the linear algorithm, not all the
local minima are equally likely to be reached by the proposed algorithms. From the preceding
section, we know all objective functions are more or less equivalent to the epipolar constraints,
especially when the translation is parallel to the image plane. If we let E = RS to be the essential
matrix, then we can rewrite the epipolar constraint as pjEqi = 0,i = I,... ,N. Then minimizing
the objective function F is (approximately) equivalent to the following least square problem:

min \\Aef (42)

where A is a AT x 9 matrix function of entries of p, and qi, and e 6 R^ is a vector of the nine
entries of E. Then e is the (usually one dimensional) null space of the 9x9 symmetric matrix

A. In the presence of noise, e is simply chosen to be the eigenvector corresponding to the least
eigenvalue of A^A. At a low noise level, this eigenvector in general gives a good initial estimate
of the essential matrix.^® However, at a certain high noise level, the smallest two eigenvalues may
switch roles, as do the two corresponding eigenvectors - topologically, a bifurcation as shown in
Figure 3 occurs. Let us denote these two eigenvectorsas e and e'. Since they both are eigenvectors
of the symmetric matrix they must be orthogonal to each other, i.e., e^e' = 0. In terms of
matrix notation, we have tr{E^E') = 0. For the motions recovered from E and E' respectively,

'̂ Maxima and saddles have a at least one dimensional imstable submeinifold hence the Newton's algorithm rarely
ends at these points.

'®Such estimate might be bizaed towards the has relief ambiguity.
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we have tr[S^R'S') = 0. It is well known that the rotation estimate R is usually much less
sensitive to noise than the translation estimates S. Therefore, approximately, we have R ^ R'
hence tr{S^S') ^ 0. That is, S and S' are almost orthogonal to each other. This phenomena is
very common in the motion estimation problem: at a high noise level, the translation estimate
may suddenly change direction by roughly 90°, especially in the case when translation is parallel
to the image plane. We will refer to such estimates as the second eigenmotion. Similar to detecting
local minima in the differential case (see [22]), the second eigenmotion ambiguity can usually be
detected by checking the positive depth constraints. Asimilar situation ofthe 90° flip in the motion
estimates for the diflferential case has previously been reported in [4].

Figure 4 and 5 demonstrate such a sudden appearance of the second eigenmotion. They are the
simulation results of the proposed nonlinear algorithm of minimizing the function Fs for a cloud
of 40 randomly generated pairs of image correspondences (in a field of view 90°, depth varying
from 100 to 400 units offocal length.). Gaussian noise ofstandard deviation of 6.4 or 6.5 pixels is
added on each image point (image size 512 x 512 pixels). To make the results comparable, we used
the same random seeds for both runs. The actual rotation is 10° about the T-axis and the actual
translation is along the AT-axis. '̂̂ The ratio between translation and rotation is 2}^ In the figures,

marks the actual translation, marks the translation estimate from linear algorithm (see
[17] for detail) and "o" marks the estimate from nonlinear optimization. Up to the noise level of
6.4 pixels, both rotation and translation estimates are very close to the actual motion. Increasing
the noise level further by 0.1 pixel, the translation estimate suddenly switches to one which is
roughly 90° away from the actual translation. Geometrically, this estimate corresponds to the
second smallest eigenvector of the matrix A as we discussed before. Topologically, this estimate
corresponds to the local minimum introduced by a bifurcation as shown by Figure 3. Clearly, in
Figure 4, there are 2 maxima, 2 saddles and 1 minima on EIP^; in Figure 5, there are 2 maxima, 3
saddles and 2 minima. Both patterns give the Euler characteristic of RIP^ as 1.

From the Figure 5, we can see that the the second eigenmotion ambiguity is even more likely
to occur (at certain high noise level) than the other local minimum marked by "O" in the figure
which is a legitimate estimate ofthe actual one. These two estimates always occur in pair and exist
for general configuration even when both the FOV and depth variation are sufficiently large. We
propose a way for resolving the second eigenmotion ambiquity alrecidy by linear algorithm which
is used for initialization. An indicator of the configuration beiing close to critical is the ratio of the
two smallest eigenvalues ofA^^A and as . By using both eigenvectors vg and vg for computing
the linear motion estimates and chosing the one which satifies the positive depth constraint by
larger margin (i.e. larger number of points satisfies the positive depth constraint) leads to the
motion estimates closer to the true one. The motion estimate R,S which satisfies the positive
depth constraint should make the following inner product greater then 0 for all the corresponding
points.

{Spi)'̂ {piRqi) > 0 (43)

While for low noise level all the points satisfy the positive depth constraint, with increasing noise
level some of the points fail to satisfy it. We therefore chose the solution where majority of points
satisfies the positive depth constraint. Simple reinitialization then guarantees convergence of the
nonlinear techniques to the true solution. Figures 6 and 7 depict a slice of the objective function

here use the convention that T-axisis the vertical direction of the image and X-axisis the horizontal direction
and the Z-axis coincides with the optical axis of the camera.

Rotation £ind translation magnitudes arecompared with respect to thecenter ofthecloud of3D points generated.
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Figure 4: Value of objective function Fs for
all S at noise level 6.4 pixels (rotation fixed
at the estimate from the nonlinear optimiza
tion). Estimation errors: 0.014 in rotation
estimate (in terms of the canonical metric on
50(3)) and 2.39'̂ in translation estimate (in
terms of angle).

Figure 5: Value of objective function Fs for
all 5 at noise level 6.5 pixels (rotation fixed
at the estimate from the nonlinear optimiza
tion). Estimation errors: 0.227 in rotation
estimate (in terms of the canonical metric on
50(3)) and 84.66° in translation estimate (in
terms of angle).

for varying translation and for the rotation estimate obtained by linear algorithm using vq and og
as two different estimates of the essential matrix.

This second eigenmotion effect has a quite different interpretation as the one which was previ
ously attributed to the bas relief ambiguity. The bas relief effect is only evident when FOV and
depth variation is small, but the second eigenmotion ambiguity mayshow up for general configura
tions. Bas relief estimates are statistically meaningful since they characterize a sensitive direction
in which translation and rotation are the most likely to be confound. The second eigenmotion,
however, is not statistically meaningful: it is an artifact introduced by a bifurcation of the objec
tive function; it occurs only at a high noise level and this critical noise level gives a measure of the
robustness of the given algorithm. For comparison, Figure 8 demonstrates the effect of the bas relief
ambiguity: the long narrow valley of the objective function corresponds to the direction that is the
most sensitive to noise.The (translation) estimates of 20 runs, marked as "o", give a distribution
roughly resembling the shape of this valley - the actual translation is marked as "-|-"in the center
of the valley which is covered by circles.

8 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among the linear algorithm
(as in [17]), nonlinear algorithm (minimizing F), normalized nonlinear algorithm (minimizing Fg)
and optimal triangulation (minimizing Ff). Due to the nature of the second eigenmotion ambi
guity, it gives statistically meaningless estimates. Such estimates should be treated as "outliers"
if one wants to properly evaluate a given algorithm and compare simulation results. In order for

^®This direction is given by the eigenvector of the Hessi«in associated with the smallest eigenvalue.
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Figure 6: Value of objective function Fg for all
S at noise level 6.7 pixels. Rotation is fixed
at the estimate from the linear algorithm from
the eigenvector vq associated with the small
est eigenvalue. Note the verge of the bifurca
tion of the objective function.
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Figure 7: Value of objective function Fg for all
S at noise level 6.7 pixels. Rotation is fixed
at the estimate from the linear algorithm from
the eigenvector ug associated with the second
smallest eigenvalue. The objective function is
well shaped and the nonlinear algorithm re
fined the linear estimate closer to the true so

lution.

all the simulation results to be statistically meaningful and comparable to each other, in following
simulations, we usually keep the noise level below the critical level at which the second eigenmo-
tion ambiguity occurs unless we need to comment on its eifect on the evaluation of algorithms'
performance.

We follow the same line of thought as the analysis of the differential case in [22]. We will demon
strate by simulations that seemingly conflicting statements in the literature about the performance
of existing algorithms can in fact be given a unified explanation if we systematically compare the
simulation results with respect to a large range of noise levels (as long as the results are statistically
meaningful). Some existing evaluations of the algorithms turn out to be valid only for a certain
small range of signal-to-noise ratio. In particular, algorithms' behaviors at very high noise levels
have not yet been well understood or explained. Since, for a fixed noise level, changing base line is
equivalent to changing the signal-to-noise ratio, we hence perform the simulations at a fixed base
line but the noise level varies from very low (< 1 pixels) to very high (tens of pixels for a typical
image size of 512 x 512 pixels). The conclusions therefore hold for a large range of base line. In
particular, we emphasize that some of the statements given below are valid for the differential case
as well.

In following simulations, for each trial, a random cloud of 40 3D points is generated in a region
of truncated pyramid with a field of view (FOV) 90°, and a depth variation from 100 to 400 units of
the focal length. Noises added to the image points are i.i.d. 2D Gaussian with standard deviation of
the given noise level (in pixels). Magnitudes of translation and rotation are compared at the center
of random cloud. This will be denoted as the translation-to-rotation ratio, or simply the T/R ratio.
The algorithms will be evaluated for different combinations of translation and rotation directions.
We here use the convention that V-axis is the vertical direction of the image and X-axis is the
horizontal direction and the Z-axis coincides with the optical axis of the camera. All nonlinear
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Figure 8: Bas relief ambiguity, FOV is 20° and the random cloud depth varies from 100 to 150
units of focal length. Translation is along the JV-axis and rotation around the F-axis. Rotation
magnitude is 2°. T/R ratio is 2. 20 runs at the noise level 1.3 pixels.

algorithms are initialized by the estimates from the standard 8-point linear algorithm (see [17]),
instead of from the ground truth.The criteria for all nonlinear algorithms to stop are: 1. The
norm of gradient is less than a given error tolerance, which usually we pick as 10~® unless otherwise
stated;^^ and 2. The smallest eigenvalue ofthe Hessian matrix is positive.

8.1 Axis Dependency Profile

It has been well known that the sensitivity of the motion estimation depends on the cameramotion.
However, in order to give a clear account of such a dependency, one has to be careful about two
things: 1. The signal-to-noise ratio and 2. Whether the simulation results are still statistically
meaningful while varying the noise level.

Figure 9, 10, 11 and 12 give simulation results of 100 trials for each combination of translation
and rotation ("T-R") axes, for example, "X-F" means translation is along the X-axis and the
rotation axis is the F-axis. Rotation is always 10° about the axis and the T/R ratio is 2. In
the figures, "linear" stands for the standard 8-point linear algorithm; "nonlin" is the Riemannian
Newton's algorithm minimizing the epipolar constraints F, "normal" is the Riemannian Newton's
algorithm minimizing the normalized epipolar constraints Fg.

By carefully comparing the simulation results in Figure 9, 10, 11 and 12, we can draw the
following conclusions:

• Optimization Techniques (linear vs. nonlinear)

1. Minimizing F in general gives better estimates than the linear algorithm at low noise

We like to point out that evaluation based on initializing from the ground truth is misleading for using these
algorithms in real applications since it usually does not reveal correctly the relationship between the linear algorithm
and nonlinear algorithms.

'̂Our current implementation of the algorithms in Matlab has a numerical accuracy at 10~®.
Since we have the explicit formulae for Hessian, this condition would keep the algorithms from stopping at saddle

points.



Trantlaian Mtknm «•>> 4»p«ndency: noo* Itvtl 1.0»i»l

X-Z Y-X Y-Y Y-Z Z-X
Trenslalien-Rotalion axiiu

Rotation ijot dopendeney: ncaoo lovot 1,0 pael

Y-X Y-Y Y-Z 2-X
Tftntlulott-Rolation uitti

Figure 9: Axis dependency: estimation errors
in rotation and translation at noise level 1.0

pixel. T/R ratio = 2 and rotation = 10°.

Tranilaion ««unn« us dapandmy; nea« l«v*l3.0 pcnl

X-X X-V X-Z Y-X Y-Y Y-Z Z-X Z-Y Z-Z
Tianslaton-Rotatlon uiaoi

Rowion ottmoio tzio depondoncy: noiao lovol3.0 paol

Ivioar

nonljn . .

ixirmal

X-X X-Y X-Z Y-X Y-Y Y-Z Z-X Z-Y Z-Z
Translation-Rotation axlaas

Figure 10: Axis dependency: estimation er
rors in rotation and translation at noise level

3.0 pixels. T/R ratio = 2 and rotation = 10°.

levels (Figure 9 and 10). At higher noise levels, this is no longer true (Figure 11 and
12), due to the more global nature of the linear technique.

2. Minimizing the normalized Fg in general gives better estimates than the linear algorithm
at moderate noise levels (all figures). Very high noise level case will be studied in the
next section.

Optimization Criteria (F vs. Fg)

1. At relatively low noise levels (Figure 9), normalization has little effect when translation
is parallel to the image plane; and estimates are indeed improved when translation is
along the Z-axis.

2. However, at moderate noise levels (Figure 10, 11 and 12), things are quite the opposite:
when translation is along the Z-axis, little improvement can be gained by minimizing
Fs instead of F since estimates are less sensitive to noise in this case (in fact all three
algorithms perform very close); however, when translation is parallel to the image plane,
F is more sensitive to noise and minimizing the statistically less biased Fg consistently
improves the estimates.

Axis Dependency (translation parallel to image plane vs. along Z-axis)

1. All three algorithms are the most robust to the increasing of noise when the translation
is along Z. At moderate noise levels (all figures), their performances are quite close to
each other.

2. Although, at relatively lownoise levels (Figure 9, 10and 11), estimation errors seem to be
larger when the translation is along the Z-axis, estimates are in fact much less sensitive
to noise and more robust to increasing of noise in this case. The larger estimation error in
case of translation along Z-axis is because the displacements of image points are smaller
than those when translation is parallel to the image plane. Thus, with respect to the
same noise level, the signal-to-noise ratio is in fact smaller in the case of translating
along the Z-axis.
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3. At a noise level of 7 pixels (Figure 12), estimation errors seem to become smaller when
the translation is along Z-axis. This is not only because, estimates are less sensitive
to noise for this case, but also due to the fact that, at a noise level of 7 pixels, the
second eigenmotion ambiguity already occurs in some of the trials when the translation
is parallel to the image plane. Outliers given by the second eigenmotion are averaged in
the estimation errors and make them look even worse.

The second statement about the axis dependency supplements the observation given in [29]. In
fact, the motion estimates are both robust and less sensitive to increasing of noise when translation
is along the Z-axis. Due to the exact reason given in [29], smaller signal-to-noise ratio in this case
makes the effect of robustness not to appear in the mean estimation error until at a higher noise
level. As we have claimed before, for a fixed base line, high noise level results resemble those for
a smaller base line at a moderate noise level. Figure 12 is therefore a generic picture of the axis
dependency profile for the differential or small base-line case (for more details see [16]).

8.2 Non-iterative vs. Iterative

In general, the motion estimates obtained from directly minimizing the normalized epipolar con
straints Fs or Fg are already very close to the solution of the optimal triangulation obtained by
minimizing Ft iteratively between motion and structure. It is already known that, at low noise lev
els, the estimates from the non-iterative and iterative schemes usually differ by less than a couple
of percent [33]. This is demonstrated in Figure 13 and 14- "linear" stands for the linear algorithm;
"norm nonlin" for the Riemannian Newton's algorithm minimizing normalized epipolar constraint
Fs\ "triangulate" for the iterative optimal triangulation algorithm. For the noise level from 0.5 to 5
pixels, at the error tolerance 10"®, the iterative scheme has little improvement over the non-iterative
scheme - the two simulation curves overlap with each other. Simulation results given in Figure 15
and 16 further show that the improvements of the iterative scheme become a little bit more evident
when noise levels are very high, but still very slim. Due to the second eigenmotion ambiguity, we



can only perform high noise level simulation properly for the case when the translation direction is
along the Z-axis.
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tio is 2. Noises range from 0.5 to 5 pixels.

By comparing the simulation results in Figures 13, 14, 15 and 16, we can therefore draw the
following conclusions:

• Although the iterative optimal triangulation algorithm usually gives better estimates (as it
should), the non-iterative minimization of the normalized epipolar constraints Fg or Fg gives
motion estimates with only a few percent larger errors for all range ofnoise levels. The higher
the noise level, the more evident the improvement of the iterative scheme is.

• Within moderate noise levels, normalized nonlinear algorithms consistently give significantly
better estimates than the standard linear algorithm, especially when the translation is par
allel to the image plane. At very high noise levels, the performance of the standard linear
algorithm, out performs nonlinear algorithms. This is due to the more global nature of the
linear algorithm. However, such high noise levels are barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm gives the MAP esti
mates of the camera motion and scene structure, the estimation error can be shown close to the
theoretical error bounds, such as the Cramer-Rao bound. This has been shown experimentally in
[30]. Consequently, minimizing the normalized epipolar constraints F^ or Fg gives motion estimates
close to the error bound as well. At very high noise levels, linear algorithm is certainly more robust
and gives better estimates. Due to numerous local minima, running nonlinear algorithms to update
the estimate of the linear algorithm does not necessarily reduce the estimation error further.
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8.3 Mutual Information Between Structure Estimates and Noises

So far, we have understood some of the difficulties in motion and structure estimation caused by
various ambiguities, such as the bas relief ambiguity which is related to the sensitivity issue, or the
second eigenmotion ambiguity which is related to the robustness issue. We here like to address,
from an information theoretic viewpoint, another difficulty caused by noise in motion and structure
estimation. More specifically, we like to ask the following questions:

Is the (2-frame) motion and structure recovery problem well-defined from an estimation
theoretic viewpoint?^^ If not, how much information can still be preserved in the
presence of noise? Consequently, is there any simple criteria that a "good" estimation
algorithm should achieve?

The answer to the first question is unfortunately negative due to following reasons. Let us assume
the same noise model as given by (13). '̂* As shown in Figure 17, given the noisy p = pQ-\-x where
X is any isotropic noise. Then the valid estimate of po is given by p, the projection of p onto the
epipolar line. Therefore, the component of x which is parallel to the epipolar line is absorbed into
the estimates. Without loss of generality, we assume the variance of the noise x is 1.^® Then the
variance left in the residue Ap = p —p is about 0.5. In other words, regardless of algorithms, at
least half of the noise will always become part of the estimated 3D structure. Consequently, any
good (2-frame) motion and structure estimation algorithm should have a residue variance (relative
to the noise variance) close to 0.5. This is a very simple and important statistic for evaluating any
structure and motion estimation algorithm. For the proposed optimal triangulation algorithm, we
computed the average residue variance for all the runs which are presented in Figure 13 and 14. It

is certainly well defined geometrically: in the noise free case, the linear algorithm gives closed-from solutions.
The Gaussian assumption is not necessary here. The following arguments hold for adl isotropic noises.

25 Note a; is a vector, so here we mean the expectation E(||x||^) = 1 where || • || is the 2-norm.
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gives 0.4988, very close to the theoretical value.

epipolar line

Figure 17: Estimate p for given noise x.

9 Discussions and Future Work

The motion and structure recovery problem has been studied extensively and many researchers
have proposed efficient nonlinear optimization algorithms. One may find historical reviews of these
algorithms in [17, 10]. Although these algorithms already have good performance in practice, the
geometric concepts behind them have not yet been completely revealed. The non-degeneracy con
ditions and convergence speed of those algorithms are usually not explicitly addressed. Due to
the recent development of optimization methods on Riemannian manifolds, we now can have a
better mathematical understanding of these algorithms, and propose new geometric algorithms or
filters (for example, following [23]), which exploit the intrinsic geometric structure of the motion
and structure recovery problem. As shown in this paper, regardless of the choice of different ob
jectives, the problem of optimization on the essential manifold is common and essential to the
optimal motion and structure recovery problem. Furthermore, from a pure optimization theoretic
viewpoint, most of the objective functions previously used in the literature can be unified in a
single optimization procedure. Consequently, "minimizing (normalized) epipolar constraints", "tri-
angulation", "minimizing reprojection errors" are all different (approximate) versions of the same
simple optimal triangulation algorithm.

We have applied only Newton's algorithm to the motion and structure recovery problem since it
has the fastest convergence rate (among algorithms using second order information, see [5] for the
comparison). In fact, the application of other conjugate gradient algorithms would be easier since
they usually only involve calculation of the first order information (the gradient, not Hessian),
at the cost of a slower convergence rate. Like most iterative search algorithms, Newton's and
conjugate gradient algorithms are local methods, i.e., they do not guarantee convergence to the
global minimum. Due to the fundamental relationship between the motion recovery objective
functions and theepipolar constraints discovered inthis paper, at high noise levels all the algorithms
unavoidably will suffer from the second eigenmotion (except the case when translation is along the
Z-axis). Such an ambiguity is intrinsic to the problem of motion and structure recovery and
independent of the choice of objective functions.

In this paper, we have studied in detail the problem of recovering a discrete motion (displace
ment) from image correspondences. Similar ideas certainly apply to the differential case where the
rotation and translation are replaced by angular and linear velocities respectively [15]. Optimiza
tion schemes for the differential case have also been studied by many researchers, including the
most recent Bilinear Projection Algorithm (BPA) proposed in [22] and a robust algorithm pro
posed in [32]. Similarly, one can show that they all in fact minimize certain normalized versions
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of the differential epipolar constraint. We hope the Riemannian optimization theoretic viewpoint
proposed in this paper will provide a diflferent perspective to revisit these schemes. Although the
study of the proposed algorithms is carried out in a calibrated camera framework, due to a clear
geometric connection between the calibrated and uncalibrated case [14], the same approach and op
timization schemes can be generalized with little effort to the uncalibrated case as well. Details will
be presented in future work. As we pointed out in this paper, Riemannian optimization algorithms
can be easily generalized to products of manifolds. Thus, although the proposed Newton's algo
rithm is for 2-frame and a single rigid body motion, it can be easily generalized to multi-frame and
multi-body cases. Only the underlying search spaces ofoptimization will be replaced by (products
of) Lie groups instead ofStiefel manifolds. Comparing to other existing algorithms and conjugate
gradient algorithms, the Newton's algorithm involves more computational cost in each iteration
step. However, it has the fastest rate of convergence. This is very important when the dimension
of the search space is high (for instance, multi-body motion recovery problem). This is because the
number of search steps usually increases with the dimension, and each step becomes more costly.
We will study these issues in future work.
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