

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DISCRETE EVENT MODELING

IN PTOLEMY II

by

Lukito Muliadi

Memorandum No. UCB/ERL M99/29

18 May 1999

DISCRETE EVENT MODELING

IN PTOLEMY II

by

Lukito Muliadi

Memorandum No. UCB/ERL M99/29

18 May 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

DISCRETE EVENT

MODELING IN PTOLEMY II

Lukito Muliadi

Department ofElectrical Engineering and Computer Science
University ofCalifornia, Berkeley

Imuliadi@eecs.berkeley.edu

5/18/99

Abstract

This report describes the discrete-event semantics and its implementation in the Ptolemy n soft

ware architecture. The discrete-event system representation is appropriate for time-oriented systems

such as queueing systems, communication networks, and hardware systems. A key strengA in our dis

crete-event implementation is that simultaneous events are handled systematically and deterministi-

cally. A formalandrigoroustreatmentof this property is given.Oneof the Ptolemy n majorfeatures is

in the heterogenous modeling of systems. Composition of the DE domain with different domains in

Ptolemy n is discussed. The performance of a discrete-event simulator depends heavily on the algo

rithm by which events are mantained and sorted in the event queue. In the Ptolemy n DE domain, the

event queue is implemented as the calendar queue data structure. The calendar queue is an extremely

fast implementation of the priority queue with time complexity equal to 0(1) for both enqueue and

dequeueoperations. A comprehensive description of this data structure is given. Based on the tagged

signalmodel, the formal semantics of our discreteeventimplementation are given in termsof the firing

functions of actors.

Discrete Event Modeling in Ptolemy n

Acknowledgments
I would like to express my sincere gratitude to my research advisor, Professor Edward A. Lee, for

introducingme to this excitingresearchfieldand helpingme throughoutthe courseof my master study

in U.C. Berkeley, ^^^thout his endless support and excellent guidance, I would not have finished this

project.

I also like to thank the Ptolemy group for all the wonderful discussions which help making my

project a success. I am also grateful to Bilung Lee and lie Liu, not only for being such great cubicle-

mates, but also for their excellent comments on the draft of this report and for their help with the tech

nical details of this research.

This research is part of the Ptolemy project, which is supported by the Defense Advanced

Research Projects Agency (DARPA),the State of Califomia MICRO program, and the following com

panies: The Cadence Design Systems, HewlettPackard, Hitachi, Hughes Space and Communications,

Motorola, NEC, and Philips.

Finally, I like to thank both of my parents for their continuous love and encouragement throughout

my educational career. This report is dedicated to them.

Discrete Event Modeling in Ptolemy EE

1. Discrete-Event Modeling in Ptolemy n 1
1.1. Introduction 1

1.2.Discrete Event System Representation 1
1.2.1. Ptolemy 11infrastructure 1
1.2.2. The Execution Sequence ofA DE Model 2
1.2.3. Simultaneous Events 5

1.3. Overview of The Software Architecture 10

1.4. Writing a DE Actor 12
1.4.1. Basic Examples 13
1.4.2. DE thread actor 15

1.5. Composing DE with Other Domains 19
1.5.1. DE inside Another Domain 19

1.5.2. Another Domain inside DE 21

1.6. Technical Details 21

1.6.1. Calendar Queue 21
1.6.2. Discrete Event Semantics 23

1.7. Bibliography 34

Discrete-Event Modelii^ in Ptolenqr n iii

iv D^rete-Event Modeling in ^olemy n

Discrete-Event Modeling in
Ptolemy II

Lukito Muliadi

l.Introduction

The Ptolemy n [1] Discrete Event (DE) domain provides a general environment for time-oriented
simulations of systems such as queueing systems, communication networks, and hardware systems. In
this domain, actors communicate by sending tokens across connections. The token sent and Ae time at
which it was sent form an event in the DE domain. Upon receiving an event, the destination actor is
activated and a reaction takesplace. The reaction maychangethe internal stateof the actorand possi
bly generate new events, resulting in further reactions. A DE domain scheduler ensures that events are
processed chronologically.

For example, we can model the arrivals of buses and passengers at a given bus stop as discrete
events. By constructing a model with appropriate actors, we can calculate various statistical properties,
e.g. the distribution of the waiting timeof the passengers. An appletimplementing this examplecan be
seen in http://ptolemy.eecs.berkeley.edU/ptolemyII/ptII0.2/ptII0.2devel/ptolemy/domains/de/demo/
inspection/index.html.

2.Discrete Event System Representation

First we give an overviewof the infrastructure and terminology of Ptolemy U, the environmentfor
our implementation. Then we will show how to build a model in the Ptolemy n DE domain. A key
strength in our implementation is that simultaneous eventsare handled systematically and determinis-
tically.

2.1. Ptolemy n infrastructure

Ptolemy n [3] is a complete, from the ground up, redesign of the Ptolemy 0.x software environ
ment [4], which supports heterogeneous modeling and design of concurrent systems. Modeling is the
actof representing a system or subsystem formally.Design is the actof defining a systemor subsystem.
A principle of Ptolemy 11 is that the choice of models of computation strongly affect the quality of a
systemdesign [2].A modelof computation is the set of "laws of physics"thatgovernthe interaction of
components in the model. The Ptolemy II software provides a rich variety of models of computation
thatdeal withconcurrency and timein different ways. Each model of computation is called a domain
in Ptolemy n. Allof these cangive meaning to thebubble-and-arc syntax shown in figure 1.One pos
sible semantics for the syntax in figure 1 is thatof discrete events. This semantics is implemented as

Discrete-Event Modeling In Ptolemy n -1

Discrete-Event Modeling in Ptolemy n

the DE domain in Ptolemy II. In discrete-event models of computation, an arc represents sets of events
placed in time, and a bubble represents a function that takes an event and produces another event.

The Ptolemy n software is divided into packages. The core packages provide functionality for
constructing and traversing an abstract clustered graph, encapsulating data, variables, and parameters,
sequencing execution, and performing graph and mathematical algorithms. A complete description of
these packages can be obtained in the Ptolemy n design document [3].

2.2. The Execution Sequence of A DE Model

A typical DE model consists of a network of actors and a DE director governing the execution of
the model. An example is shown in figure 2. Actors contain ports, and ports are connected to each
other via relations.

Recall that an event in the DE domain is an aggregation of a token and a time stamp. Actors com
municate by sending tokens through ports. Ports can be input ports, output ports, or both. Tokens are
sent by an output port and received by all input ports connected to the output port through relations.
When a token is sent from an output port, it is packaged as an event and stored in the global event
queue. The time stamp associated widi this token is determined by the sending actor. In the global
event queue, these events are sorted based on their time stamps and their destination input ports. An
event is removed from the global event queue and put into its destination input port, when die model
time (explained below) reaches its time stamp.

In the DE model of computation, time is global^ in the sense that all actors share the same global
time. We denote this shared global time by the current time. Some also call this the simulation time or

Rgure 1. A single buble-and-arc syntax that has several possible semantics (interpretation).

DECIock Q

DEWaltilme

DEPoissonQ

Rgure 2. A sample of topology in the DE domain

DEHiStogra
m

DEPIot

Discrete-Event Modeling in Ptolemy II

Discrete-Event Modeling in Ptolemy n

model time. At all times, all events stored in the global event queue have time stamps greater than or
equal to the current time. The DE director is responsible for advancing (i.e. incrementing) the current
time when all events with time stamps equal to the current time have been processed (i.e. the global
event queue only contains events with time stamps strictly greater than the current time). The current
time is advanced to the smallest time stamp of all events in the global event queue. This advancement
is done at the beginning of each iteration.

At each iteration, after advancing the current time, the director chooses some events in the global
event queue based on their time stamps and destination ports. The DE director chooses events accord
ing to Aese rules;

• Find a non-empty set of events, E, associated with the smallest time stamp.

• If the set of events contains more than one event, find the one with highest priority, ejua^. Simulta
neous events (i.e. events whose time stamps are equal) are prioritized carefully by means of topo-
logical sort on input ports. This is done to ensure deterministic behaviour.

• Finally, choose all events in set E that have the same destination actor with the event Note
that the destination actor of an event is the actor containing the destination input port of that event

The chosen events are then removed from the global event queue and inserted into the appropriate
input ports of the destination actor. Then, the director fires the destination actor, i.e. invokes the fire()
method of the destination actor. We say that the actor is fired. Notice that the firing may produce
simultaneous events at the current time. I.e. the actor reacts instantenously.

Then, the DE director checks whether there are any events in the global event queue with time
stamps equal to the current time. If there are not, the iteration finishes. Otherwise, the DE director
again chooses some events in the global event queue according to the above mles and fires the destina
tion actor. So, intuitively speaking, a iteration iteratively processes events in the global event queue
with time stamp equal to the current time and ends when there is no more such events. In summary, the
flowchart of an iteration in the DE domain is shown in figure 3.

Before one of the iterations described above can be run, there have to be initial events in the global
event queue. The actors in the DE model may produce initial events in their initialize () method.
In Ptolemy n implementation, the initial events are in the form of refire requests. A refire request is a
request generated by an actor to the DE director that it be fired again in the future. The refire request is
implemented by the f ireAt (actor, time) method, where the actor and time arguments indicate
the actor to be refired and the time at which the refiring will take place, respectively. In a typical situa
tion, only the source actors of a DE model produce these intial events by calling the f ireAt () method
in their initialize () method. Furthermore, these source actors needs to generate refire requests (by
calling the fireAt() method) in their fire () method. Otherwise, there will not be events in the global
event queue destined to these source actors and, consequently, they will never be fired again. Note that
source actors do not receive input events from any other actors; they simply do not have input ports.
The refire request is an example of a pure event. A pure event is an event whose token value is
unimportant (e.g. null). Indeed, requesting a refire can be thought as setting an alarm clock to be awak
ened in the future, so only the time stamp matters. This simple scheme gives us initial events in the
global event queue. In addition, we can define the start time to be the smallest time stamp of these
intial events. The start time is set once at the beginning of model execution and it is fixed throughout
the whole execution. Since the first step of an iteration (figure 3) is setting the current time to be the
smallest time stamp of the events in the global event queue, it can be shown easily that the current time
is equal to the start time at the first iteration.

The execution of the DE model consists of a sequence of these iterations. The execution stops
when either one of these conditions become true:

Discrete-Event Modeling in Ptolemy n -3

Discrete-Event Modeling in Ptolemy n

• The current time reaches a certain value denoted by the stop time, which is a parameter of the DE
director.

• The global event queue becomes empty.

When this happens, the execution ends by calling the wrapup methods of all actors.

In summary, the execution of a DE model consists of three phases, namely:
• initialization phase: This phase initializes the execution of the DE model by calling the initialize()

method of all actors.

• iterations phase: This phase consists of one or more iterations. An iteration of a DE model is the
iteration described above.

• wrapup phase: This phase ends the execution of the DE model by calling the wrapupOmethod of

start of

Iteration

Advance current time to the

H smallest time stamp in the
glot>al event queue

y events in th
glotial event queue

with time stamps
equal to the current

time

Choose some events in the

global event queue to be
processed.

Put the events Into their

destination receiver and fire
the destination actor

Rgure 3. A flowchartdepicting one iteration in the DE system

no
end of

iteration

Discrete-Event Modeling in Ptolemy n

Discrete>EveiitModeling in Ptolemy n

all actors.

23. Simultaneous Events

Animportant aspectof a DE model is the handling of simultaneous events. The waywe choose to
handle this is by assigning ranks to input ports. Theranks aredrawn from theset of non-negative inte
gers. They are uniquely assigned, i.e. no two distinct input ports are assignedthe same rank. Simulta
neous events are handled by processing the events destined to ports with the lowest ranks. The ranks
are determined by a topological sort of the input ports.

2,3.1, Problem Definition
We define the following sets:

• InputPorts: The set of all input ports in a model.

• OutputPorts: The set of all output ports in a model.
• Actors'. The set of all actors in a model.

Also, define the following functions:

• inputs:Actors —> $){InputPorts),such that inputs{a) is the set of input ports owned by actor a.
(Note: p(A) is the set of all subsets of A, i.e. the powerset of A)

• outputs:Actors —> p{OutputPorts), such that outputs{a) is the set of outputports ownedby actor a.
• connect: OuputPorts ^{InputPorts), such that connect{outport) is the set of input ports con

nected to the output port outport.
Each actor can also define relations between its ports. There are two sorts of relations:
• inport. triggers (outport), where inport and outport are an input port and an output

port of the same actor, respectively. This relation should be asserted if an event sent into inport
has the possibility of inducing a simultaneous event on the outport.

• inport_l. before (inport_2), where inport_l and inport_2 are input ports of the same
actor. This relation means that if there are simultaneous events sent into inport_l and
inport_2, then the schedulerwill guaranteethat the one(s) for inport_l will be processedfirst.
Consider, for example, a WaitingTime actor as shown in figure 4. This actor measures the time that

events at the inputport waiter have to wait for events at the inputport waitee. Specifically, there will
be one output event for each waiter input event and the event is generated at the next closest arrival of
an event at waitee. Therefore, an event at the input port waiteemightgeneratean outputevent if there
has been at least one 'pending' waiter event. Thus, the WaitingTime actor needs to assert

waiter.before(waitee)
waitee.triggers(output)

waiter

WaitingTime

waitee

Rgure4. AWaitingTime which contains a before and a trigger relationship between itsports.

Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

wai tee. triggers (output). Now, suppose that there are simultaneous events at the input ports
waitee and waiter. A sensible approach is to have the waiter event 'served' by the waitee event and to
produce the output event right at that moment. l.e. the waiter event does not wait for the next waitee
event. To ensure that the waiter event can be 'served' by the waitee event, the simultaneous waiter
event has to be visible when the waitee event is, i.e. events at the input port waiter have higher priority
than ones at the input port waitee. Thus, the WaitingUme actor needs to assert
waiter.before(waitee).

For the before and trigger relations, we define the following two functions:
• triggers: InputPorts p{OutputPorts)y such that triggers(inport) is the set of output ports gener

ating simultaneous events due to an event in the input port inport. The inport and triggers{inport)
must belong to the same actor, i.e.

^inport e InputPorts, (3ac/or e Actorsjnport e inputs{actor) a triggers{inport) c outputs{actor)) (1)

• before: InputPorts —> p{InputPorts), such that before{inport) is the set of input ports that have
lower precedence than the input port inport. Again, the inport and before{inport) must belong to
the same actor, i.e.

^inport e InputPorts, Oactor e Actors,inport € inputs{actor) a before{inport) c inputs(actor)) (2)

2.3.2. Problem Statement

The process of assigning ranks by topological sort is then equivalent to finding the function rank :
InputPorts ->N u{0}, satisfying the following constraints:

• For each input port inport, all input ports connected to the output ports triggered by inport must
have rank greater than the rank of inport, i.e.

Vinport GInputPorts, "^outporte triggers{inport), "^inport! e connect{outport), (3)
rank{inport) < rank{inport2)

• For each input port inport, the input ports contained in before{inpori) must have ranks greater than
the rank of inport, e.g.

^inport G InputPorts, \/inport2 g before{inport), rank{inport) < rank{inport2) (4)

In general, the function rank satisfying these constraints will not be unique. Therefore, the result of
the topological sort is non-deterministic, but it can be shown that the behaviour of the overall system
will not be affected by the choice of rank.

2.3.3. Example
To make the idea more concrete, consider the topology shown in figure 5. Suppose the actors

assert the following relations:

• X: A.before(B) and B.triggers (C)

• Y: D.triggers(E)

• Z: F.before(G) and F.triggers(H)

Putting this information into our framework, we have the following (Note that functions are described
by ordered pairs of argument and value):

• InputPorts = {A, B, D, F, G}

• OutputPorts = {C, E, H}

• Actors = {X,Y,Z}

Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

inputs = {(X. {A, B}), (Y, {D}), (Z, {F, G})}

outputs = {(X, {C}), (Y, {£}), (Z, {H})}

connects = {(C, {D, F}), (E, {G}), (H, {A, B})}

triggers = {(A, {}), (B, {C}), (D, {B}), (F. {H}). (G, {})}

before = {(A, {B}), (B, {}). (D. {}), (F, {G}). (Q {})}

From (3) we have the following constraints:

rank(B) < rank(D)

rank(B) < rank(F)

rank(D) < rank(G)

rank(F) < rank(A)

rank(F) < rank(B)

and then from (4) we have the followings:

rank(A) < rank(B)

rank(F) < rank(G)

Combining some inequalities, we have:

rank(A) < rank(B) < rank(F) < rank(A) (5)

which cannot be satisfied for any function rank(). Indeed, rigure 5 depicts a zero-delay directed loop
where topological sort cannot be done. The director will refuse to run the model, and will terminate
with an error message.

However, the error described above is conservative, i.e. there are situations where a model contain
ing zero-delay directed loop can be useful in design. This is due to the fact that the triggers relation has
to be asserted whenever a simultaneous reaction is possible. The precise condition for the executability
of a directed loop, L, is that there exists a finite power N and 5 > 0 such that contains at least a
delay of 5 time units [7]. To run models containing zero-delay directed loop, the topology has to be
modified by inserting a DEDelay actor (with delay parameter equal to zero) in the zero-delay directed
loop. A DEDelay actor with delay parameter equal to zero passes all tokens unmodified (i.e. delays
them by zero time) and it does not assert the triggers relation between its input and output port.
(Strictly speaking, any actor that does not assert the triggers relation between its input and output port
will be able to break the zero delay loop. In addition, we want the actor to pass tokens unmodified in
order to preserve the semantics of the model. The DEDelay actor is provided for convenience.) The

Rgure 5. An example of directed zero-delay loop

Discrete-Event Modeling in Ptolemy II

Discrete-Event Modeling in Ptolemy n

resulting topology is shown in figure 6.

Consequently, we have the followings:

InputPorts = {A, B, D, F, Q J}

OutputPorts = {C, E, H, 1}

Actors = {X, Y, Z, DEDelay}

inputs = {(X, {A, B}), (Y, {D}), (Z, {F,G}), (DEDelay, {J})}
outputs = {(X, {C}), (Y, {E}), (Z, {H}), (DEDelay, {I})}

connects = {(C, {D, F}), (E, {0}), (H, {J}), (I, {A, B})}

triggers = {(A, {}), (B, {C}), (D, {E}), (F, {H}), (G {})}

before = {(A, {B}), (B, {}), (D, {}), (F, {G}), (Q {})}

From (3) we obtain the following constraints;

rank(B) < rank(D)

rank(B) < rank(F)

rank(D) < rank(G)

rank(F) < rank(J)

and similarly from (4):

rank(A) < rank(B)

rank(F) < rank(G)

These constraints can indeed be satisfied. For example, the following function will work, rank = {(A,
0), (B, 1), (D, 2), (F, 3), (G 4), (J, 5)}.

2.3,4. Determinacy

Recall that our scheme ofhandling simultaneous events is designed to preserve determinacy and to
give result that corresponds well with intuition. The intuition is that an actor should be able to see all
simultaneous events in its ports during a single firing.

2.3.4.1. The triggers relation

The following illustrates how the triggers relation affects the handling of simultaneous events.
Again, refer to figure 6. Suppose actor X is fired and it produces an event from the output port C. This

DEDelay

Figure 6. Modified zero-delay directed loop

Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

will result in simultaneous events at input ports F and D. A^^thout our scheme of ranking the input
ports, we have the choice of either firing actor Z or actor Y, and some discrete-event simulators make
this choicearbitrarily. Now also supposethat actor Y produces a simultaneous event at the outputport
E due to the input event at the input port D.

If actor Y were to be fired first, then actor Z will see an additionalevent at input port G as well as
one at input port F when it is fired. On the other hand, if actor Z were to be fired first, then it will only
see one event at input port F. So, making an arbitrary choice of whether to fire actor Y or actor Z first
will result in non-determinacy.

Under topological sort, the D. triggers (E) relation translates to rank(D) < rank(F). Therefore,
our scheme ensures determinacy by giving a higher priority to input port D compared to input port F,
which results in firing actor Y first. Choosing to fire actor Y first is more intuitive because we want
actors to see the most possible number of tokens when fired, e.g. actor Z sees both events when fired.

2.3.4,2. The before relation

The before relation affects the handling of simultaneous events in a slightly more subtle way. Con
sider the topology shown in figure 7. Suppose actor X is fired and it produces an event from its output

Without D.before(E)

With D.before(E)

X (A

Rgure 7. The comparison of the result of the topological sort in the absence of the before relation.

Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

port A. This will result in simultaneous events in the input ports B and E, denoted by E3 and Eg,
respectively. Suppose that the semantics of actor Z is that whenever it sees events in the inputport E, it
want to make sure that it also sees all possible simultaneous events in the input port D. (This is similar
to the WaitingTime actor shown in figure 4.) The rank of the input ports obtained from the topological
sort is shown in the raised boxes near the input ports.

Observe the difference in the sequence of actor firing when the before relation is omitted and when
it is included. In the first case, the input port E has higher priority than the input port B. This results in
the tiring of actor Z, followed by the firing of actor Y.Notice that actor Y will react instantenously, and
will produce an event, E^), at the input port D. The time stamp of event E^ is equal to that of event Eg,
yet E£) is presented to Z after Eg is presented and consumed by Z in an earlier tiring. This is clearly a
violation of the semantics of actor Z described above. Depending on how the code for actor Z is writ
ten, this may result in non-determinacy or even an exception being thrown.

In the latter case, the input port B has higher priority than the input port E. Therefore, actor Y will
be tired first, followed by actor Z. When actor Z is fired, it will correctly see both simultaneous events
in the input ports D and E. The code for actor Z can then be written in a way that assumes the presence
of all simultaneous events in the input port D whenever there are events at the input port E. Therefore,
the before relation offers a way for an actor to assert precedence relation between its input ports and
the scheduler to sequence actor tirings systematically and correctly.

2,3,5. Domain polymorphic actors

The triggers and before relations between ports are specific to the DE domain, therefore domain
polymorphic actors do not know of and do not specify these relations. Given a domain polymorphic
actor A, the DE director assumes the following triggers relations:

\finport € inputs{A), ^outport € outputs{A), outport e triggers{inport) (6)

That is, there is a trigger relation between each input port to each output port of the domain polymor
phic actor A. This is the right behaviour, since some domains in Ptolemy II are not timed-domains, and
therefore, a non-DE actor (e.g. domain polymorphic actor) should be treated as a functional actor with
zero delay in computation time. Note that the DE director does not assume any before relations, since
it is assumed that the order that these functional actors sees their arguments is irrelevant.

S.Overview of The Software Architecture

The UML static structure diagram for the DE kernel package is shown in figure 8. For users inter
ested in building a model using the Ptolemy 11 DE domain, the important classes are DEDirector,
DEActor and DEIOPort.

At the heart of DEDirector is a global event queue that sorts events according to their time stamps
and ranks (i.e. topological depth). In a typical DE simulation, this process proves to be the bottleneck.
Therefore, by default, DEDirector uses an extremely efficient implementation of the global event
queue, which is a calendar queue data structure [9]. The time complexity for this particular implemen
tation is 0(1) in both enqueue and dequeue operations. This means that the time complexity for
enqueue and dequeue operations is independent of the number of pending events in the global event
queue. For extensibility, different implementations of the global event queue can be used and experi
mented with simply by implementing the DEEventQueue interface.

The DEActor class provides convenient methods to access time, since time is an essential part of a

-10 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

timed domain like DE. Nonetheless, actors in a DE model are not required to be derived from the
DEActor class. Simply deriving from TypedAtomicActor gives you the same capability, but without

(.stopTbite: double
t_staitTlme: double
f.cunenfnme: double
IjihouMPostRTBRetumFalse: boolean

eventOueue: OEEventOueue

4-DEDirectofO
«OEOirecto((n8me;String)
fOEOirectocfwodepaoe: Woilcspace,name: String)
ffiraAfte(Oelay(actor: Actor,delay: doiMe): void

j tfiiBAt(actor; Actor, time: double): void
^getCunenfTimeO: double
tgetNextttacBttonTlmeO: double
tgetStaitTimeO: double
tgetStopTlmeO: doutile
'MsEmbeddedO:boolean
'HiewRecelvetO: Receiver
4iNstflrsO: boolean
4eetStopTimeO: void
+8topWhenQueueisEmpty(flag: boolean): void
4-trBnsfertnput5(poit: iOPoit); void
*_enqueueEvant(actor; Actor, time: double,defrit):long): void
*_enqueueEvent(recelver: DERecelver, token: Token,delay: double,depth:
l.wrtteAccessPfBfetenceO: boolean

.actor: Actor

.receiver: DERecelver

.token: Token
•.tag: DEEvenlTag
^Event(receiver: DERecelver, token:roken, tag: DEEvenfTag)
+OEEvent(actor:Actor,tag: DEEvenlTag)
tg^DesUrtabonActoiO: Actor
tgetDesUnationReceiveit): DERecelver
♦gefrranstenedTokenQ: Token

DEEvent

DEEventTag

•.timaStamp: double
.iBcelvefOepth: long

•fDEEventTag(timeStamp: double,lecalveiDepth: long)
•ftimeStampO: double^ 2 jwBcelvetOepthO: long

, , I .

hVpedCompositaActor! tTypedAtomlcActori

J Jo-

long)

-tjeforeList: LinkodUst

•triggeitist: LinkedList

1..1

Interiaoe*

DERaeeivor

0.J)

•_dlractor: OEDirector
•Jtokens: UnkedUat
•.container: lOPort
faUowPendhgTokensO: void
tgelQ: Token
tgetContaineiO: lOPort
fgetOiiBctoiO: DEOIractor
+hasRoomO: boolean
^hasTokanO: boolean
HXit(token:Token): void
+|)ut(tokan: Token, delay: double): void
4«etCorrtainet(poit:lOPoit): void
fJsPendingTokenAiloiMedO: boolean
•_setOepth(deplh: long); void
tJriggerEventltokan: Token): void

•interface*

DEEvmtOuauB

'KlearO:vold
'fIsEmplyO: boolean
^getNextTagO: DESortKey
•»put(event: DEEvent): void
-rtakeO: DEEvent

DECQEventQueue

•.cQueue: CalendaiQueue

TVpedlOPort

DEiOPort

I
I CalondarQueue

4^DEIOPoitO
4DEIOPo(t(container: CompositeEntity, name: String)
DEtOPo(t(container; CompositBEntity, name: String, iskiput:booleaa Isoutput:boolean)
4aIio«vPendb)gToken3(b: boolean): void
«befora<othe(port: lOPort): void
•ftxriorePortsO: Enumeration
«broadcast(token: Tokea delay: double): void
Mend(channeBndex: int,token: Tokea delay: double): void
+triggefs{output: lOPort): void
♦IriggetBPonaO: Enumeration

♦DEActorfcontalner: TypedCompositeActor, name: String)
'»getCurrant7tmeO: double
fgetStarfTlmeO: double
'fgetStopTkneO: double
4lIraAltet0elay(detay:double): void
♦liraAt(tlmeStamp: double): void

Rgure 8. UML static diagram for the DEkernel package

Discrete-Event Modeling in Ptolemy n •11

l>iscrete-Event Modeling in Ptolemy n

the convenience. In the latter case, time is accessible through the director.
The DEIOPort class can be used by actors that are specialized to the discrete-event (DE) domain.

It supports annotations that inform the scheduler about delays and about priorities for handling simul
taneous inputs. It also provides two additional methods, overloaded versions of broadcast() and send().
The overloaded versions have a second aigument for the time delay, allowing actors to send output
data with a time delay (relative to current time).

Domain polymorphic actors use a regular lOPort, and therefore cannot produce events in the
future directly by sending it through output ports. Note that tokens sent through regular lOPort are
treated as if diey were sent through DEIOPort with the time delay argument equal to zero. Domain
polymorphic actors can produce events in the future indirectly by using the fireAt () method of
DEDirector. By calling the fireAt() method, the actor request the director to be refired in the future.
The actor then produces the event during the retiring.

4.Writing a DE Actor

The Ptolemy n DE domain is shipped with a library of actors contained in the de.lib package.
Ptolemy n also supports domain polymorphic actors. These domain polymorphic actors can be used in
various compatible domains, including the DE domain. Recall that domain polymorphic actors are
assumed to be functional (i.e. zero delay in computation time) by the DE director.

One key point to remember when writing an actor is that state changes (e.g. change of the values of
instance variables) should only occur in the posttire() method. Most of the work in an actor occurs is in
its fire() method. So, the pattern is that in the tire() method, the actor performs a computation and pro
duces outputs based on the state variables. If state variables need to be updated based on values con
tained by variables local to the fireO method, then the updated values have to be saved first in
temporary state variables, and later update the state variables in the postfire () method. The reason
for this is to accomodate some domains in Ptolemy II (e.g. CT domain) that might invoke tire() multi
ple times to iterate to a fixed point, and the state of actors needs to be fixed between these fixed-point
iterations.

In rare cases, actors can also decide that they do not want to be tired, even though there are events
destined at them. In that case, they can return false in the pretire() method. For example, DEServer
returns false in its pretire() method if it is tired while the server is still busy processing the previous
request.

Recall that one iteration of a DE model processes all events in the global event queue with time
stamps equal to the current time. Since there might be simultaneous events at the current time destined
to multiple actors, one iteration of a DE model may translates into multiple iterations of the contained
actors. The choice of which actors to tire tirst depends on the topological sort of input ports as
explained above. An iteration of the contained actor is defined to be the sequence of method calls: pre-
tire(), tire() and posttire() of the actor. This complicated scheduling is hidden underneath the Ptolemy
n DE domain infrastructure. During its iteration, an actor only needs to worry about the following:

* Obtain tokens from its input ports. These tokens along with the current time as their time stamp act
as input events for the actor.

* Produce output events into its output ports. These events have time stamps greater than or equal to
the current time.

* Update its current state in the posttire() method.

-12 Discrete-Event Modeling in Ptcdemy n

Discrete-Event Modeling in Ptolemy n

4.1. Basic Examples

/•An actor that generates events according to Poisson process. */

package ptolemy.domains.de.lib;

in^jort ptolemy.actor. •;
io^ort ptolemy.domains.de.kernel.•;
in5)ort ptolemy.kernel.*;
import ptolemy.kernel.util. • ;
import ptolemy.data.*;
import ptolemy.data.expr.*;
import java.util.Enumeration;

iiininiiiiiiiiiiiiiiiimiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiuiiiiii
III! Poisson
/**

Generate events according to Poisson process. The first event is
always at time zero. The mean inter-arrival time and value of the
events are given as parameters.
FIXHE: at current implementation, the first event is not at time zero, rather
it'll depend on the initialization value of current time field in the
director.

Sauthor Lukito Huliadi

@version Id
*/

public class Poisson extends DEActor {

/** Construct a Poisson actor with the default parameters.
* @param container The composite actor that this actor belongs to.
* @param name The name of this actor.
* @exception IllegalActionException If the entity cannot be contained
* by the proposed container.
* @exception HameDuplicationException If the container already has an
* actor with this name.

*/

public Poisson(TypedCompositeActor container, String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
output = new TypedIOPort(this, "output", false, true);
meanTime = new Parameter(this, "lambda", new DoubleToken(O.l));
value = new Pau:ameter(this, "value");

}

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiimiiiiiiiiniiiiiiimii
IIU Ports and Parameters ////

/** The output port, which has type at least that of the value
* parameter.

*/

public TypedlOPort output;

/** The mean inter-arrival time. The value is a DoubleToken. */
public Parameter meanTime;

/** The output value, which cam contain amy type of token. */
public Parameter value;

lll
nil public methods ////

/** React to a change in a parameter. This method is called lay
* a contained parameter when its value chamges. The method updates
* private variables that cache the parameter values.

Discrete-Event Modeling in Ptolemy n -13

Discrete-Event Modeling in Ptolemy n

* @pctram attribute The attribute that changed.
*f

public void attributeChanged(Attribute attribute) {
i£ (attribute == meanTime) {

.lambda = ((DoubleToken)meanTime.getToken()).doubleValue();
)

)

/** clone the actor into the specified workspace. This calls the
* base class and then sets the ports and parameters.
* Sparam ws The workspace for the new object.
* @retum A new actor.

*!

public Object clone(Workspace ws) {
try {

Poisson newobj = (Poisson)super.clone(ws);
newobj.output = (lypedlOPort)newobj.getPort(*output*);
newobj.value = (Parameter)newobj.getAttribute('value*);
newobj. meanTime = (Parameter) newobj. getAttribute ('meanTime') ;
return newobj;

} catch (CloneNotSupportedException ex) {
// Errors should not occur here...

throw new IntemalErrorException (
'Clone failed: ' + ex.getHessageO);

}
}

/** Produce the initializer event that will cause the generation of
* the first event at time zero.

* @exception IllegalActionException If there is no director.
*/

public void initialize() throws IllegalActionException {
super.initialize();
double curTime = getCurrentTime();

fireAt(O.O) ;
_exp = -Math. log ((1-Math. random ())) ♦.lambda;

}

/♦♦ Produce an output event at the current time, and then schedule
* a firing in the future.
* @exception IllegalActionException If there is no director.
♦/

public void fireO throws IllegalActionException (

// send a token via the output port,
output.broadcast(value.getToken());

fireAfterDelay(_exp);
}

/♦♦ Update the delay value for the next arrival event.
* Sexception IllegalActionException If the base class throws it.
♦/

public boolean postfireO throws IllegalActionException {
_exp = -Math.log((l-Hath.random()))♦.lambda;

return super.postfire();
)

/♦♦ Return the type constraint that the output type must be
♦ greater than or equal to the type of the value parameter.
♦ If the the value parameter has not been set, then it is
♦ set to type BooleanToken with value <i>true</i>.
♦/

// FIXME: This should be sinplified when infrastructure support improves,
public Enumeration typeConstraints() {
if (value.getToken0 == null) {

•14 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

)

try {
value.setToken(new BooleanToken(true));

} catch (IllegalActionException ex) {
// Should not occur (no type constraints)
throw new lntemalErrorException(ex.get:Hessage());

}

)
LinkedList result s new LinkedList();
Class paramType = value.getTokenO .getClassO ;

Inequality ineq = new Inequality(new TypeConstant(paramType),
output.getTypeTerm());

result.insertLast(ineq);
return result.elements();

}

///
//// private variables ////

private double _lambda;
//An exponentially distributed remdom variable which denotes the
// inter-arrival time,

private double _exp;

Consider the code for the Poisson actor as shown above. The Poisson actor is a source actor that

generates events that are distributed in time according to Poisson arrival process. Specifically, the
time-interval between events is exponentially distributed.

We will consider each part of this actor.The constructor instantiates the ports and the parameters.
The parameterinfrastructure is described in the Ptolemy 11 design document [3]. Ports and parameters
are defined as public fields to give easy access when building a model.

In the initialize method, the actor requests a refire at time 0.0 by method call fireAt(0.0). It also ini
tializes the state variable. In our case, the state variable is a random variable with exponential distribu
tion which denotes the time delay until the next output event.

In the fire method, the actor produces the output event and request a refire from the director after
some specified delay that is determined by the state variable. The refire request is done by the method
call fireAfterDelay(_exp). Notice that there are two ways to request a refire, fireAt() and fireAfterDe-
lay().

In the postfire method, the state is updated. In our case, the state variable is updated with the new
value for the exponentially distributed random variable.

4.2. D£ thread actor

In some cases, it is useful to describe an actor as a thread that waits for input tokens on its input
ports. The thread suspends while waiting for input tokens and is resumedwhen some or all of its input
ports have input tokens. While this description is functionally equivalent to the standard description
explained above, it leverages on the Java multi-threading infrastructure to save the state information.

Considerthe code for the ABRecognizer actor shown in figure 9. The two code listings implement
two actors with equivalent behavior. The left one implementsit as a threadedactor, while the right one
implements it as a standard actor. Wewill from nowon refer to the left one as the threaded description
and the right one as the standard description. In both description, the actor has two input ports,
inportA and inportB, and one output port, outport. The behavioris as follows. Produce an output
event at outport as soon as events at inportA and inportB occurs in that particular order, and repeat
this behavior. More formally, it can be described by a finite-state-machine withstate diagramshownin

Discrete-Event Modeling In Ptolemy n .15

Discrete-Event Modeling in Ptolemy n

figure 10.

Note that the standard description needs a state variable state, unlike the case in the threaded
description. In general the threaded description encodes the state information in the position of the
code, while the standard description encodes it explicitly using state variables. While it is true that the
context switching overhead associated with multi-threading application reduces the performance, we
argue that the simplicity and clarity of writing actors in the threaded fashion is well worth the cost.

The infrastructure for this feature is shown in Figure 11. To write an actor in the threaded fashion,
one simply derives from the DEThreadActor class and implements the void run () method. In most
cases, the content of the run {) method is enclosed in the infinite 'while (true)' loop since most of
useful threads do not terminate. The waitForNewlnputs () method is overloaded and has two fla

vors, one that takes no arguments and another that takes an lOPort array as argument. The first sus-

public class ABRecognizer extends DEThreadActor (
StringToken msg = new StringToken("Seen AB");

// the run method is invoked when the thread

//is started,

public void nin{) {
while (true) {

waitForNewlnputs();

if (inportA.hasToken(O)) {
lOPortO nextinport = (inportB);
waitForNewlnputs(nextinport);
outport.broadcast(msg);

public class ABRecognizer extends DEActor {
StringToken msg = new StringToken("Seen AB');

//We need an explicit state variable in
// this case,

int state = 0;

public void fireO {
switch (state) (

case 0:

if (inportA.hasToken(O)) {
state = 1;

break;

}
case 1:

if (inportB.hasToken(O)) {
state = 0;

outport.broadcast(msg);

)

Figure 9. Code listings for two style of writing the ABRecognizer actor.

input/output

Discrete-Event Modeling in Ptolemy

Discrete-Event Modeling in Ptolemy n

pends the thread until there is at least one input token in at least one of the input ports, while the latter
suspends until there is at least one input token in any one of the specified input ports ignoring all other
tokens. The word *new' in waitForNewInputs() indicates that tokens are cleared from all input ports
before the thread suspends. This guarantees that when the thread resumes, all tokens available are new
in the sense that they were not available before the waitForNewInput() method call. The implementa
tion guarantees that between calls to the waitForNewInputsQ method, the rest of the DE model is sus
pended. This is equivalent to saying that the section of code between calls to the waitForNewInput()
method is a critic^ section. One immediate implication is that the result of the method calls that check
the configuration of the model (e.g. hasToken() to check the receiver) will not be invalidated during
execution in the critical section.

The code shown in figure 12 implements the run method of the ABRO actor with the following
behavior

fA:OEIOPort
fB:DEIOPoit

tCtDBOPort

fD:DBOPort

j «Int8rface» j
^wa.bng.Rtmnablo^ de.l(smel.DEActor

I'flunO: void •

A-—

fDEActor(conta!ner: TypedComposltaActor, name: Stilng)
+g6tCuiTefirnmeO: double
+g6tStattTimeO: double
tgetStopTimeO: double
ftireAfterDelay{delay: double): void
ffireAt(limeStamp: double); void

de.Ilb.DEABRO

tle.k8m^DEThnaMetor

'H)Thread:RolemyThiead
-.isWaitlng: boolean
-.monitor; Object

+DEThreadActof(container: TypedCompositeActor, name: String)
finitializeO: void
+f!reO:void
•HwO: void
fwaitFerNewlnputsO: void
•••waltForNewlnputsCports: lOPortQ): void
-.emptyPortsO:void

S

|de.lib.YourNewActor

fDEABRO(container: TypedCompositeActor, name: String)
fnmO: void

Rgure 11. UMLdiagram for DEThreadActor

Discrete-Event Modeling in Ptolemy n .17

Discrete-Event Modeling in Ptolemy n

Emit an output O as soon as two inputs A and B have occured. (7)

Reset this behavior each time the input R occurs.

It is important to note that the implementation serializes the execution of threads, meaning that at
any given time there is only one thread running. When a threaded actor is running (i.e. executing inside
its run() method), all other threaded actors and the director are suspended. It will keep running until a
waitForNewInputsO statement is reached, where the flow of execution will be transferred back to the
director. Note that the director thread executes all non-threaded actors. This serialization is needed

because the DE domain has a notion of global time, which precludes parallelism.
The serialization is accomplished by the use of monitor in the DEThreadActor class. Basically, the

fireO method of the DEThreadActor class suspends the calling thread (i.e. the director thread) until the

public void run() {
try {

while (true) {
// In initial state..

waitForNewInputs();
if (R.hasToken(O)) (

// Resetting.,
continue;

}
if (A.hasToken(O)) (

II Seen A..

lOPortt] ports = {B,R};
waitForNewInputs(ports);
if (!R.hasToken(0)) {

// Seen A then B..

0.broadcast(new DoubleToken(1.0));
lOPorttl ports2 = (R);
waitForNewInputs(ports2);

) else {

// Resetting
continue;

)
) else if (B.hasToken(O)) {

// Seen B..

lOPortd ports = {A,R);
waitForNewInputs(ports);
if (!R.hasToken(0)) {
// Seen B then A..

0.broadcast(new DoubleToken(1.0));
lOPortt) ports2 = (R);
waitForNewInputs(ports2) ;

} else {
// Resetting
continue;

)
} // while (true)

) catch (IllegalActionException e) (
getHanagerO.notifyListenersOfException(e);

)

Rgure 12. The run() method of the ABRO actor.

-18 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy

threaded actor finish executing and suspend itself (e.g. by calling the waitForNewInputs() method).
One key point of this implementation is that the threaded actors appear just like an ordinary DE actor
to the DE director. The DEThreadActor base class encapsulates the threaded execution and provides
the regular interfaces to the DE director. Therefore the threaded description can be used whenever an
ordinary actor can, which is everywhere.

Future work in this area may involve extending the infrastructure to support various concurrency
constructs, such as preemption, paraUel execution, etc. It might also be interesting to explore new con
currency semantics similar to the threaded DE, but without the 'forced' serialization.

S.Composing DE with Other Domains

One of the major concepts in Ptolemy U is modeling heterogeneous systems through the use of
hierarchical heterogeneity. Actors on the same level of hierarchy obey the same set of semantics rules.
Inside some of these actors may be another domain with different model of computation. This mecha
nism is supported through the use of opaque composite actors. An example is shown in figure 13. The
outermost domain is DE and it contains seven actors, two of them are opaque and composite. The
opaque composite actors, by themselves, contain subsystems, which in this case are DE and CT.

5.1. D£ inside Another Domain

The DE subsystem completes one iteration whenever the opaque composite actor is fired by the
outer domain. One of the complications in mixing domains is in the synchronization of time. Denote

Discrete

Event

Rgure 13. An example of heterogeneous and hierarchical composition. The CT subsystem and
DE subsystem are inside an outermost DE system. This example is developed by Jie Liu [10].

Discrete-Event Modeling in Ptolemy

Discrete-Event Modeling in Ptolemy n

the current time of the DE subsystem by tinner current time of the outer domain by tauter
steps involved in the DE subsystem iteration is shown in figure 14. The steps are very similar to those
of DE system iteration (figure 3), except for the two extra steps, which are:

• transferring tokens from the ports of the opaque composite actors into the ports of the contained
DE subsystem

• requesting a refire at the smallest time stamp in the event queue of the DE subsystem.
The first of these is done in the transferInputs () method of the DE director. This method is

extended from its default implementation in the Director class. The implementation in the DEDirector
class advances the current time of the DE subsystem to the current time of the outer domain, then call
super.transferlnputsO (i.e. the default implementation in the Director class). It is done in order to cor
rectly associate tokens seen at the input ports of the opaque composite actor, if any, with events at the
current time of the outer domain, and put these events into the global event queue. This mecha
nism is, in fact, how the DE subsystem synchronize its current time, tinner current time of the
outer domain, tnniep(Recall that the DE director advances time by looldng at the smallest time stamp in
the event queue of the DE subsystem). Specifically, before the advancement of the current time of the

-20

BtBrtOf

itentkn

neradon 01 (tie

Request a raliie (nxn (tie
outside director at (tie

smallest ttme stamp in (tie
event queue of the DE

sutMvstem

Awanea cumnS tfms (tie
oiMtlest tbne itainp in (tie

event queue ol (tie DE
wbeysteni

Put (tie wents into awr

destination leoeivef and Rie
ttie destination actor

Rgure 14. The flowchart for one iteration of the DE subsystem

Discrete-Event Modeling in Ptolemy 11

Discrete-Event Modeling in Ptolemy n

DE subsystem tiQQgr is less than or equal to the and after the advancement tjougr is equal to the

Wter
The latter is done in the postEre() method of the DE director. Its purpose is to ensure that events in

the DE subsystem are processed on time with respect to the current time of the outer domain, tourer
Suppose we do not have this refire request, then the following is exactly what we don't want to hap
pen. If the DE subsystem is fired at time 0.0 and it produces some events at time 0.1 and then the con
trol of execution returns to the director of the outer domain. Note that t^^Qgr is currently equal to 0.0. If
there are no events destined to the DE subsystem until, say, time 10.0, then the DE subsystem will not
be fired until touter equal to 10.0. Therefore the events at time 0.1 in the global event queue of the DE
subsystem will not be processed until equal to 10.0. It is obvious that our approach will result in
the refiring of the DE subsystem at tQu^gr equal to 0.1 and this is the correct thing to do.

Note that if the DE subsystem is fired due to the outer domain processing a refire request, then
there may not be any tokens in the input port of the opaque composite actor at the beginning of the DE
subsystem iteration. In that case, no new events with time stamps equal to will be put into the glo
bal event queue. Interestingly, in this case, the time synchronization will still work because tjo^gi. will
be advanced to the smallest time stamp in the global event queue which, in turn, has to be equal tauter
because we always request a refire according to that time stamp.

5.2. Another Domain inside DE

Due to its nature, the opaque composite actor is opaque and therefore, as far as the DE Director is
concerned, behaves exactly like a domain polymorphic actor. Recall that domain polymorphic actors
are treated as functions with zero delay in computation time. To produce events in the future, domain
polymorphic actors request a refire from the DE director and then produce the events when it is refired.

6.Technical Details

6.1. Calendar Queue

Recall that in a typical DE simulator, the process of sorting events in the global event queue proves
to be the bottleneck. In the DE domain in Ptolemy n, the global event queue uses the calendar queue
implementation[5], by default. The calendar queue implementation is located in the
ptolemy.actor.util .CalendarQueue class. The UML diagram is shown in figure (15). In the
DE domain, appropriate interfaces have been designed such that different implementation of the global
event queue can be used. This can be very useful, for example, when we want to do a performance
comparison between different sorting algorithms. An overview of the calendar queue data structure is
given here for completeness.

A calendar queue is a fast implementation of a priority queue. Its time complexity is 0(1) in both
enqueue and dequeue operations. It can be used to sort elements drawn from a totally ordered metric
set. Recall that a set S is totally ordered if V x,y e S, either x<y or y>x. Also recall that a function d
and the set S forms a metric space when d satisfies the following conditions:
• V x,y € S, d(x, y) > 0.

• V x,y e S, d(x, y) = d(y, x).
• V x,y,ze S, d(x,z) < d(x,y) + d(y,z). (Triangleinequality)
For example, the set of all real numbers, R, is a totally ordered metric set with d(x,y) = I x-y I (iwl
denotes the absolute value of w). In our case, events have time stamps drawn from the set R, and are

Discrete-Event Modeling in Ptolemy n -21

Discrete-Event Modeling in Ptolemy n

sorted based on their time stamps.

The Calendar Queue data structure achieves its performanceby partitioning elements into a set of

•_nBuckets: Int
•_<lSiza:int
•_wi(tlh:Oi)ject
-.topThreshold: Int
•jKmornThrastiold: Int
•.TsreRef: O^ect
•_l)ucket: OQUnksdUstQ
•.tnlnNunilieiSucket: Int s 2
•.ttusstioldFactor: Int s 2
-.oqComparBtor: CQCotnparator
•_taksnK^: Object
•.mlnKey: Object
-.minVtrtualBucket: long
•jninBudcet: bit

+CalendaiQue(je(co(nparator; COCoinpaiator)
'fCalendaiOueuejccmparator: COCompaiator,mInNumBucfcet: int thieshoklFactor: bit)
KieaiO:void
'fgetNextKeyO: Otiject
+getPrevlo(^eyO: Object
'findudesjkey: Object value: Object): boolean
f IsEmptyO:boolean
tpuKk^: Oltject, value: Ottject): boolean
'fremovejkey; O^ectvalue; Object): boolean
4-slzeO: Int
'••takeO: Otiject
'.oomputeNewWidthO: Object
'_getBlnIndex(key: Object): long
•Jocallnitjnbuckets: Int bwidth: Object staitKay: Object): void
•_rcsize(ne>vsize: bit):void

1..1 1..1

1..1

1..1

lOECQEventQueuej
I I

I 1
IOECOEventQuaueJ>ECQCompafStDi|

1
H

Ir ner

private bnerdass

private Irnerdass

CaIendarQueuo.CQUnlcedUst

+liead:LLCea

'ftail: LLOell

'fOOUnkedUstO
+Iiist0: Object
'findudesjobj; Object): boolean
+isEmptyO: boolean
'flnseitAndSort(obj: Object): volC
'ipeekKsyO: Object
'fremovejc: COEnby): boolean
♦takeQ: Object

0..n
1..1

C«lanclaiQiMue.CQEntiy

•value: Object
•key: Object

•fCQEntiyjvalue; Object,key: Object)
♦egualsQ: bodean

•Interface-
Comparator

! I
hcomparejobjectl: Object object2: Objed): Int)

•Interface-
COComparator

4ge£bilndex(key: Object zeFofteference; Object blnWIdtt):Object): kmg
♦getBbiWidth(k^Anay: Objectfl): Object

DoubleCQCompantor

+co(npare(object1: Object objectE: Object): int
+getBbtIndex(key: Object zeroRsference: Object bInWkltli:Object): kmg
tgetBinWkfttiQcoyArray: Objectfl):Object

Rgure 15. Calendar queue Implementation In ptolemy.actor.utll package

.22 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

equally spaced bins. Then, bubble sort is performed separately in each bin on the reduced number of
elements. It is similar in operation to a calendar where the set of days in a year is partitioned into
months; one month for each page. Each bin is then conceptually equal to a monthly-page containing
days in a particular month. An enqueue operation is similar to scheduling an appointment by first tum-
ing to the page for the appropriate month, then finding the date in that page. A dequeue operation is
also similar in the same fashion.

To achieve best performance,the number of bins is dynamically adjusted to be less than the num
ber of elements and greater than half of the number of elements. Therefore, on average, there are 1 to 2
elements in each bin. The spacing between bins is also chosen and maintained so that the distribution
of the elements in the bins is as close to a uniform distribution as possible. Thus, we would like to
avoid having some bins containing many elements, while others have few or no elements. It can be
shown that the time complexity for finding the right bin, bj, is0(1), while that ofsorting the elements
in bin bj is equal to 0(nj), where nj isthe number ofelement in bin bj only. Therefore, the objective is
to have as few elements as possible (e.g. 2 elements) in each bins, and the total time complexity
becomes 0(1). The price that we pay for being able to do extremely fast enqueueand dequeueopera
tions comes in the form of complex algorithm needed to End the optimum number of bins and spacing
between them. But this algorithm is only run when the number of elements changes by some factor
(e.g. 2). So, we have shiftedthe sensitivity of the sortingalgorithm from the numberofelements in the
queue to the distributionand the variation of the numberofelements in the queue. It is also important
to constraint the number of bins in order to not waste storage-space. Consequently, the bin-mainte
nance algorithm tries to achieve the optimal trade-off between time-complexityand storage-space.

Our implementation of the calendarqueuealgorithm uses an array of CQLinkedList as the imple
mentation for the set of bins. As a design decision, we use our own customized version of
CQLinkedList instead of the LinkedListclass in the collections package. This is done for the sake of
flexibility needed to effectively manipulate the data structure during the bin maintenance algorithm.
The speedup compared to using the LinkedList class is around a factor of two.

The interface is designed with modularity in mind. The elements accepted by the queue are
instances of class Object, which is as general as you can have in Java. One of the arguments for the
constructors of the CalendarQueue class is an object implementing the CQComparator interface. This
objectgivesthe ruleby which elements are sortedin the queue. In the DEdomain, an innerclassof the
DECQEventQueue class, the DECQComparator provides rule by whicheventsare sorted in the global
event queue (which is implemented by the DECCJEventQueue class).

Future work in the Ptolemy n CalendarQueueclass might involve improving the bin-maintenance
algorithm to account for the non-uniform distribution of elements.

6.2. Discrete Event Semantics

This section provides an overview of the operational semanticsof the discrete event model of com
putation using the tagged signal model,whichis a meta model for comparing modelsof computations
[6]. We start by deEning some notations.

6.2.1. Events and Signals
An event e is a member of the set E = TxV, where T is the set of all tags and V is the set of all val

ues. In our case, T = R, the set of all real numbers. A signal se S is a set of events, therefore S = ^3(E).
Afunctional signal is a partial function from T to V.An N-tuple of signal s 6 is denoted by s = [Sj,
S2».... Sn]. S® is the set with single element, which we denote by a. An empty signal, denoted by X, is
one with no events. The N-tuple ofempty signal isdenoted by A^.

Discrete-Event Modelingin Ptolemyn -23

Discrete-Event Modeling in Ptolemy II

6.2.2, Discrete and Zeno Signals
T(s) c T is the set of distinct tags in a signal s. T(s) s T is the set of tags appearing in any signals

in the tuples. A discrete signal (or tuple) is onewhere T(s) (orT(s)) is order-isomorphic to a subset of
infers. The set ofdiscrete signals is denoted by while the set ofdiscrete tuples is denoted by

A signal Szis a Zeno signal if thereexists tj, X2 e T(Sz) suchthat IT(Sz) n [tj, tj I= «»(where
|X| denotes the number of elements in the set X). Le. thereexiststwotagssuchthat thereare inifinitely
many tags between them. A Zeno tuple s is onewhich Sj, S2,...»e Sj, buts = [sj, S2,s^] ^
For example,

—{ 0,1,2,... } => Sj 6 Sjj (8)

T(s2)= { 1/2.3/4.7/8,... } =• S2 € Sd

T(s) ={0,1/2,3/4,7/8 1,2,...)=» s « Sj®(but s e S^)

It canbe shown thata Zenosignal (or tuple) is not a discrete signal (or tuple).

6.2.3, Merging signals

The merge of m signals is defined to be

M(Si,S2,.... Sm) = Si U S2 u ... U Sm (9)

The mergeof an m tupleis the mergeof its component signals, i.e.

M(s) = M([si, S2,.... Sm]) = M(si, S2,.... Sin) (10)

It can be shown that if s is a Zenotuple thenM(s) is a Zenosignal.
The two-way biased merge of two signals is defined by

M2b(si» S2) = Si u (S2 - S2) (11)

where S2 is the largest subset of S2 such that T(S2) c T(si). Le. if Si and S2 have events with thesame
tag, the two-way biased merge of Si and S2 includes theonefrom Si only. Them-way biasedmerge of
m signals is defined recursively as follows

Mb(s) = s (12)

Mb(Si, S2,.... Sjn) = M2b(Si, Mb(S2,..., S|n)) (13)

E.g., the 3-way biased merge of 3 signals is defined by

Mb(si» ^2* ^3) ~ M2b(Si, Mb(S2, S3)) = M2b(Si, M2b(S2» Mb(S3))) = M2b(Si, M2b(S2» S3)) (14)

Again, the biased meigeof a tuple is the biased merge of its component signal, i.e.

Mb(s) Mb([Si, S2»..., S|n]) —Mb(Si, S2, S|n) (15)

It can be shown that the biased meige of functional signals is a functional signal. On the other hand,
the mergeof functional signalsis not a functional signd, in general.

6.2.4, Processes

Aprocess Pisa subset ofS^. An N-tuple ofsignals s e issaid to satisfy the process, P, when s
€ P; s is called a behaviorof the process.Thus, a process is a set of possible behaviors.

•24 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

6.2.4.1. Projection

Let J = Oi,j2' •••» Jm] ^ ^ ordered set of M distinct indexes in the range 1 <j < N, definethe pro
jection 7Cj(s) of s = [sj, S2,s^] G onto by

^j(s) = [®jl» ^j2» •••» (1^)

Given a process P £ S^,define its projection onto by

7Cj(P) = {s e S^:Bs'g Psuch that ?Ci(s*) =s} (17)

6.2.4.2. Inputs, outputs andfunctional processes

The index set {1,2,..., N} can be partitioned into three disjoint subsets I, O, and such that

{l,...,N}=IuOuR (18)

where I is the indices of the input signals, O the output signals and R the irrelevant signals.
Aprocess Pissaid tobefunctional ifthere exists afunction F: -=> S'®' relating the input signals

to the ouput signal, such that for all s e P,

F(7Ci(s)) = 7Co(s) (19)

Therefore, a functional process P is completely characterized by the tuple (F, I, O, R).

Rgure 16. A network of processes

Discrete-Event Modeling in Ptolemy n -25

Discrete-Event Modeling in Ptolemy II

6.2.4.3. Source processes

A source process is a process with outputs but no inputs, e.g. PI in figure 16. Note that the feed
back loop is needed only in the implementation and therefore can be ignored in this denotational
framework. A functional source process can be completelycharacterized by the tuple (F,0,0, R).

6.2.5, Causality in Discrete-Event Systems
A key concept in discrete-event systems is causality which intuitively means that the outout events

do not have time stamp less than that of the input events that caused them. For any s € S^j , let s(t) =
[si(t),..., Sj^Ct)] where Sj(t) is the subset of sj with tag equal to t. Define the Cantor metric as follows:

d(s, s') = supti 1/2^: s(t) ^ s'(t), t e T} (20)

Another definition is

d(s, sO = 1/2"^ (21)

where x is equal to the smallest tag where s and s* differ. The smallest tag, x, is equal to -<» when s and
s' are identical. The Cantor metric along with set S results in a metric space.

For a function F: S™->S°, F is causal if

Vs, s'e S", d(F(s), F(sO) < d(s, s') (22)

It is strictly causal if

Vs, s'e S™ d(F(s), F(s')) < d(s, s') (23)

It is delta causal if there exists 5 e R such that

5 < 1 and Vs, s'e S"^, d(F(s), F(s')) < 6d(s, s') (24)

When F satisfies condition (24), then F is a contraction mapping.

A metric space is complete if every Cauchy sequence converges to a limit belonging to the metric
space. It can be shown that the set of discrete tuples, is complete. The Banach fixed point theo
rem states that if F : X —» X is a contraction mapping and X is complete, then there exists x e X such
that f(x) = X. Xis called the fixed point of F. Moreover, the theorem gives us a constructive way to find
X, often called the fixed point algorithm. Start with any Xq € X; x is the limit of the sequence

xi = F(xo), X2 = F(x,),... (25)

Consider a feedback loop shown in figure 17. Lee[7] shows that if the process P is functional and
the function F obtained by (19) is delta causal, then the feedback loop has exactly one behavior (i.e. it
is determinate). The behavior is found using the fixed point algorithm (25), which is exactly what
VHDL and Verilog simulators do. The delta causal (contraction mapping) condition prevents Zeno
condition where between two finite tags there are infinitely many tags. Zeno condition prevents the
simulation to advance beyond a certain tag or time stamp. The delta causal condition can be relaxed by
observing that it issufficient that there exists a finite Nsuch that F^ isdelta causal.

6.2.6, Composition ofFunctional Processes

The composition of M processes, denoted by (t)(Pi, P2,..., Pm). is treated as combining the con
straints imposedby the processesPi, P2,...»Pm- For example,Q = <j)(Pi, P2,P3,P4)in figure 16. Com
position can be thought as combining M processes. Pi, P2,..., Pm» lo construct a larger process, Q. I.e.

•26 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

<j): X X... Xp(S^) -> where Nj,N2,N^, Nis the number ofsignals in
th& processes Pi»P2» - mPm* Q» respectively.

We say that <t> is compositional if the following four conditions hold:
• If Pj, P2, and Pj^ are functional processes, then (t>(Pi, P2,Pm) is a functional process.
• If Pi, P2,..., and P^ are causal processes, then (|)(Pi, P2,..., Pm) is a causal process.
• If Pi, P2,and Pmare strictly causalprocesses, then(|)(Pi, P2,..., Pm) is a strictly causalprocess.
• If Pi, P2,...»andPm are deltacausalprocesses, then<l)(Pi, P2,..., Pm) is a deltacausal process.
We are interested in knowing whether some types of composition are compositional.Lee[6] has shown
that acyclic composition (see figure 18) is compositional while cyclic composition (see figiure 19) is
compositional, only if the process in the feedback loop is delta causal, or some finite power of it is
delta causal.

Rgure 17. A process with loop connection.

P2)

P2

Figure 18. Acyclic composition

Discrete-Event Modeling in Ptolemy n -27

Discrete-Event Modeling in Ptolemy n

6.2,7, Operational Semantics

The operational semantics given corresponds to the one for the DE domain in Ptolemy n. The rank
of input ports is encoded in the position of the signals in the signal tuple describing the composition.
For example, consider figure 20. The ranks ofthe input ports is shown as numbers inthe rais^-boxes
(Note that only the input ports have ranks). The composition can be described as a process Q and a
behaviorof the process Q is denotedby s = [sj S2 ... s^]. For each input port with rank equal to 1, the
signal connected to the input port is named I.e. there is a one-to-one correspondencebetween the
ranks of input ports and the name of the signals. The operational semantics resolves simultaneous
events by choosing the ones that correspond to the signal with the smallest index.

Merge connections are disallowed in our framework. Consider the topology shown in figure 21.
The signals s^, S2 and S3 shares the same link, but they are all distinct. This discrepancyis not allowed
in our framework. The fix is by introducinga mergeactor (or process) that mergesthe incomingevents
and produce them in its output port.

Split connectionsare also disallowed in our framework. Consider the topology shown in figure 22.
The input ports of the processes SinkA and SinkB have different ranks, but they are connected to the
same signal, namely Sj.This breaks the one-to-onecorrespondencebetween the rank of input ports and
the name of the signals. One way to Ex this topology is by inserting a split actor (or process) that takes
incoming events and produces a copy for each output port.

There is one aspect in the Ptolemy n DE domain that is not captured by this operational semantics.
The order of simultaneous events destined to the same port are lost in the operational semantics. For
example, consider tigure 23. Suppose when the Source actor is fired, it produces three simultaneous
events, namely Ej, E2 and E3 by invoking the send() method of the lOPort class three times with
arguments Vj, V2, and V3, in that order (vj, V2 and V3 are the valuescontained by the eventsEj, E2and
E3,respectively). Although the time stampsof theseeventsare equal, the implementation of the global
event queue store them in the order they are sent. When the Sink actor is fired, it can invoke the get ()
method of the lOPort class and will get these three events in the same order these events were sent by

<KP,)

Rgure 19. Cyclic composition

-28 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

the Source actor. The tagged signal model does not contain an ordering relation among events with the
same tags. (Recall that our tag denotes the time stamp which is an element from the set of real num
bers) One way to capture this information is by extending our tag system, T = RxN, where N denotes
the set of positiveintegers. The tag of an event in the extendedsystemwill then be the orderedpair of
a time stamp and a positive integer denoting the order the event was sent with respect to other simulta
neous events.

The operational semantics are expressed in terms of the firing junction of process, f. Let F = { f:
S™ XT—X F }be the set of all firing functions for m-input, n-output processes. Thefiring function
takes as arguments an m-tuple of input signals and a time stamp, and returns an n-tuple of output sig
nals and a new firing function, called continuation.The firing function is required to satisfy the follow
ing stuttering condition

Rgure 20. One-to-one correspondence between the rank of input ports and the name of the sig
nals In a composition.

Figure 23. Simultaneous events, E^, E2,and E3,destined to the same port.

Diserete-Event Modeling in Ptolemy n -29

Discrete-Event Modeling in Ptolemy n

f(Am, t) = (An, f) for all t e T. (26)

The firing function is a good implementation model of actors with m inputs and n outputs. When
an actor is fired, its given input events and the current time. The actor may then produce output events
and maybe change its state. The change of state is modeled by the continuation function, so on the next
firing the firing function might do something difierent due to the state change.

6.2.7.1. Relationship between thefiringJunction and the processfunction
We will give procedurethat given thefiring function, f: x T->S" x F, returns the processfunc

tion F : S" S°. Consider a single actor with m inputsand n outputs. Let s e S™ be the input. Con
structs' = F(s) e S" according to procedure(27).

A merge connection confuses the naming of signals

SourceA

Sink

SourceB

The fix is by inserting a merge process

SourceA

Sink

SourceB

Figure 21. A topology containing a merge connection. The appropriate fix is shown.

-30 Discrete-Event Modeling in Ptolemy D

Discrete-Event Modeling in Ptolemy n

// The procedure fills s' with the resulting output events due to
// the input events s.

A split connection breaks the 1-to-1 correspondence between the rank of input

SinkA

Source

SinkB

One fix is by inserting a spin process

SinkA

SinkB

Another one is by introducing extra ports on the source process

Source

SinkB

Rgure 22. A topology containing a split connection. Two fixes are shown.

Discrete-Event Modeling in Ptolemy n -31

Discrete-Event Modeling in Ptolemy n

// Initialize s' to an empty tuple.

B' = A„

// Keep looping until all events in the input signals s is consumed,
while (s^Anj) {

// Obtain the smallest time stamp in the input signal s
let x = min(T(Mi,(s)))

// s(x) contains the events at time x to be processed.
// B'' stores the output events obtained from the actor firing at
// time X.

// The firing function f is updated to the continuation function,
let (s" , f) = f (s(x) , X)

// Remove the processed events, s(x), from the input signal, s.
let s = s - s(x)

// Append the output events from this firing, s'', to s'.
let B' = B' U B''

} (27)

For a given firingfunction f, defineits closure f c F to be the set of all firing functions reachable from
f. It can be shown that F is causal (or strictly causal) if all firing functions in f are causal (or stricly

causal). AlsothatF is deltacausal if thereexists a 5 < 1 such that for all f' e f, s, s' e S™, andx e T,

d(q,q')<5d(s,s'), (28)

where q and q' satisfies

(q.r') = f'(s,T)

(q\f"0 = f'(s',T)

Next we consider source processes with n outputs. Recall that source processes are implemented
using feedback loop, so the firing function (which is much closer to the implementation than the pro
cess function) is of this form: f: S x T->S° x F. Note that the firing function takes as one of its argu
ments a 1-tuple of signal as the input from the feedback loop. Therefore, procedure (27) can be
modified to obtain procedure (29) that given thefiringfunction^ f: S x T—x F, returns the process
function F : S® S" (Note that S® contains only one element, namely c). For a source actor with firing
function f, construct s* = F(a) as follows:

// The procedure fills s' with the resulting output events.
// Initialize a' to an empty tuple,
a' = Ajj

//We arbitrarily choose that the first firing, thus the first
// output event, is at time zero.
X = 0

// Source processes produce events indefinitely, hence infinite loop,
while (true) {

// a" stores the output events resulting from the firing at
// time X.

// The firing fiinction f is updated to the continuation fxinction.
let (a'', f) = f (Jii{a'(X)), x)
// Obtain the smallest time stamp in the output events a" because
// it is assumed that sources are iitplemented using feedback
// loop such as in figure 17.

.32 Discrete-Event Modeling in Ptolemy n

Discrete-Event Modeling in Ptolemy n

let T = min(T(a''))

// Append the output events s'' to the result s'.
let s' = a' U 8' '

} (29)

6.2.7.2. Operational Semanticsfor a Network ofDiscrete-Event Processes.

Finally, we can give the operational semantics for a network of discrete event processes, such as
the one in figure 16.The signals in the network are numberedaccording to the topological sort of input
ports as described in previous sections. The ranks of the input ports corresponds to the number
assigned to the signals. Signals that are "forked" (or split) to different actors (e.g. S4 and S7 in figure
16) are given differentnames. (Note that this is equivalentto creating extra output ports on the source
process, as shown in the bottom topology of figure 22.) Signals that are "joined" (or merged) are not
allowedand therefore do not appearin figure 16. (A wayto workaroundthis merged-signal restriction
is shownin figure 21.) These restriction are mainlyto accomodate that the topological sort is done on
the input ports rather than connections. The goal is such that each input port is connected to a signal-
with a single and unique name, and moreover, the name indicates the rank of the input port.

Suppose thereare N signalsand M actors with firing functions fi, f2. —»fM» non-empty input
index sets Ij,..., and output index sets Oj,..., Oj^. Let s € S'̂ denotes the events initially present.
In the Ptolemy n implementation this is achieved by queueing events during the initialization phase.
The operational semantic is shown in procedure (30).

// The signal s serves as the global event queue for this procedure.
// The iteration continues until there are no more events in the
// global event queue,

while (s^Ajj) {
// The variable X denotes the current time. The following statement
// reflects the current time advancement done by the director,
let x = min(T(Mb{s)))

// This is the start of an iteration

// An iteration is the processing of all events in the global
// event queue at time X.
while {8(x);fcAj,) {

// j is the index of the signal with lowest rank that contains
// input events at time x.
let j = min{k e {1, 2, . . ., N) : Sy.{x)^X }

// i is the index of the process that takes the signal Sj as
// one of its input signals,
let ie {1, 2, ...,M} rjeli

// JCii(8(x)) is the events at time x that are destined for
// actor i.

// Actor i is fired at time x and its firing function is
// updated.

// The outi

let (a", fi) = fi(7Cii{8(x)), X)
// The output events produced are stored in 8" €

Discrete-EventModelingin Ptolemyn -33

Discrete-Event Modeling in Ptolemy n

11 The function Selectu^ii : S^—> returns an N-tuple signal,
11 similar to the argument, except that ^

//kg li.

// The function Expandoi,N • s'® '̂ —» returns an N-tuple signal
// with the matching components equal to those of the argument
// and the the rest of the coirponents is X.

// Select^,!!(s(X)) denotes the events processed by actor i, while
// ExpandQi^jj{s'') denotes the events produced by actor i
// Update the global event queue appropriately,
let s = s - SelectN,ii (fl (X)) u Expandoi^N^®' ')

}

// The end of one iteration, because there is no more events

// in the global event queue at time X.

} (30)

where

SelectNj(s)= [pi, P2,Pn] e (31)

with

Pk = Sfc for k e I
= A, for kg I

and where

Expando,N(s = [Soi, So2,...»Soioi])= [pi, P2,. PnI ^ (32)

with

O = [oj, 02,0|oi], where lOI denotes the cardinality of O

pk = A, for k g O
= s„|,fork = Oh

7.Bibliography

[1] The Ptolemy 11 project, http://ptolemy.eecs.berkeley.edu/ptolemyn.

[2] E.A. Lee, Overview of The Ptolemy Project, UCB/ERL Memorandum M98/72.

[3] Davis J, et al. Heterogeneous Concurrent Modeling and Design in Java, Memorandum UCB/ERL
M98/72, EECS, University of California, Berkeley, CA, USA 94720, November 23 1998.

[4] J.T. Buck, S. Ha, E.A. Lee, and D.G Messerschmitt, "Ptolemy: A Framework for Simulating and
Prototyping heterogeneous Systems, " Int. Journal of Computer Simulation, special issue on
"Simulation Software Development, " vol. 4. pp. 155-182, April, 1994.

[5] Randy Brown, "CalendarQueue: A Fast Priority Queue Implementation for the Simulating Event
Set Problem", Communications of the ACM, October 1988, volume 31, Number 10.

-34 Discrete-Event Modeling in Ptolemy II

Discrete-Event Modeling in Ptolemy n

[6] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models of Computa
tion", March 12,1998. (Revised from ERL Memorandum UCB/ERL M97/22, University of Cali
fornia, Berkeley, CA 94270, January 30,1997)

[7] Edward A. Lee, **Modeling Concurrent Real-Time Processes Using Discrete Events", UCB/ERL
Memorandum M98/7, March 4th 1998

[8] Jerry Banks, et al, "Discrete-Event System Simulation", Second Edition, Prentice-Hall, Inc, 1996

[9] Randy Brown, "CalendarQueue: A Fast Priority Queue Implementation for The Simulation Event
Set Problem", Cormnunications of the ACM, October 1998, Volume 31, Number 10.

[10] Jie Liu, "Continuous Time and Mixed-Signal Simulation in Ptolemy XT', MS Report, UCB/ERL
Memorandum M98/74, Dept. of EECS, University of California, Berkeley, CA 94720, December
1998.

Discrete-Event Modeling in Ptolemy n -35

	Copyright notice 1999
	ERL-99-29

