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Abstract

Visual search is a complex set ofcomponent processes involving bottom-up and top-down
factors in human vision that may adapt to efficiently carry oiit the search task. An illustrative, quasi-
natural search scene was used for an experiment in order to ascertain the effectiveness of a whole set
ofmetrics that could capture these search procedures. We explain the setting and protocol and define
and illustrate these and the measures that we have found effective in evaluating and imderstanding
ongoing search. The results generally demonstrate the importance oftop-down spatial-cognitive
models and procedures related to the scanpath theory ofevery-day top-down, normal vision. Of
special interest are parameter-free metrics that can scale up or down for different search arenas; these
include K-means estimation ofclusters oftargets hits, similarity indices, Sp and Ss, for loci and
sequences for both instrumental and target scanpaths. Evidence for semantic, structural and sequential
binding have earlier reinforced the applicability of the scanpath top-down theory for approaching the
problems of visual search.

Keywords: visual search, cover, detection, scale, similarity indices, instrumental searchpaths,
K-means, scanpath, top-down, FOR, FOV, ROIs.

Note that there is a glossary and listof acronyms at end for definition of terms.

1 - INTRODUCTION

Visual search is a complex set ofcomponent processes, a).- Apre-scan to estimate
parameters ofthe search, such as dimensions ofthe search area, levels ofnoise and clutter, contrast
levels for targets, etc; although many of these may be known apriori, b).- Acover process, often by
instrumental search, to inspect the field of regard, FOR (Figure 1, lower), c).- Detection of targets,
decoys, landmarks, d).- Recognition ofdetected objects.

Vision is dependent upon such bottom-up parameters as contrast. Cm, spatial frequency, Wx,
and such instrumental aids as magnification, and upon such top-down factors as —trained tactics for
search, constructed models as matched filters for targets, decoys, clutter elements; and familiarity
with the global and local features ofthe landscape in that composes the search area.

Cover, or search processes per se, involve first, the movement ofthe field ofview, FOV
(Fipire 2a, lower), over the FOR, the search area in toto. The ratio of the FOV to the FOR provides
an indication of the number of FOVs that will be required to traverse or cover the search scene
(Figure 2a, mset icon). Often, this is accomplished by means of instrumental search that involves an
1
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FOV window, an optical, or an electro-optical, or other display window, moved over the FOR by a
controller with a mechanical device, e.g., a "mouse." A sequence of such "mouse"-controlled FOV
shifts (n = circa 80) over the FOR documents how a human carrying out a visual search task in our
laboratory carried out an instrumental searchpath and so "covered" the FOR (Figure 1, lower). Cover
metrics and the efficiency of cover are important in understanding visual search.

Figure 1: Human viewing ofpictures and search scenes
Contrast a human usingscanpath eye movements to view a picture (upper), and

employing instrumental search (lower) to move a FOV window over a search scene, or FOR.

Figure 2: Search scene and fields of view, FOVs
Forested search scene shownas a high resolution, densely pixelled FOR (Figure 2a),

and showing three FOVs containing targets (Figures 2a and 2b).

Of course, the natural humanuses head movements to move FOVs into different parts of the
potential viewed scene. The FOV is itself traversed by human eye movements, saccades, often, in a
scanpath sequence. These saccades actively and rapidly jump from glimpse to glimpse, carrying the
high-resolution portion of the eye, the fovea, so as to allow fixation, or foveation, onto important
regions of interest, ROIs, that may contain a target. (Figure 1, upper).

Theaim of this paper is to carry out an experimental visual search taskapproximating a field
test. Metrics have beendeveloped that attempt to capture the efficiency of the visual search processes
at a number of different levels; the metrics have been designed either to be scale-independent or to
define the scale.

2 - METHODS

Search scene. We describe the search scene as to its general features, its truck-targets,
clutter, largely vegetation (Figure 2b) and as well, its dimensions at several levels and with several
optical and display units of measurement (Figure 3).

Figure 3: Diagram of the field of regard, FOR
Dimensions of the search area, or FOR, and ofthe internal and external FOVs. Note

icon, lower right, showing actual proportion of FOR and of FOV; theseproportions have
been distorted throughout or series offigures in an attempt to display the meaningful
information to the readers within our constraintformat.

In these experiments, the search area, or field of regard, FOR, is approximately 1400
meters or 40 degrees in external horizontal visual angle, considering that the nominal range is 2
kilometers. The extreme aspect ratio of the FOR is 10 to 1, approximately 13,500 pixels horizontally
and 1350pixelsvertically (or about340 pixels per degree). An icon, (Figure 3, lower right), has
been prepared to show the veridical proportions of the FOR and FOV and placedonto several of the
figures illustrating these scenes; the figures of the scenes have been distorted from their true
proportions so readers can view the scenes and the included objects and landmarks more clearly.

The viewing port permits an external field of view, eFOV, of approximately 140 meters
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across or 4 degrees. The eFOV has approximately 1250 pixels (3.7 degrees at 340 pixels/degree)
horizontally and 580 pixels (1.7 degrees at 340 pixels/degree) vertically. The viewing port, uses
magnification of about 11 x to provide a much wider displayed internal field of view, iFOV,
approximately 40 degrees horizontally (30 pixels per degrees); several examples of the iFOV (Figures
2a, lower, and 2b) provides a clearer idea of what the subjects actually viewed. The instrumental
magnification for the field test was approximately x 11; we tried to preserve this magnification in
terms of the display on our computer monitor. Of course, this depends on the distance of the subject
from the computer monitor. Important features of this overall diagram are the ROIs that can be
deduced a priori from the target loci or a posteriori from the subject's clicks onto either targets or
landmarks. This will be discussed extensively in the K-means part of this reportbelow. At present,
let us say that the ROIs are approximately 100 pixels across, only one third of a degree in the eFOV,
but 3 degrees of visual angle in the iFOV; thus providing extended targets for acquisition by human
vision.

The scene is of the California oak forest. Note the very wide aspect ratio of the actual
landscape scene (Figure 2a, upper) that we have worked with in our experiments below; recall the
icon showing true proportions of the FOR and of the FOV. An example of the eFOVs (upper) is
shown as the displayed expanded iFOV (Figure 3, lower); recall, the magnification for the display to
the subject onthe computer monitor is considerable, about eleven-fold. Note the appearance of a dirt
road and typical oak trees and grassland. A truck on the roadway (Figure 2b, upper iFOV) shows a
black rectangle that indicated to the subject that he had correctly clicked the mouse onthat target.
The contrast, even in these poor copies of the actual computer monitor display, is suffrcient for the
trucks to be reasonably well detected and once detected to be recognized. Truck size as represented in
the 2D FOR was a function of distance of the trucks in the 3D search scene.

Target identification using cross-hair cursor and mouse clicks. Inorder to accomplish
target detection, the cross-hairs had to be placed more or less accurately (see below in the K-means
test) on the target. Two other trucks (Figure 2b, lower panel) are shown, before the observer had
clicked on them, to indicate he had seen them.

Eye movement experiments require careful preparation and execution. During the
experiment, subjects often have to remain as still as possible; they are secured ona chin-rest structure,
and go through automated calibration procedures beforeand after each visual stimulus. Even small
movements of the head can spoil the data of anentire session. This is one reason why we decided to
simplify the acquisition ofROIs by using a self-calibrating "mouse-clicking" over the FOV, rather
than measuring eye fixations. We have shown (Stark etal., SPIE 1999) that ROIs chosen by marking
these loci of attention with ageneric cursor are highly correlated in their structural binding with eye
movement fixations.

Computer aspects. In carrying out this experiment, we utilized an Intergraph-PC, to
display the large complex scene, full ofnatural clutter, and with approximately five trucks scattered
throughout the scene. These trucks were placed onto the same scene in three different configurations,
A, B, and C, for three search scenarios. Software aspects ofour programs included the use ofthe
Corel Draw program.to enable placement of the trucks. Matlab programs were used to construct the
FOV windows, the cross-hairs, and for recording of both the instrumental search and human visual
performance characteristics. Analysis ofthe data was also done with Matlab programs on Next Unix
workstations and on PC-workstations. Details ofthese analysis programs will be presented below,
3
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and also in conjunction withdisplays of results. A series of early control experiments, using
computer graphics and carried out with Open-GL and Visual C+ + programs, provided for wide
ranging exploration of various parameters in both the experimental protocol and in the analysis
approach.

Protocol of experiment. We arranged the protocol of the experiment so that eachof our
subjects was able to view each of the three scenarios four times. Further, they were exposed to a
series of three repetitions looking at the search scene without any targets emplaced; wherein they were
asked to indicate important landmark features that mighthelp them become familiar with the scene in
subsequent searches. This made for a total series of 15search scene presentations.

Before starting this protocol, the subjects were allowed to familiarize themselves with a
different search scene, and with the control of the FOV window, the cross-haircursor, and the
clicking buttons on the mouse. Mouse control also provided for discrete movement of the window, so
that they could scan the eFOV over the FOR. As in most mouse controls, the more eccentrically the
mouse moved, the faster the scanning movement of the FOV over the FOR. They were also told that
they would have 120 seconds for each search. This time constraint enabled us to focus on the extent
of the FOR covered, asa measure of the efficiency of the subject's search; some subjects (numbers 3
and 4) finished early (see below Cover Results).

Partly before thepractice scene, and also as appropriate during theprotocol, a written set of
instructions (Figure 4) was presented to the subjects on the computer screen, and was further
reinforced by verbal interaction with the experimenter. Instructions specified how to slew the FOV
over the FOR and how to center the cross-hair onto the target. The task was defined with respect to
time limitations, number and type of targets, landmarks and repetitions. For part of the protocol we
asked subjects to identify landmarks that might beuseful as reference locations when scanning through
the FOR in further repeated searches. We collected searchpaths for these landmark presentations and
noted similarities and differences qualitatively and estimated them quantitatively using our similarity
metrics.

The subjects, students or researchers at Berkeley were unpaid volunteers; they were told that
they could terminate the experiment any time they became uncomfortable in conformance with the
rules of the Committee for the Protection of Human Subjects at the University of California.

Figure 4: Instructions to subjects
These instructions werepresented in writtenform on the computer screen,

and also reinforced verbally by the experimenter.

Analysis methods. These varied from simple histograms demonstrating numbers of targets
clicked and percent of acquisition sequences, to K-means analyses of the distribution of clicking
locations with respect to targets and landmarks, and included a variety of statistical methods generally
resting upon ANOVAs, analyses of variance. Of interest is theuseof the theory of signal detection,
TSD, for subject error analysis. Also, very important, are various distance and similarity metrics,
originally developed for scanpath studies and early visual searchexperiments; these havebeen refined
over the past years.

Application of metrics. The sequenceoftarget clicks ofa subject were easily measuredsince
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the cross-hair positions and the target positions were well defined and the sequence was avector of(x,y)
loci. Each clicked locus or region, might include a target or a false alarm, that is aclicked region
without a target. These ofcourse equally applied to landmarks. For instrumental searchpaths we used a
"binning" measure of distance; there were 30bins perFOR.

Comparison offinal vectors of loci, began with taking two sets ofloci (Figure 5, middle
column, upper and lower panels) and clustering these two sets using a distance measure derived from a
K-means pre-evaluation (see below). This evaluation determined aregion for calling coincident any loci
that were closer than this distance and non-coincident for loci that were further apart than this distance.
The final selection ofcoincident loci (Figure 5, right panel) then enabled asimilarity metric, Sp, to
determine how many loci two searches have in common. The final value is normalized based upon
sequence length.

The individual sources ofthe elements, that is the original loci, used inthese final interactive
steps were preserved as circles and squares (Figure 5, right panel) to illustrate the procedure. Each
separated sequence ofloci is temporally ordered and thus yields astring (Figure 6). Here, we have for
example: string! =afbffdcdf and string2 =abcfeffgdc. The string editing similarity index Ss was
defined by an optimization algorithm with unit cost assigned to the three different operations deletion,
insertion and substitution.

Thus, these comparison metrics yield two different indices ofsimilarity which tells us how
closely two sets of loci resemble each other in position, Sp, and in sequence, Ss (see the "toy" diagram
on Figure 7, upper panels). For the example illustrated above (Figure 6) we have: Ss =0.22.

Figure 5: Calculation of Similarity Index, Sp

Figure 6: String Editing

Figure 7: Simplified^ or "toy" diagrams
TWi? metrics, Sp and Ss, are usedfor comparepairwise searchpaths. Averaged

coefficients are then presented in parsing diagrams.

To further illustrate simlarity measures (Figure 7, upper panel) we show simplistic scanpaths
three examples of four fixation sequences for each of two scanpaths, connected by eye movement

vectors. First (left), the loci of the fixations are completely different from one scaiqiath to another;
thus the similarity measure, Sp, for similarity of loci of fixations, equals zero, and the similarity
measure, Ss, for similarity of sequence strings is also zero. Next (middle), the loci are identical, and
Sp equals one; the sequences are completely different, and therefore, Ss equals zero. Finally (right),
both the loci and the sequences are identical for the two scanpaths; both Sp and Ss equal one.

Posing diagranas, (Figure 7, bottom panels) demonstrate coefficients that furst had been
assembled in the Y-matrix, and then coUected and averaged. R, the repetitive coefficient, represents
the similarity of scanpaths for the same subject looking at the same scenarios. L, the local coefficient,
represents th& similarity of scanpaths made by different subjects looking at the same scenarios; I, the
idiosyncratic coefficient, represents the similarity of scanpaths of the same subject looking at different
scenanos. Two bottom anchors for comparison with R, L, and I, are G, the global coefficient, which
represents the correlation of ^1 subjects looking at all scenarios, and Ra, the random coefficient,
which represents the similarities of aset of randomly generated searchpaths.
5
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The format of the values in the parsing diagrams, e.g., 0.81 (0.27) (upper left, R box) shows
the mean and (standarddeviation); bold values represent a "p" value less than 0.01 as determined by
ANOVA analysis for differences of the coefficients from the random, Ra, coefficient (lower box).
Significant differences betweenR, L, I, and G coefficients are indicated by bold arrows.

3-K-MEANS APPROACH

It is important to determine characteristics of visual search that are invariant to scale or
alternatively, to determine the actual scale. 'Scale' is, of course, a function of many things —
magnification of the sensors or distance of the scene or its targets. The K-means method is a way to
determining scale in an algorithmic fashion for subject engaged in 2D visual search.

Clustering of locationalclicks. In carrying out a visual search task, as in the experiments
reported here, subjects scan a visual scene or FOR and thenuse a mouse cursor, to click on a targetor
a possible target locus. The number of subjects and the number of repetitions for each subject
depended uponthe experimental protocol. In the experiments reported here, approximately 25 clicks
occurred around any particular target locus (Figure 8). These form a target cluster.

Figure 8: Clustering of target clicks
Targetregions in a portion ofFOR, are shown magnified. The dense clustering ofall

subjects' clicksfor thefour sequences is typical. Circular dimensions (lower) explained in
text later in results sections (not proportioned as a full FOV, but as only part ofan FOV).

It is believed that this target cluster, or collection of target clicks, may be a useful estimate of
scale. Very small distant targets will force the clicking into a tighter cluster than largernearby
targets. Thus, our problem resolves to determining the target cluster diameter, "d"; the K-means
method (seebelow) is a way of estimating this diameter, "d." A simplified, or toy, diagram of two
clusters of points that are to be analyzed by the K-means algorithm (Figure 9, upper left), may help to
understand this procedure.

Figure 9: Simplified, or "toy" diagram ofK-means approach
Synthetic target clicks (upper); numberof clusters (middle) and Sp values (lower)

as functions of K-means, "d". Clustered target clicks (left) vs. random clicks (right)

K-means method: finding the number and diameter of clusters. A simplified example
with two clusters of target clicks roughly 10pixels in diameter (Figure 9, upper left) are separated by
about 20 pixels; the image is about 60 x 60 pixels in size. The K-means algorithm assembles points
that are within a diameter, "d," intoa single cluster. The essence of the K-means algorithm is to use
all values of distance for diameter, "d," ranging from one pixel to the largest lengththat can be
encompassed within the entire image, typically an oblique diameter (in the example equal to 60 x 1.4).
A simplified, or toy, diagram of the results of such a K-means analysis (middle left), helps to explain
further this algorithm. Note the domain of the abscissa goes from 1 to 60 pixels (actually 1.4 x 60),
to cover the domain of "d" values from minimum to maximum. The ordinate, the number of clusters
found, ranges from 8 to 1. The solid line represents the results foimd with the K-means algorithm of
this simplified two-cluster image (upper left). Initially, with d = 1 pixel, each point will be in a
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separate cluster and thus the number ofclusters equals the number ofpoints ([1,8] in lower left).
Finally, with d = 60 (x 1.4) pixels (the maximum linear extent ofthe image) all points will be
assembled into one cluster [60,1].

Note that when the acceptance length is reached for the vectors in the clustering diagram,
that includes all pairs ofpoints, the Sp value will equal one (Figure 9, lower left). Thus, the Sp
ordinate ofthe K-means function ranges from one to zero, zero being the value when the acceptance
length starts at one pixel, and no pairs ofpoints are within the same acceptance length. The K-means
functional curve (middle left, solid line) is a monotonically decreasing one. The comer of the
function near value [10,2] represents the number ofclusters found when "d" is equal to 10 pixels.
This comer thus provides a value for estimating scale for the tightness ofclustering about a particular
target. A second potential comer [38,1], where the two clusters coalesce due to the very large d-
value, which equals their separation ofabout 30 to 40 pixels, does not show clearly because ofthe
sparseness of the number ofpoints in this toy diagram. (See Figure 8 for anactual experimental
cluster.)

For comparison, a random distribution ofpoints was generated (Figure 9, upper right) and
the corresponding K-means function computed (solid line, middle right). This shows the
monotonically decreasing function, but without the prominent comer, due to lack ofclustering (middle
right).

K-means method: finding the Sp value. We are especially interested inshowing how the
vector of sequential points of a searchpath corresponds or does not correspond toanother vector of
another searchpath. Our metrics for assessing these comparisons are Sp and Ss, as indicated in the
Method Section, elucidating our metrics and their analyses. Simply put, the Sp value corresponds to
the fraction ofpoints ofone vector that are close (within a specific distance "d") to one ofthe points
ofthe second vector. The K-means method is applied to Sp by gradually increasing the acceptance
radius "d" and comparing pairs ofvectors. These may, for example, correspond to repetitions of
search by the same person; inthis case, a final R-repetitive value is obtained that is the average ofthe
pair-wise Sp values of the subject viewing the same search scenario.

If clusters do, in fact, exist amongst these several repetitions, then the K-means function will
be characterized by "comers," as shown inthe clustering toy example (Figure 9, middle left). A
similar comer (Figure 9, lower left) is produced by a rapid increase ofSp, as a function of "d", for
points within a cluster, followed monotonically by a low derivative curve, as "d" increases over the
larger distances between clusters. The inflection point, or "comer," is a good estimate for the value
of "d," here equal to 10, the acceptance length corresponding to the diameter of a cluster. This then
is our scale estimation method.

When the four points inthe first cluster are connected as vectors with the four points in the
second cluster (Figure 9, upper left), we obtain a set offour vectors to which we can apply the K-
means estimation ofthe Sp value and its acceptance length, "d." If we repeat this vectorizing
procedure for the randomly distributed points in the toy diagram (Figure 9, upper right), we again can
obtain K-means functions (Figure 9, middle and lower right). Now, however, since there is no
clustering and no special acceptance length value, "d," there is no "comering" ofthe K-means
functions.
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The Sp metric for clustering of loci and their similarity of target searchpaths applied also to
the experiment whereby subjects are asked to choose landmarks, and indeed, to the scanpath
experimental approach in general. However, we here stress its utility in determining scale, in that
tight clustering implies a smaller (more distant) target, and looser clustering implies a larger (closer)
target.

4 - COVER RESULTS: Instrumental window, target, and landmark searchpaths

The way subjects searched over or "covered" the FOR has two components. The first is
how the window moved over the FOR — an instrumental searchpath. The second is how the subject
actually looked within a field of view to search for targets — the scanpath. We have recorded both
the instrumental searchpaths and a portion of the human scanpath search mechanism. This latter was
limited to recording only the loci of the cursor clicks, where the subject felt he had recognized a
target. Thus, the target and landmark "searchpaths" represent only the final location of the
supposedly found targets, rather than the instant-to-instant shifts of attention, foveations or fixations
within the FOV, as would be recorded for a true scanpath. We used this new definition of a
searchpath to denote this truncated scanpath, but one whichcontains the successive target, or
landmark clicks, and vectors connecting them in sequential fashion.

Figure 10: Instrumental Window Searchpaths
Instrumental searchpathsfor three subjects (threeupperpanels); a random

instrumentalcover with minor constraints (lowerpanel).

Figure 11: Target and Landmark Searchpaths
Notedifferencesfrom instrumental searchpaths.

Three instrumental searchpaths (Figure 10, three upper panels), were carried out by three
different subjects. Note the distortion of the aspect ratio of the actual FOR (compare with Figure 2a,
upper), which was done in orderto make the FOR and the searchpaths easier to view. First, note the
great variety of searchpaths; this opens important questions as to whether observers would benefit by
having the opportunity to view optimal or efficient searchpaths in some training paradigm. The
instrumental searchpaths have black asterisks (the asterisks often appear as circles with the reduced
resolution of the printed copy) indicating when and where the window came to a halt, after being
moved in a discrete or sampled date control mode by the mouse. The size of the asterisk represents
the duration of the stationary phase of the iFOV window. Infollow-up experiments and analyses, the
number of stops per instrumental search, circa 80, may proveto be a useful measure.

Also note (Figure 10, bottom panel) an example of a random algorithmic search with several
important constraints: the window could only jump one-third to two-thirds of the FOVwindow width
or height, and the temporal frequency of changes was limited to the average number of instrumental
jumps ofour group ofhuman subjects. The random searchpaths were useful indetermining a bottom
anchor for search (see parsing diagram results in Figure 7, lower panel; and in Figure 20).

Target searchpaths (Figure 11) are superimposed on the FORas background. As indicated
the "searchpaths" are in reality, only the terminal loci of attention, that is the loci where 'mouse'
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clicks indicated potential targets. These sequences of target clicks have been artificially connected by
straight line vectors and indicate where over the FOR the subjects clicked their loci of attention.
(Actual data are not related one-to-one to the instrumental data shown in Figure 10).

Of special interest were the searchpaths for landmarks; these served as a sort of 'counter
example" to more straightforward target searchpaths. As can be noted in the instructions to subjects
(Figure 4), what a landmark is, was left to the subject to be defined. Very often, the prominent
roadway to the left of the FOR was selected as a landmark; sometimes, tops of hills were chosen.
The landmark aspect of the protocol raises questions as to the difference between benchmarks
(artificial symbols) and landmarks, and of effects, if any, of placing benchmarks in the FOR, even
perhaps only as a training exercise. Each of seven subjects was instructed to choose five landmarks
(Figure 11, Landmark ROIs, indicated by heavy dots); discussion of the utility of the landmark part of
the protocol for our subjects will follow below.

5 - COVER EFFICIENCY RESULTS: Area, time, and errors

As can be seen qualitatively in the instrumental searchpaths (Figure 10) most of the search
area was covered by our subjects in the allotted time. This cover was defined as the fractional total
area of the FOR coveredby the FOV windows during the 120 seconds of search. Results as
histogram bars (Figure 12,upper panel) are from the entire protocol — scenarios A, B, and C, at
first only one time each, then the three landmark presentations, and finally the remaining three
repetitions of A, B, and C; the efficiency of the random instrumental searchpath, Ra, is included for
comparison and this average also plotted as a dashed line onto the histogram of the lower panel.
There is slight improvement after presentation of landmarks — 70% versus 65%, a minor result.
Note that the random efficiency also falls within the rather small variation among these results
indicating that themovement algorithm for random search was reasonably successful. Individual
averages of all 15 presentations of the target scenarios and landmarks for each of our seven subjects
(Figure 12, lower panel) show higher variability than the differences from one sequence to another.
(The seven subjects may only be identified by initials: 1-ml, 2-dc, 3-cc, 4-cp, 5-dg, 6-hy, 7-ec}.

Figure 12: Fractional Covered Area

Clearer results (Figure 13) than those of Figure 12 can be seen if fractional covered area is
divided by time inseconds. Note exceptional performances for subjects 3 and 4* [*trained by CC,
Imp IV inthe British campaign of44 AD]. Also, by reference back to Figure 12 one can see that
these two subjects actually had reduced covered area for the later target search trials; likely indicting
that they had rapidly achieved their search for the five target trucks and then had ended search. (We
thank Dr. Barbara 0*Kane for raising the possibility of this phenomenon before we had noted it in
our results.) This display might inthe future be helpful to try tounderstand effects of training and/or
ofbenchmark placements inthe search area. There are two real effects —one with respect to
subjects gaining experience throughout the experiment, and the other the effect ofthe familiarity with
search scene provided by the landmark portion of the protocol; note the improved value of0.009 vs.
the initial value of 0.0065.

Figure 13: Fractional CoveredArea as a Function of Time
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The successes, missed targets, and false alarms were averaged for all subjects and for all
four presentations of all three scenarios (Figure 14). Note that throughout approximately four of the
five targets were acquired without seeing any particular effect of experience in reducing errors. The
scenario was actually quite confusing, with die large amount of natural vegetation serving as clutter,
and with the sparseness of clear landmarks throughout the scene. Recall that the targets, though
having adequate contrast, still did not stand out in this natural scene. Of interest, is the rather low
number of false alarms. This is evidence that detection and recognition are tighdy linked visual
processes under the conditions of the present experiment; any detection was accompanied by a very
high recognition rate. We expect that experiments altering contrast and spatial frequency and
magnification would modify our results significandy, especially in the area of the linkage between
detectionand recognition. Correct rejections could not be measured in our experiment.

Figure 14: Error analysis of the search process
Three types oferrors shownfor each of thefour sequential FOR presentations

(each in its own window). Correct rejections, CR, could not be measured in our experiment.

The error analysis is further presented in the form of the theory of signal detection, TSD. In
this TSD diagram (Figure 15), we see that there is a 0.8 hit probability, and a 0.2 missed target
probability. False alarm and correct rejection probabilities are very difficult to estimate, since the
subjectpresumably had many opportunities for clickingon false targets during the 120 seconds of
search. One might think that the false alarm rate of 0.1 (from Figure 14) was a large overestimate.
As a rough approximation, we have divided this rate by 10, to get a false alarm rate of 0.01, and a
correct rejection ratio of 0.99. Consider that each of the about sixty stopped windows per scenario
was stationary for about two seconds, allowing perhaps six fixations or glimpses per window; thus a
total of about360 glimpses per scenario presentation. The average subject clicked a false alarm about
once in every scenario presentations — perhaps a false alarm rate as low as 1/300. This correlates
with the close association of detections and recognition; the clutterwas quitedifferent in physical
characteristics from the targets and there were no decoys; finally, with the sparseness of targets there
was no utility to guessing a possible false alarm rather than assuming a correct rejection instantlya
target was not perceived.

Figure 15: TSD error analysis
Hits and misses, as measured in the experiment. Bothprobabilitiesforfalse alarm,

FA, and correct rejections, CR, have been adjusted as indicated in text.

6- K-MEANS RESULTS

Target acquisitions for scenario A (Figure 16, upper panel) with five multiply-clicked points
and eight single points where false alarms were clicked by subjects in error. In principle, there could
be as many as 105 clicks; seven subjects times the five targets times the last three repetitions for
scenario A. Two of the targets indicated by dark arrows leading from the loci in the FOR to the
cluster of clicks in a highly magnified subsection of the FOR (middle and lower panels). Note that
these are not iFOVs. Recall that our earlier nominal value of 100 pixels (larger circle) equals about
0.3 degree in the FOR and 3.7 degrees in the magnified iFOV; about equal to the size of the target,
although this varied with placement distance in the 3D search region. The clustering of these points
(see K-means Figures 17 and 18) is within the 40 pixels diameter that is the K-means nominal value
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for "d". Recall that this K-means value of 40 pixels (Figure 16, smaller circle) is equal to about 1/8
degree in the FOR and one degree in the magnified iFOV.

Figure 16: Loci of target acquisitions
Target regions in a portion ofFOR (upper) are shown magnified (middle and lower).

Dense clustering ofall subjects' clicksfor thefour sequences is typical.
Circular dimensions (lowerpanel) explained in text.

K-means analysis of variance withinthe locus of target acquisition is an important approach
to a size measure or "scale" in the visual search task with respect to the sizes of the FOR, the eFOV,
and the iFOVand of the size of the human retinal fovea and to the fixational accuracy of the eye.
Any tremor of the hand controlling the mouse and any digitization approximations are likely much
smaller in size. The K-means test allows us to select threshold distances for similarity between any
two loci of clicks for target acquisition, from one pixel to 12,000 pixels. If one pixel is selected as the
threshold distance, then clearly two clicks would be zero distance apart extremely infrequently. The
similarity index, Sp, defmed as (1 - the distance) would thus be zero. If 12,000 pixels are selected as
the threshold distance, then all clicks would be accumulated into one large cluster, and all would be
similar to one another, giving an Sp similarity index of 1; also true for a random distribution of target
clicks (dotted line). Clearly 100% of the points are within a circle spanning 12,000 pixels, that
includes the entire target area. The similarity index for position, Sp, equals the percentage of targets
in all the clusters (n circa5) lying within the circle of diameter sigma. These distributions of target
loci withincircles of identity apply to a particular target whose "d" is equal to a particular value. The
sizeof "d", and thus of the circles of identity would vary, especially if targets were of varying sizes,
as they would be if they were found at quite different varying distances.

The K-means diagrams (Figures 17 and 18) are an approach to "scale." The abscissae are K-
means distances, or "d", over an abscissal scale of zero to 100pixels (upper panels) and of zero to
12,000 pixels (lower panels). Recall that the wide-scene FOR is 40 degrees across, and can be
represented by a nominal value of 12,000 pixels. The K-means frinction monotonically increases and
we use the random control (dotted line) as an example. Note that the apparent similarity of the
random function in the minified scale is due the very large values of the ordinate scale; see the
magnifred plots (upper panels) for the close to zero agglomeration of the randompoints over scales of
interest. Also note that the slopes of the K-means function are reduced in the minified (large scale)
panel (lower) due to a computation coarse sampling artefactual limitation; the computation was carried
out for every 5 pixels for the magnified diagram (Figures 17 and 18, upper) and only every 1000
pixels for the minifred diagrams (Figures 17 and 18, lower). Actual data from all of our subjects for
all scenarios shows a steeply rising curve, up to approximately 40 pixels, where the curve decreases
its slopedramatically. At that critical point, Sp equals approximately 0.75 and threshold distance
equals 40 pixels; this indicates that clusters of targetclicks for one particular target, are generally
within this 40-pixel diameter, which translates into 8 arc-minutes in the FOR. Of course, the subjects
are operating in a magnified iFOV, with a magnification of about 11. Thus, the K-means diameter in
human visual functional terms in the iFOV is 1.3 degrees, a reasonable accuracy to expect from our
subjects who were not instructed to point to any particular part of the target truck. Recall also that a
nominal value for the length of the truckis approximately 100 pixels, or 3.7 degrees in the iFOV;
however, trucksize changes withdistance from the viewer in the 3D search region, and is thus
smaller for trucks in the distant hills.
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Also of interest is the fact that the landmark clusters peak at approximately the same 40 to 50
Sigma distance, and with approximately the same Sp value. This result should be considered in light
of our use of K-means in attempting to define a metric independent of scale. In any case, the K-
means approach provides for an indication of the scale of the ROIs centered on the target.

We now turn to the Ss, similarity index. The K-means approach provides for an indication
of the scale of the ROIs centered on the target, here confounded with the sequential similarity distance
of the stringsof the scanpaths. The initial peak for the Ss K-means is at a somewhat larger "d," 50
pixels. The Ss value for targets, 0.4, and for landmarks, 0.3, are lower thanthe Sp values. As
explained in the simplified or toy diagram, the similarity indexfor sequencing, Ss, is a more restricted
quantity thanthe similarity for target loci, Sp. We hadearly exploited Ss as a key measure supporting
the scanpath theory of top-down spatial-cognitive models directing human vision.

These figures are a valuable approach to the distribution of accuracy and precision of
subjects' behavior. A series of future experiments could be done by varying contrast. Cm, spatial
frequency, and Wx, or equivalently, resolution. This latter can be controlled with magnification
conditions. As mentioned above, a mechanical contribution to "d" is likely negligible with the hand
resting on the mouse, and with the precise cross-hairs being adjusted by this stable mechanical system.

Figure 17: K-means approach to "scale" using Sv
Functionsfor targets, landmarks, andrandom look similar on minified diagram

(lower), but important results appear in structural elements ofmagnified diagram (upper).

Figure 18: K-means approach to "scale" using Ss
As in previousfigure, but note lower Ss indices and slightly larger "d"for landmarks.

7-SEARCHPATH SIMILARITY RESULTS

With our methods, explained above, we now approach instrumental searchpath similarities
and differences; here the subjects (intermittently) drag an FOV window over the FOR. First we may
view the qualitative results, when we compare two qualitatively similar instrumental searchpaths made
by the same subject looking at repetitions ofthe same scenario, that is, with the same placement of
target vehicles (Figure 19, upper two panels). This impression is reinforced by the R-Ss value of0.39
for averaged such pair-wise comparisons and as well serves to provide an intuitive sense ofthe
meaimg ofsuch an R-Ss value. By contrast, two instrumental searchpaths oftwo different subjects
viewing two different scenarios (Figure 19, two lower panels) are quite different, with the G-Ss value
equal to 0.25, again, reinforcing our qualitative impression and providing some further intuition about
the meaning ofthe quantitative measure Ss. (Note, these averaged values are also in Figure 22, upper
right parsing diagram.)

Figure 19: Similar and different subjects' instrumental searchpaths

Two target searchpaths by the same subject for the same scenario (Figure 20, upper two
panels) are qualitatively similar in their patterns; the small distances between their loci yield on
average a high R-Sp value of0.81 and the small distance between their sequences yields a high R-Ss
value of 0.45. These similarities are measured using a thresholded Euclidean distance set.at 100
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pixels (approximately twice the K-means "d" value and approximately 1% ofthe lateral extent ofthe
FOR).
Two landmark searchpaths by two different subjects (for the same FOR) (Figure 20, two lower
panels) are more different in their patterns for loci; the L-Sp value was 0.38 (averaged value, 0.82)
and the L-Ss value was 0.38 (averaged value, 0.20).

Figure 20: Similar and different subjects' target searchpaths

Y-Matrices Collecting Multiple Results of the Experiment. The Y-matrices are an
essential part ofour quantitative methodology. We here include apartial Y-matrix (Figure 21) from a
portion ofour experimental results to illustrate in detail how these arrays ofcoefficients appear. An
initial caution must be mentioned —these Y-matrices are huge! With seven subjects and fifteen views
ofsearch scene (three scenarios with targets, loci A, Band C, with four repetitions ofeach, and with
three repetitions for landmarks), the number of pairwise comparisons can be very large (735 = {([105
X105] -105)/2}). It seems best that the matrices remain virtual in the computers memory; ofcourse,
it is well to check these coefficients inpartial arrays to ascertain that the values make sense both with
respect to the raw data and with respect to the final assemblage ofcoefficients into the parsing
diagram.

Figure 21: Y-matrix
Actual example ofexperimental datafor Ssfor target searchpath similarities. These

extensive collections ofdata are collected andaveraged to supply the coefficients ofthe
parsing diagrams (Figure 22). The coefficients are assembled in the Y-matrix in patterns.

Ss values for instrumental searchpaths have been collected in this Y-matrix. The four
repetitions for each ofthe three scenarios, and the three landmark repetitions label the 15 columns and
&e 15 rows. Each coefficient in the matrix is the averaged value for the seven subjects. The diagonal
is left blank, since the distance between asearchpath and itself would be zero, and the similarity equal
to one. The Y-matrix is symmetrical, so only the upper right half matrix is necessary. Note the low
value of0.20 (left-most coefficient) between the first and second presentation ofscenario-A. Recall
that the subjects were just learning their way about this task, and these two presentations were
separated by sixteen presentations. By the time the subject had carried out instrumental search for
scenario-A four times, one can see that the similarity between the third and fourth searchpaths was
quite high, with a value of 0.52. For another comparison ofthis value, one might look ahead to the
parsing diagram (Figure 22) for the R-Ss value of0.39 for the same scenario, that is with the same
loci of targets and for the same subject.

Parsing Diagrams Summarizing Quantitative Results ofExperiment. The parsing
diagrams for instrumental, target and landmark searchpaths (Figure 22) repay careful inspection, as
much of the quantitative data from our experiment is summarized therein. For target searchpaths we
obtained both Sp and Ss diagrams (upper row, left and middle) and the Ss diagram for the
instrumental portion of target search (upper row, right).

Figure 22: Parsing Diagrams

For Sp-target, note the high R value of0.81, significantly different from the Ra, Random
13
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value (and therefore, 'bolded'), and from the I and G results (and thus, the heavy arrows). Note that
for the same scenarios and the same target loci, different persons also have very high L-Sp values;
most likely due to target loci constraints in the target search protocol. Also, both I and G are close to
Ra values; thus the same or different persons look quite differently at different scenario loci with no
Sp similarities (as expected).

For the Ss-target parsing diagram, we see that the repetitive sequences, although significantly
different from Ra and G, are yet muchlower in magnitude, 0.45 as compared with Sp-target. The L
similarity has almost the same value as R; again, this is due to constraints on all subjects generated by
the frxed loci, the extreme aspect ratio of the FOR, and the same starting position for all searches.
Also, again, I andG are close to the Ra value, demonstrating no fixed global pattern for all scenarios
in terms of the successive targets clicks.

For the Ss-instrumental parsing diagram, a different pattern of similarities in the parsing
diagram emerges. First note that all patterns of instrumental search are significantly different from
Ra (for explanation of bolded values and arrows see Figure 7 methods discussion). Now, while the
same person viewing the same scenario and loci has a high R value, 0.39, she also has a very high I
value, 0.38; this is evidence that subjects used similar instrumental searchpaths for different scenarios,
that is different target placements. This is incontrast to the absence of a global pattern for all
scenarios for target searchpaths.

Forlandmark searchpaths, a 'freer' search task we have the same Sp and Ss diagrams
(Figure 22, lower row, left and middle) and the Ss diagram for the instrumental portion of landmark
search (lower row, right). Since we had only one search scene, these parsing diagrams are truncated
omitting the I and G boxes. Given these differences, we find that the Sp-landmark and the Ss-
instrumental landmark searchpath results are almost identical to those for target searchpaths (upper
row) and thus support the precision and accuracy of ourexperiment in toto. The Ss-landmark results
are a bit lower, 0.27 for R, and 0.20 for L, yet significantly different from random, Ra, thus
indicating that the sequencing for landmark searchpaths was a bit freer than that for target
searchpaths.

Familiarization or Consolidation Effect. As a control study we also evaluated the effect of
order vvithin the four repetitions ofthe protocol in the three target scenarios (Figure 23). For the Sp
similarities (left), ifwe average over all subjects, the high Rvalue does not change with order (0.82 =
0.81); this is consistent with no effect for order and with the high Local values (Figure 22, upper, left).
The Sssunilarities (right), lower asexpected than Sp similarities, do show anincreased coherence for
both instrumental and target searchpath sequences after familiarization (but not for the freer landmark
sequences). Indeed, inother studies (Stark etal. 1999 [SPIE'99]), consolidation ofthe memory traces
often occurred with the second scanpath being repeated inlater presentations.

Figure 23: Familiarization or Consolidation Effect

8 - DISCUSSION and CONCLUSIONS

Scanpath theory for normal vision. Top-down spatial cognitive models control active
looking and the perceptual process itself; this has been defined and explained in a number of
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publications on the scanpath theory (refs). Scanpath sequences appear spontaneously in subjects when
viewing pictures or scenes without special instructions (Figure 24); scanpaths are idiosyncratic to the
picture and the viewer, and are repetitive. These experimental findings suggested to Noton and Stark
(1971) that a top-down internal cognitive model controls perception and active looking of eye
movements, in a repetitive sequential set of saccades (white lines. Figure 1, upper), and fixations
(white squares. Figure 1, upper), or glances over the features or regions of interest, ROIs, of a scene
so as to check out and confirm the internal cognitive spatial model. Bottom-up subfeatures (Figure
24, upper right) that are checked by icon comparison inthe visual cortex with the top-down cognitive
model subfeatures. The non-iconic representation of the geometry of loci (measured by Sp) and of the
sequence in which they are visited (measured by Ss) is non-deterministic (Figure 24, lower right), but
far firom random. Thus the scanpath (Figure 24, lower left) plays an important role in perceptual and
cognitive vision.

Where is the scanpath representation located in the brain? In computer science language,
where are the different memory aspects "bound"*? Semantic binding (the *what' portion the dual
visual system dichotomy) is likely located inthe left temporal cortex (recall Wemicke's receptive
aphasia locus). Spatial binding (the 'where' portion of the dichotomy is likely located inthe right
parietal cortex. Important direct connections exist from parietal to preffontal cortex; together with
other indications from MRI and clinical studies suggest prefrontal locus for sequential binding,
inherently related to spatial binding. Visual spatial memory experiments with different movement
'read-outs' —eye movements, hand movements, walking over grid squares — indicate that about
two-thirds of sequential binding is inherently linked to the spatial binding, and that about one-third of
the sequential binding is associated with the read-out modes located in the motor areas of the frontal
cortex (Stark et al., 1999, SPIE). Although further elaboration of the scanpath theory is beyond the
scope of the present paper, it should be clearthat it has guided thedesign of oiu* experiments, and the
analysis and interpretation of our results.

Figure 24: Scanpath Theory

Bottom-Up and Top-down vision. Visual search processes may be compartmentalized into
pre-scan, cover, detection, and recognition. The underlying visual mechanisms can be considered as
operating on several levels, in particular, their modus operandi depends on whether we are
considering initial visual searchprocedures, efficient visual search after familiarization, or normal
scanpath top-down vision (Figure 25).

Lower-level vision involves the physics of light and ofoptics and ofphysiology of the eye;
often "sensation" is the word used to define these lower-level physiological processes. Ofinterest is
the useof magnification and various firequency andamplitude filters, such as the Schreiber-Peli-Lim
algorithm, to transform an image into one more adapted to human vision. Middle-level vision might
include the tactics of covering a search area inanefficient manner. Ofspecial interest here is the use
oftraining techmques to develop skill inthe human observers. Higher level vision involves cognition
and "perception"; these higher level functions introduce important aspects ofeducation, training and
experience that act to improve performance.

Pre-scan. In initial vision search (Figure 25, leftcolumn) the subject has to form some
estimate of the parameters of the search task. Of importance for cover tactics, are its dimensions,
especially the ratio of the FOV to the FOR. Next for detection, the nature of the search scene itself
with its attendant clutter and noise must be considered; in our particular example, this was largely
15
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composed of natural vegetation. Finally for recognition, the nature of the targets in terms of their
size, contrast, and distribution, and of possible decoys. Likely even before familiarization (Figure 25,
middle column), but certainly during, the subject develops a good deal of 'a priori' knowledge, such
as the relative utility of different types of errors, such as misses versus false alarms. Often, the pre-
scan occurs quickly in parallel with the beginning of the normal cover sequence; in our particular
example, we made explicit provision for the subjects to have trial runs on related but different search
scenes.

Cover implies the processes of visual searchper se. Search patterns have often been
mathematically defined ranging from random search to systematic row search. Indeed, the early
history of operations research during World War II had to do withdesigning efficient row search
patterns for airplanes over the relatively uncluttered ocean for submarine targets. Optimal control
algorithms and efficiency considerations had equal roles to play with higher level aspects of search.
For example, a human observer might search in regions wherein there are high expectations of target
location, or of high utility for targets discovered in those regions. Thus, training applications varied
from moderate skill-training to higher level education concerning strategic considerations. The
metrics involved canbe rather straightforward as in our Results section, dealing with fraction of
search area covered, and fraction covered as a function of time. Repeated search also involves such
memory binding features as the structural or location binding, and its closely linked sequential
binding, as recently developed in the scanpath theory; these processes should be considered in
comparison to visual search (Figure 25, right column)

Detection is a most obvious visual process, and involves contrast and spatial frequency or
resolution, as might be summarized in a visual transfer function. The metrics involved deal with
errors, oftenusing the sophistication of the theory of signal detection, TSD, with its elaboration of
different types oferrors such as misses and false alarms, and the separation ofperformance into
detectability, d-prime, and bias, beta. Physical processes such as magnification and signal processing
with algorithms to make the image more suitable to human vision are available as aids to the human
observer. Early Berkeley laboratory research (not reported in this paper) involved us insuch various
aspects of these aids as image-processing algorithms for enhanced vision systems.

Recognition is a higher level visual process that requires internal cognitive perceptual
models, which can often be simulated with matched filters, or two-dimensional templates. These
obvious top-down visual processes can be strongly supported by education and training The scanpath
theory suggests that the semantic binding and symbolic association aspects ofvisual memory are basic
to recognition, or "re-cognition." Again, the metrics used have to do with TSD; visual transfer
fimction characteristics for recognition are often studied inexperiments, although the connection is
clearly not as apparently causal as with detection. Inour particular experimental example, the
detection-recognition processes are very closely linked, because of the simplicity of the decoy-free
single target search task. The relative contrast and size requirements for detection, recognition, and
identification performance, have been empirically characterized in the Johnson criteria, and in the
fractional-perimeter multipliers inthe Overington work. These make quantitative based upon
experimental data, the obvious notion that it requires progressively larger and clearer views to
recognize targets and to identify them, thanto detect such targets.

Figure 25: Bottom-Up and Top-Down Vision
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The scale problem. Scale is an important part ofvision and early visual orientation; for
example, in visual search the pre-scan (or if the subject already knows the "game," then this is
termed, "pre-knowledge") quickly ascertains the size of the FOR and the size of the FOV with respect
to the FOR. It is important to determine characteristics of visual search that are invariant to scale or
alternatively, to determine the actual scale. 'Scale' is, of course, a function of many things —
magnification of the sensors or distance of the scene with its targets. All subjects have already great
sophistication and experience with scale andmetrics and direction in our 3-Dworld. Scale-free
processes at times can be noted in human vision, as for example, when a scanpath can change in size
dramatically, but have constant shape and angles; an experimental example was provided by Noton
and Stark in 1971 [115].

Figure 26: Overall Scales ofDistance for an Abstract Scene

Determination ofscale is usually done in human vision by using the sizes offamiliar objects
to judge distance ofthose objects, although binocular stereopsis and visual flow clues are also very
helpful. It is often ofvalue toconsider the three-dimensional world inwhich humans are immersed,
and in which they carry out visual search; even if they are looking at a two-dimensional display, their
internal spatial-cognitive model is, of course, in 3-D. Ithas been found helpful to divide this space
(Figure 26) into the closest area, that is, the area accessible to human reach; the farthest region, so
distant that events ongoing in it are not ofimmediate interest; and an intermediate distance, called
here the "near-abroad", that contains elements ofboth the reach and the distant areas. Often, near
reach and far distant regions are normalized by time; definitions vary depending ifone is sitting at the
desk ordriving a high-speed vehicle. The reach or action area is available within a few seconds,
whereas the distance region is only arrived at in ten or more seconds.

Current experimental protocols and results. Cover variability and efficiency was very
sumlar to that seen in other visual search experiments. The efficiency might be improved by specific
traming methods. One such training case, not directly related to search, was carried out in our
laboratory; after a subject could view an optimal control trajectory, his direct manual control
performance improved considerably (Jordan and Stark, unpublished result). This type of training
procedure has also beenused in athletic training.

The inseparability ofdetection andrecognition was designed into our current experiment,
since the different characteristics ofthese two procedures was not a focused part ofour study. As
mentioned above, a number of experiments could be designed toexpand individual studies ofdetection
and ofrecogmtion, and oftheir quite different characteristics. The experimental results confirm that
our design was successful, inthat contrast was sufficient to allow for recognition once detection had
occurred, but that the contrast was low enough so that about 80% ofthe targets were detected (see
Figure 14).

We would like to direct the attention ofthe reader to the parsing diagrams (Figure 22).
Although they may at first seem complex, they are actually only sufficient to capture important parts
ofthe subject's behavior and performance. Any further simplification would omit significant features.
An additional advantage ofthe parsing diagrams is that they lend themselves to direct statistical
analysis, ofgreat value in drawing conclusions from the overall experiments. It is important to
consider that these parsing results may very well be quite robust to large changes in sizes ofthe FOR,
the iFOV, and the eFOV, as well as to many contrast and spatial frequency characteristics ofthe
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search scenes; on the other hand, when these changes do, in fact, change the nature of the search,
then we would suspect that the values organized in the parsing diagrams would also reflect these
significant alterations.

The K-means studies are an important approach to scale-invariance. For modem computer
analysis, they are quite feasible in spite of the computational cost, and they provide bias-free estimates
of the observer's self-developed constraints on the sizes of the ROIs. Some of our earlier studies
approached this concern.

Of course, there are many open problems. In fact, one of our designconsiderations was to
study the possible separability of different aspects of visual search, so that each particular aspect might
be studied inrestricted and feasible experiments. We plan to continue to carry out such experiments,
especially now that our set-up is working so well. An overall search model was begun based upon
earlier studies in this laboratory.

Metrics for analyzing ourexperimental results have been presented in some detail, since this
was a primary objective ofour study. We emphasize those metrics that either are independent of
scale, or withwhich the scale of the visual search processes can be measured and defined. It is
important to consider significant differences in protocol design and expectations regarding results
when planning field tests as contrasted with laboratory experiments. These metrics are also available
for studies of the positive effects of training, experience, and education.
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GLOSSARY

analysis of variance astatistical approach developed by R.A. Fisher, defines whether sample means ofvarious factors vary
significantly from one another and whether they interact significantly with each other

anchors coefficients that help determine the extrema ofahoped-for regular scale and which thus enable understanding of
the meaning as particular intermediate value on that scale

ANOVA analysis of variance

'a priori' before the event, as in knowledge regarding search characteristics before the search begins

*a posteriori' after the event; often the 'a posteriori' probability ofan unlikely event is one!

benchmarks markers inserted into the FOR that could be used to help in navigating around the FOR

bottom-up computer term for moving from particular instances toward ageneral conception; in vision used for anatomical
and physiological sensory processes in contradistinction to top-down cognitive-perceptual processes

cluster agrouping ofevents; here used for grouping ofpoints in agraph

clutter a formed noise-like set ofconfusing objects that more seriously disrupt vision and visual search since ithas feature
characteristics ofthe targets; clutter slows down visual search since it may not be distinguished as noise vis-a-vis the
detection signal associated with the target; development ofover-leamed matched-filter-like processes are very important in
training observers

Cm Michelson contrast; [max - min]/[max + min]

contrast difference between luminance ofaregion and its surround; the dimensions ofthese spaces determines whether
one is talking about global or local contrast; several definitions ofcontrast exist, ofwhich Cm and Cp are the most popular

Corel Draw a computer program for creating and modifying images

Cp physical contrast; [max - min]/[min]; in levels ofinterest in human vision Cp =e*Cm (Stark's Law)

cover partof visual search designed to carry theFOV overthesearch areaor FOR

CR correct rejections in TSDapproach

cross-hairs used here as a form ofmouse-controlled cursor; often used in optical instruments to enable location ofa
fiduciarypoint

"d" distance determined byK-means approach

decoys objects in the FOV that resemble targets and need careful foveal recognition to distinguish them from targets

detection avisual process, whereby a low resolution appearance ofatarget or decoy onto the peripheral retinal area
produces an alerting reaction; often arapid refixation saccade ensues to place the fovea onto the detected event and thus
enable recognition. Detection is most often carried out as asignal-noise process whereby the event is distinguished from
noise, clearly anoise free environment makes detection facile. Similarly movement ofan object or temporal flickering of its
luminance appeals to special processes in the human retina; in contradistinction to visual acuity, that falls offvery rapidly
outside the central fovea, spatial or temporal derivation sensing has arather shallow fall-offofsensitivity with eccentric
distance. Distinction should be made between the peripheral process ofdetection (the fovea can cany out detection but is has
avery small area so its statistical chance ofbeing effective is small) and the foveal process ofrecognition, see also
recognition as a counter-example.
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eFOV external field of view; with respect to FOR

EMs eye movements

FA false alarms in TSD approach

field of regard search area

field of view that part of search area available to view at any one look

FOR field of regard; search area

FOV field of view; that part of search area available to view

fovea central small (less than one degree) area of retina

G global similarity index in PD

I idiosyncratic similarity index in PD

identification a process even more specific to the target than recognition (q.v.) so that if a 'car' is sufficient for
recognition, the make, year and model might be the output of an identification algorithm

iFOV internal fieldof view; with respect to the display that the human searcher actually views

instrumental search search carried outby means ofan instrument; often used to characterize theslewing of an optical
system, containing the FOV, over the FOR

instrumental searchpath a sequence ofmouse-controlledFOV shifts over the FOR in order to "cover" the FOR

internalspatial-cognitive model used here to characterize thetop-down control ofperception bya brain representation

invariance used here forprocesses and metric that can operate over a wide range ofscales and still bring meaningful order
to an approach; see scale

IS instrumental search

K-means an important statistical estimation procedure

L local similarity index in PD

landmarks regions in theFOR thatarestriking andcan beused tohelp innavigating around theFOR

LS landmark search

Matlab a computerprogram for computation

model a simplified representation ofsome external events orphenomena; inphilosophical theories ofepistemology the
internal brain model is sometimes considered as theonly trueknown; mathematical models, analytic or numerical
approximation, are important scientific tools

Open GL a computer program for generating graphics

parsingdiagram a grouping of averaged similarity coefficients thatenables insight to be easily obtained regarding the
results ofan experiment

PD parsingdiagramfor organizingsimilarityindices
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perception brain appreciation ofevents orscenes; applied to information from vison, audition and other senses and also
more abstractly to ideas

peripheral retina that part ofthe retina (excluding the fovea) which provides the wide, almost 180 degree, human FOV

pixel smallest digital unit ofextent ofan image; dimensions ofdisplays are often given in pixels; an important determinant
of the informational capacity ofa display orvisual mechanism

pre-scan initial information gathering in visual search to gather information to supplement apriori knowledge

protocol the arrangements of an experiment

R repetitive similarity index in PD

Ra random similarityindex in PD

recognition a visual process, whereby a high resolution capture ofa target ordecoy by the retinal foveal area can enable
top-down comparison with cognitive models for these already known events so that adiscrimination may be made; see also
detection as acounter-example. Cognition is knowing - thus re-cognition is knowing again, that is, strong top-down
implication exists in theetymology of theword

ROIs regions of interest

scale used here as aterm for the general order ofmagnitude ofadimensional measure; as in miles per hour, feet per
second,or squaredegrees per FOV

scanpath repetitive, idiosyncratic sequence ofalternating fixations and saccades that plays an important part in human
vision

scanpath theory an hypothesis that much ofhuman perception and the scanpath EMs themselves are generated by atop-
downinternalcognitive model

Schreiber-Peli-Lim algorithm an important spatial filter that employs both frequency and
amplitude filtering toenable effective image processing especially for enhancement; the originators
are from MIT

searchpaths, especially for target and landmark searchpaths aselected portion ofascanpath which only contains the
loci of the target or landmark crosshair clicks, connected sequentially by vectors. This searchpath is atruncated partial
sequence ofthe full scanpath, which would include many other glimpses that were not checked as targets or landmarks.

signal detection theory aconstruct enabling the detection procedure to be evaluated, especially with respect to errors;
these are classified as FAs, false alarms, or misses in contradistinction to hits or CRs, correct rejections. An important ipect
ofTSD is that the observer's performance can be divided into true delectability d', d-prime, and observer bias, beta; it clearly
points out that correcting bias does not improve delectability, d'

Sp positional similarityindex

spatial frequency features ofthe (founer) transformed image denoted in cycle per degree, orequivalently in cvcles ner
radian( = 360/2 pi) or milliradian

Ss sequential similarity indices

targets objectsthat are the goal of the visualsearch

top-down computer term indicating moving from the general or whole to the particular; in vision used for cognitive models
mcontradistinction tobottom-up sensory physiological processes

toy diagram asimplified example ofamore complex diagram, often put forward to display the essential aspects ofan
approach
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TSD theory of signal detection; q.v.

TS target search

vision term used to indicate the physiological aspects ofseeing; see perception

Visual C++ or Visual Cpp a computer programming language used here to write programs to enable computations on the
visual search scenes and results

visual search a complex set of processes designed to find objects of interestwhose locations are not know beforehand

window computer term meaning a restricted part of a display; here used for the FOV that is carried in an instrumental
search procedure, over the FOR

Wx spatial fi*equency

Y-Matrix array for listing similarity indices

2D two dimensional

3D three dimensional

ACRONYMS

ANOVA analysis of variance

Cm michelson contrast

CR correctrejections in TSDapproach

"d" acceptance distance for loci ina cluster asdetermined by K-means approach

eFOV external fieldof view; withrespect to FOR

EMs eye movements

FA falsealarms in TSD approach

FOR field of regard

FOV field ofview

G global similarity index in PD

I idiosyncraticsimilarity index in PD

IFOV internal fieldof view;with respect to display to human searcher

IS instrumental search

K-means an important statistical estimation procedure

L local similarity index in PD

LS landmark search

PD parsingdiagram for organizingsimilarity indices
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Ra random similarity index in PD

R repetitive similarity index in PD

ROIs regions of interest

Sp positional similarity indices

Ss sequentialsimilarity indices

TSD theory of signal detection

TS target search

Wx spatial frequency

Y-Matrix array for listingsimilarity indices

2D two-dimensional

3D three-dimensional
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Figure I: Human viewing ofpictures and search scenes
Contrast a human using scanpath eye movements to view apicture (upper), and employing

instrumental search (lower) to move a FOV window over a search scene, or FOR



Figure 2: Search scene andfields ofview, FOV
Forestedsearch scene shown asa high resolution, denselypixelledfield ofregard

(figure 2a), andshowing twofields ofview containing targets (Figure 2b).
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Search Area (FOR)
(1400m = 40 degrees)

I.—INSTRUMENTAL SEARCH

External Field of VIEW

(eFOV)
(140m = 4 degrees)

—EYE MY SCANPATH

ROIs (1-2 deg)
center ofretina with Ems

(not to scale)

Instrument Magnification = xl2
(48 degrees for display at sighting
distance from displayof ~ 50 cm)

Internal Field ofVIEW

(iFOV)
(140m = 4 degrees)

Figure 3: Diagram ofthe field ofregard, FOR
Dimensions ofthesearcharea, or FOR, and ofthe internal

and external FOVs.



INSTRUCTIONS TO SUBJECTS

You will bepresented with scenes of actual California landscape inwhich trucks areplaced here
and there. You can only seethrough a square telescope orwindow from your forest ranger
lookout. You can move thewindow with the leftmost button of the cursor, and, inthis way, scan
the entire scene. Note, that the cross-hairs define the center of the window moved with the
window. Cross-hair are helpful to locatethe target accurately.

When you seea truck (a pick-up truck parked byan illegal deerhunter), click the middle button
ofthe mouse toselect the truck. Ablack square will appear toshow that you have in fact pushed
the correct button.

The window will move in the direction ofthe mouse-cursor and with ajump equal tothe distance
between the centerof the window andthe position of the mouse-cursor.

You will be given two practice scenes with lots oftrucks on it. Try moving the window up and
down, to the right and left, and clicking on trucks. Now you are ready to be tested on your 'Visual
Search' capabilities. Since this isa time-critical test, you can only look ata scene for two minutes
before itdisappears. However, you can have several practice runs on this practice scene;
remember two minutes only for each run.

Ifyou finish the task with all five cars detected in less time than the two minutes allocated, you
maystopthe acquisition by clicking the rightmost button

Ready 97

Now you will be presented with adifferent scene containing only five trucks embedded in the
same background each time. You will search for the five trucks inthree different scenarios orsets
of target locations. A, B, and C.

Next you will be asked to look at the scene without any trucks for three different two-minute
runs. Now your task isdifferent. You will beasked tochoose five different landmarks that are
distinctive locations that will help you remember your position in the scene. Click the middle
button on these landmarks. Remember you will have only two minutes for each ofthese landmark
runsto clickon five landmarks of yourchoice.

Then you will be presented again with the three search truck scenarios. A, Band Cfor three
two-minute successive runs. Don't forget you have only two minutes for each run!

Figure 4: Instructions to subjects
These instructions were presented inwrittenform on the computer screen, and also

reinforced verbally by the experimenter.
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Figure 5: Calculation ofSimilarity IndeXy S.



String Editing analysis for similarity

string 1= ABBCCEFHJJKL
string 2= ABCCDEFJJKKM

String2 ...

1 insertion, cost: 1 A ^CCDEF JJ KK M

1deletion, cost: 1 A B B C C><p E F J J KK M

i
1 insertion, cost: 1 ABBCCEFJJKKM (H) =

1 deletion, cost: 1 ABBCCEFHJJ K:3^M

1 replacement, cost:l ABBCCEFHJJ

total cost = 5 ABBCCEFHJJKL.., string 1

Ss = 1-5/12 = 0.58

Figure 6: String editing



INDICES

Sp = 0; Ss =0

SP target

same person difTerentpersons

R

0.81 (0.27)

L

0.81 (O.IS)

I V

0.01 (0.02)

Vg

0.02 (0.02)

0.004(0.03)

Sp = 1 ; Ss = 0

same loci

diff. loci

Sp= 1; Ss= 1

Ss target

same person difTerent persons

R

0.45 (0.25)

\

L

0J8 (0.08)

IV

0.05 (0.06)

^ Vg

0.03 (0.03)

0.0 (0.00)

Figure 7: Simplified, or "toy" diagramsfor Sp andSs andparsing
Two metrics, Spand Ss, are computed, and thenaveragedand

presented in theparsing diagrams.
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Figure 8: Clustering of target clicks
Target regions in aportion ofFOR, are shown magnified, The dense clustering ofallsubjects'

clicksfor thefoursequences is typical. Circular dimensions (lower) explained in text later in results
sections (notproportionedas FOV, but onlypart of a FOV).
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Figure 9: Sinylified, or "toy" diagram of K-means approach
Synthetic target clicks (upper); number ofclusters (lower) andSpvalues (middle) andasfunctions of

K-means, "d". Clustered targetclicks (left) vsrandom clicks (right).
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Instrumental searchpathsfor three subjects (three upperpanels)
a random instrumental cover with minor constraints (lowestpanel).
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Figure 12: CoveredArea
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1 2 3

Hits

Misses

FA

Figure 14: Error analysis ofthe search process
Three types oferrors shownfor each ofthefour sequential FORpresentations

(each in its own window). Correct rejections could not be measured in ourexperiment.

Actual

THEORY OF SIGNAL DETECTION. TSD

Guessed

+ 0

+ Hits

0.8

Misses

0.2

0
FA

0.01

CR

0.99

Figure 15: TSD error analysis

Hitsand misses, as measured in theexperiment,, probabilitiesforfalse alarm,
FA, and correct rejections, CR, adjustedas indicated andjustifiedin the text..
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Figure 16: Loci of target acquisitions
Target regions in aportion ofFOR (upper) are shown magnified (middle andlower).

The dense clustering ofallsubjects' clicksfor thefour sequences is typical
Circular dimensions (lowerpanel) explained in text.
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Figure 17: K-means approach to "scale" using Sp
Functionsfor targets, landmarks, and random all looksimilaron minified diagram

(lowet), but important resultsappear instructuralelements ofmagnified diagram (upper).
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Figure 18: K-means approach to "scale" (using Ss)
As inpreviousfigure, but note lowerSs indicesand slightly larger "d"for

landmarks.
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Ss Y-matrix for Instrumental Searchpaths

LOCI: A LOCI: 8 LOCI: C LANDMARK

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

—- .20 .18 .24 .40 .28 .25 .27 .31 .17 .34 .43 .50 .41 .23

2 — .43 .42 .29 .22 .25 .42 .45 .34 .43 .35 .36 .42 .43

: A 3 — .52 .29 .37 .46 .60 .42 .39 .50 .48 .44 .40 .45

4 — .45 .44 .43 .50 .42 .39 .41 .41 .46 .43 .39

1 —

.41 .35 .31 .29 .31 .23 .27 .43 .51 .41

2 — .39 .41 .37 .38 .31 .30 .49 .43 .38

LOCI: B 3 — .49 .30 .33 .31 .50 .43 .44 .45

4 —

.42 .38 .57 .64 .43 .37 .42

1 —

.43 .53 .43 .34 .31 .36

2 —

.36 .47 .35 .34 .36
LOCI: C 3 — .49 .39 .45 .49

4 — .37 .35 .38

1 — .42 .41

LANDMARK 2 — .54

Figure 21 Y-matrix

Actualexample ofexperimental datafor Ssfor target searchpathsimilarities.
These extensive collections ofdata are collected andaveraged tosupply thecoefficients
of the parsing diagrams (Figure 22). The coefficients are assembled in the Y-matrix
in patterns.
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Figure 22: Parsing Diasrams
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Sp Ss

Instrumental

(1-4) 0.87 0.33

Before
Target

familiarization
0.34(1-4) 0.79

Landmark

(1-3) 0.82 0.30

Instrumental

(3-4) 0.90 0.50

After Target

familiarization
(3-4) 0.82 0.47

Landmark

(2-3) 0.81 0.26

random 0.06 0.00

Figure 23: Familiarization or consolidation effect
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Figure 24; Scanpath Theory
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INITIAL VISUAL SEARCH

1.- Pre-scan

random search and

viewing to ascertain
information re

boundary conditions
for the search task

2.- Cover Tactics

random search

3.- Detection

wide peripheral vision
is essential

sensitive to effects

of noise and clutter

4«- Recognition
(and Identification)

careful foveal viewing

FAMILIARIZATION for

EFFICIENT VISUAL SEARCH

1.- *A priori* knowledge
geometry and orientation
figure-background
noise and clutter

target-decoy MFs
S/N; T/Ciutter ratios

2.- Cover Tactics

systematic row search
high probability areas

3.- Detection

special anti-filter
developed for
noise and clutter

4.- Recognition
(and Identification)
matched filters for

targets and decoys and for
distinguishing features
have been formed

Figure 25: Bottom - Up and Top —Down Vision

NORMAL SCANPATH VISION

1.- Internal spatial-cognitive
model

already formed and used
for checking

2.- Cover Tactics

move fixations-foveations

directly to predicted loci
(parietal lobe)

3.- Detection

not used except
to readjust planned
eye movement saccades

4.- Recognition

(and Identification)
sub-features quickly
checked against
predictions with iconic
maps in visual cortex
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Figure 26: Over —all scales ofdistancefor an abstract scene.
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